-
Due to their excellent electrical and optical properties, carbon nanotubes have broad application prospects in the field of optoelectronics. In this work the vacuum filtration method is used to obtain an isotropic single-walled carbon nanotube film by the dispersion of single-walled carbon nanotube powder through vacuum filtration; on the basis of extracting the dielectric parameters of the thin film in a range from 0.4 to 2.0 THz, a novel terahertz metasurface narrowband absorber based on single-walled carbon nanotube films is designed and prepared. This metasurface absorber is composed of square and I-shaped narrow slot resonators. The experimental and simulation results show that the proposed terahertz metasurface absorber exhibits four distinct resonance absorption peaks at 0.65, 0.85, 1.16, and 1.31 THz, respectively, achieving a perfect absorption of up to 90%. The absorption mechanism of this novel multi band terahertz metasurface is elucidated by using the theory of multiple reflection interference. By covering dielectric layers with different refractive indices on the surface of metasurface device, the sensing performance of metasurface acting as refractive index sensor is studied in depth. The research results indicate that this new type of metasurface absorber has high sensitivity for refractive index sensing, providing new ideas and solutions for further developing carbon-based new terahertz metasurface absorbers.
-
Keywords:
- single-walled carbon nanotube thin film /
- terahertz /
- metasurface /
- refractive index sensor
[1] Chen Y Q, Liu H B, Deng Y Q, Schauki D, Fitch M J, Osiander R, Dodson C, Spicer J B, Shur M, Zhang X C 2004 Chem. Phys. Lett. 400 357Google Scholar
[2] Chen H Y, Liu H, Zhang Z M, Hu K, Fang X S 2016 Adv. Mater. 28 403Google Scholar
[3] Shi W, Wang Y Z, Hou L, Ma C, Yang L, Dong C G, Wang Z Q, Wang H Q, Guo J, Xu S L, Li J 2021 J. Biophotonics 14 e202000237Google Scholar
[4] Abouelsayed A, Anis B, Eisa W H 2020 J. Phys. Chem. C 124 18243Google Scholar
[5] Shi C J, Zhu J, Xu M Q, Wu X, Peng Y 2020 Sci. Program. 2020 8841565
[6] 何明霞, 陈涛 2012 电子测量与仪器学报 26 471
He M X, Chen T 2013 J. Electron. Meas. Instrum. 26 471
[7] Qin J Y, Xie L J, Ying Y B 2016 Food Chem. 211 300Google Scholar
[8] Cheng R J, Xu L, Yu X, Zou L, Shen Y, Deng X H 2020 Opt. Commun. 473 125850Google Scholar
[9] Yan X, Yang M S, Zhang Z, Liang L J, Wei D Q, Wang M, Zhang M J, Wang T, Liu L H, Xie J H, Yao J Q 2019 Biosens. Bioelectron. 126 485Google Scholar
[10] Liu L, Li T F, Liu Z, Fan F, Yuan H F, Zhang Z Y, Chang S J, Zhang X D 2020 Biomed. Opt. Express 11 2416Google Scholar
[11] 彭晓昱, 周欢 2021 70 240701Google Scholar
Peng X Y, Zhou H 2021 Acta Phys. Sin. 70 240701Google Scholar
[12] Zhao R, Zou B, Zhang G L, Xu D Q, Yang Y P 2020 J. Phys. D: Appl. Phys. 53 195401
[13] Tan L, Guo Y, Shu Z, Xu K D 2023 Opt. Express 31 2039Google Scholar
[14] Peng Z, Zheng Z S, Yu Z S, Lan H T, Zhang M, Wang S X, Li L, Liang H W, Su H 2023 Opt. Laser Technol. 157 108723Google Scholar
[15] Hu F R, Xu X, Li P, Xu X L, Wang Y e 2017 Chin. Phys. B 26 074219Google Scholar
[16] Huang C C, Zhang Y G, Liang L J, Yao H Y, Yan X, Liu W J, Qiu F 2022 Optik 262 169348Google Scholar
[17] Pang J X, Dai Z J, Fu Z Q, Chen J, Wang F C, Yang J 2023 Opt. Commun. 527 128975Google Scholar
[18] 王玥, 崔子健, 张晓菊, 张达篪, 张向, 周韬, 王暄 2021 70 247802Google Scholar
Wang Y, Cui Z J, Zhang X J, Zhang D C, Zhang X, Zhou T, Wang X 2021 Acta Phys. Sin. 70 247802Google Scholar
[19] Ren Z H, Chang Y H, Ma Y M, Shih K L, Dong B W, Lee C 2019 Adv. Opt. Mater. 8 1900653
[20] Beruete M, Jáuregui-López I 2019 Adv. Opt. Mater. 8 1900721
[21] Wang Y, Zhang X, Zhang X J, Zhou T, Cui Z J, Zhang K 2022 J. Mater. Chem. A 10 1780Google Scholar
[22] Wang Y, Cui Z J, Zhang X J, Zhang X, Zhu Y Q, Chen S G, Hu H 2020 ACS Appl. Mater. Interfaces 12 52082Google Scholar
[23] Wang R Q, Xu W D, Chen D H, Zhou R Y, Wang Q, Gao W L, Kono J, Xie L J, Ying Y B 2020 ACS Appl. Mater. Interfaces 12 40629Google Scholar
[24] Rasheed T, Nabeel F, Adeel M, Rizwan K, Bilal M, Iqbal H M N 2019 J. Mol. Liq. 292 111425Google Scholar
[25] De Volder M F L, Tawfick S H, Baughman R H, Hart A J 2013 Science 339 535Google Scholar
[26] Zhukova E S, Grebenko A K, Bubis A V, Prokhorov A S, Belyanchikov M A, Tsapenko A P, Gilshteyn E P, Kopylova D S, Gladush Y G, Anisimov A S, Anzin V B, Nasibulin A G, Gorshunov B P 2017 Nanotechnology 28 445204Google Scholar
[27] Zhao B H, Sivasankar V S, Dasgupta A, Das S 2021 ACS Appl. Mater. Interfaces 13 10257Google Scholar
[28] Zhang X, Wang Y, Cui Z J, Zhang X J, Chen S G, Zhang K, Wang X 2021 Opt. Mater. Express 11 1470Google Scholar
[29] Naftaly M, Miles R E 2007 Proc. IEEE 95 1658Google Scholar
[30] Duvillaret L, Garet F, Coutaz J L 1996 IEEE J. Sel. Top. Quantum Electron. 2 739Google Scholar
[31] Nguema E, Vigneras V, Miane J L, Mounaix P 2008 Eur. Polym. J. 44 124Google Scholar
[32] Ou H L, Lu F Y, Xu Z F, Lin Y S 2020 Nanomaterials 10 1038Google Scholar
[33] Chen H T 2012 Opt. Express 20 7165Google Scholar
[34] Chen H T, Zhou J, O'Hara J F, Chen F, Azad A K, Taylor A J 2010 Phys. Rev. Lett. 105 073901Google Scholar
-
图 1 (a) 基于SWCNTs薄膜的THz超表面吸收器微结构单元, 其结构参数为: a = 190 μm, b = 104 μm, c = 84 μm, d = 54 μm, e = 40 μm, f = 10μm, g = 8 μm; (b) 周期性结构列; (c) 制备的超表面结构显微照片; (d) 制备的超表面窄带吸收器以及SWCNTs薄膜的表面形貌照片; (e) SWCNTs薄膜的拉曼光谱(波长532 nm)
Figure 1. (a) The microstructure unit of THz metasurface absorber based on carbon nanotubes, the structural parameter is a = 190 μm, b = 104 μm, c = 84 μm, d = 54 μm, e = 40 μm, f = 10μm, g = 8 μm; (b) periodic structure array; (c) microscopic photos of metasurface structure and (d) photos of prepared metasurface absorbers and surface morphology of SWCNTs thin films; (e) Raman Spectrum of SWCNTs films (at the wavelength of 532 nm).
图 2 (a) SWCNTs薄膜样品和自由空间参考的时域太赫兹时间信号; (b) 在0.2—1.6 THz范围内的功率吸收系数; (c) 提取的SWCNTs薄膜在0.4—2.0 THz范围内的介电常数; (d) 电导率
Figure 2. (a) Time-domain terahertz signals of SWCNTs film samples and free-space references; (b) power absorption coefficient in the range of 0.2–1.6 THz; (c) effective permittivity of extracted SWCNTs films in the range of 0.4–2.0 THz; (d) electrical conductivity.
图 4 TE极化时超表面在x-y平面内的电场分布 (a) 共振模式I, f = 0.65 THz; (b) 共振模式II, f = 0.85 THz; (c) 共振模式III, f = 1.16 THz; (d) 共振模式IV, f = 1.31 THz
Figure 4. Field distribution of metasurface in x-y plane during TE polarization: (a) resonance mode I, f = 0.65; (b) resonance mode II, f = 0.85 THz; (c) resonance mode III, f = 1.16 THz; (d) resonance mode IV, f = 1.31 THz.
图 5 超表面微结构变化时模拟的器件吸收光谱 (a) 周期a; (b) 工字形狭缝的线宽g; (c) 方形狭缝的线宽f; (d)方形狭缝的周期b
Figure 5. Simulated absorption spectrum of the device when the metasurface unit structures change: (a) The period a; (b) the line width of the I-slit g; (c) the linear width of the square slit f; (d) period b of the square slit.
图 6 (a) 通过干涉理论计算界面复反射系数的物理模型; (b) 实验测试以及通过干涉理论计算和仿真得到的吸收光谱; (c) 计算得到的直接反射幅值和间接反射幅值; (d) 直接反射相位和间接反射相位
Figure 6. (a) Physical model for calculating interface complex reflection coefficient through interference theory; (b) experimental tests and absorption spectra obtained by interference theory calculations and simulations; (c) the calculated direct reflection amplitude and indirect reflection amplitude; (d) direct reflection phase and indirect reflection phase.
图 7 (a) 添加不同折射率的分析物后提出的这种THz超表面传感器的吸收光谱; (b) 共振模式III的缩放图; (c) 共振模式IV的缩放图; (d) 两种共振模式下共振频率(方形和圆形符号) 随分析物折射率的变换和线性拟合(实线和虚线)
Figure 7. (a) The absorption spectra of the THz metasurface sensor proposed after adding analytes with different refractive indexes; the zoom view on (b) resonance mode III and (c) resonance mode IV; (d) transformation and linear fitting of resonance frequency (square and circular symbols) with the refractive index of analyte under two resonance modes (solid line and dotted line).
-
[1] Chen Y Q, Liu H B, Deng Y Q, Schauki D, Fitch M J, Osiander R, Dodson C, Spicer J B, Shur M, Zhang X C 2004 Chem. Phys. Lett. 400 357Google Scholar
[2] Chen H Y, Liu H, Zhang Z M, Hu K, Fang X S 2016 Adv. Mater. 28 403Google Scholar
[3] Shi W, Wang Y Z, Hou L, Ma C, Yang L, Dong C G, Wang Z Q, Wang H Q, Guo J, Xu S L, Li J 2021 J. Biophotonics 14 e202000237Google Scholar
[4] Abouelsayed A, Anis B, Eisa W H 2020 J. Phys. Chem. C 124 18243Google Scholar
[5] Shi C J, Zhu J, Xu M Q, Wu X, Peng Y 2020 Sci. Program. 2020 8841565
[6] 何明霞, 陈涛 2012 电子测量与仪器学报 26 471
He M X, Chen T 2013 J. Electron. Meas. Instrum. 26 471
[7] Qin J Y, Xie L J, Ying Y B 2016 Food Chem. 211 300Google Scholar
[8] Cheng R J, Xu L, Yu X, Zou L, Shen Y, Deng X H 2020 Opt. Commun. 473 125850Google Scholar
[9] Yan X, Yang M S, Zhang Z, Liang L J, Wei D Q, Wang M, Zhang M J, Wang T, Liu L H, Xie J H, Yao J Q 2019 Biosens. Bioelectron. 126 485Google Scholar
[10] Liu L, Li T F, Liu Z, Fan F, Yuan H F, Zhang Z Y, Chang S J, Zhang X D 2020 Biomed. Opt. Express 11 2416Google Scholar
[11] 彭晓昱, 周欢 2021 70 240701Google Scholar
Peng X Y, Zhou H 2021 Acta Phys. Sin. 70 240701Google Scholar
[12] Zhao R, Zou B, Zhang G L, Xu D Q, Yang Y P 2020 J. Phys. D: Appl. Phys. 53 195401
[13] Tan L, Guo Y, Shu Z, Xu K D 2023 Opt. Express 31 2039Google Scholar
[14] Peng Z, Zheng Z S, Yu Z S, Lan H T, Zhang M, Wang S X, Li L, Liang H W, Su H 2023 Opt. Laser Technol. 157 108723Google Scholar
[15] Hu F R, Xu X, Li P, Xu X L, Wang Y e 2017 Chin. Phys. B 26 074219Google Scholar
[16] Huang C C, Zhang Y G, Liang L J, Yao H Y, Yan X, Liu W J, Qiu F 2022 Optik 262 169348Google Scholar
[17] Pang J X, Dai Z J, Fu Z Q, Chen J, Wang F C, Yang J 2023 Opt. Commun. 527 128975Google Scholar
[18] 王玥, 崔子健, 张晓菊, 张达篪, 张向, 周韬, 王暄 2021 70 247802Google Scholar
Wang Y, Cui Z J, Zhang X J, Zhang D C, Zhang X, Zhou T, Wang X 2021 Acta Phys. Sin. 70 247802Google Scholar
[19] Ren Z H, Chang Y H, Ma Y M, Shih K L, Dong B W, Lee C 2019 Adv. Opt. Mater. 8 1900653
[20] Beruete M, Jáuregui-López I 2019 Adv. Opt. Mater. 8 1900721
[21] Wang Y, Zhang X, Zhang X J, Zhou T, Cui Z J, Zhang K 2022 J. Mater. Chem. A 10 1780Google Scholar
[22] Wang Y, Cui Z J, Zhang X J, Zhang X, Zhu Y Q, Chen S G, Hu H 2020 ACS Appl. Mater. Interfaces 12 52082Google Scholar
[23] Wang R Q, Xu W D, Chen D H, Zhou R Y, Wang Q, Gao W L, Kono J, Xie L J, Ying Y B 2020 ACS Appl. Mater. Interfaces 12 40629Google Scholar
[24] Rasheed T, Nabeel F, Adeel M, Rizwan K, Bilal M, Iqbal H M N 2019 J. Mol. Liq. 292 111425Google Scholar
[25] De Volder M F L, Tawfick S H, Baughman R H, Hart A J 2013 Science 339 535Google Scholar
[26] Zhukova E S, Grebenko A K, Bubis A V, Prokhorov A S, Belyanchikov M A, Tsapenko A P, Gilshteyn E P, Kopylova D S, Gladush Y G, Anisimov A S, Anzin V B, Nasibulin A G, Gorshunov B P 2017 Nanotechnology 28 445204Google Scholar
[27] Zhao B H, Sivasankar V S, Dasgupta A, Das S 2021 ACS Appl. Mater. Interfaces 13 10257Google Scholar
[28] Zhang X, Wang Y, Cui Z J, Zhang X J, Chen S G, Zhang K, Wang X 2021 Opt. Mater. Express 11 1470Google Scholar
[29] Naftaly M, Miles R E 2007 Proc. IEEE 95 1658Google Scholar
[30] Duvillaret L, Garet F, Coutaz J L 1996 IEEE J. Sel. Top. Quantum Electron. 2 739Google Scholar
[31] Nguema E, Vigneras V, Miane J L, Mounaix P 2008 Eur. Polym. J. 44 124Google Scholar
[32] Ou H L, Lu F Y, Xu Z F, Lin Y S 2020 Nanomaterials 10 1038Google Scholar
[33] Chen H T 2012 Opt. Express 20 7165Google Scholar
[34] Chen H T, Zhou J, O'Hara J F, Chen F, Azad A K, Taylor A J 2010 Phys. Rev. Lett. 105 073901Google Scholar
Catalog
Metrics
- Abstract views: 2158
- PDF Downloads: 110
- Cited By: 0