Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Refractive index sensing characteristics of electromagnetic metamaterial absorber in terahertz band

Wang Xin Wang Jun-Lin

Citation:

Refractive index sensing characteristics of electromagnetic metamaterial absorber in terahertz band

Wang Xin, Wang Jun-Lin
PDF
HTML
Get Citation
  • Terahertz metamaterial (THz MM) absorber, as an important type of MM functional device, can not only achieve perfect absorption of incident THz waves, but also act as a refractive index sensor to capture and monitor changes in the information about surrounding environment. Generally, the sensing characteristics of the THz MM absorber can be improved by optimizing the structure of the surface metal resonance unit and changing the material and shape of the dielectric layer. In order to further study the influence of the intermediate dielectric layer on the sensing characteristics of the THz MM absorber, in this paper we implement three THz MM absorbers with continuous dielectric layer, discontinuous dielectric layer and microcavity structure based on the metallic split-ring resonator array, and conduct in-depth study of their sensing characteristics and sensing mechanism. The THz MM absorber with continuous dielectric layer and metallic split-ring resonator array can be used as a refractive index sensor to realize the sensing detection of analytes coated on its surface with different refractive indexes. However, it can be seen from its corresponding refractive index frequency sensitivity and FOM value that the detection sensitivity of this sensor is limited, and its sensing performance still needs improving. The main reason is that most of the resonant electromagnetic (EM) field of the THz MM absorber is tightly bound in the intermediate dielectric layer, and only the fringe field extending to the surface of the MM absorber resonant unit array can interact with the analyte to be measured, and the intensity of this part of the field directly determines the sensitivity of the sensor. In order to further improve the refractive index frequency sensitivity of the THz MM absorber, reduce the restriction of the intermediate dielectric layer to the resonant EM field, and enhance the interaction between the resonant EM field and the analyte to be measured, a THz MM absorber with discontinuous dielectric layer is proposed and studied. Compared with the THz MM absorber with continuous dielectric layer, the THz MM absorber based on discontinuous dielectric layer can be used as a refractive index sensor to realize higher-sensitivity sensing and detection of the analyte coated on the surface. In order to further enhance the interaction between the resonant EM field and the analyte to be measured, and improve the refractive index frequency sensitivity of the THz MM absorber, a THz MM absorber with a microcavity structure is proposed. For this THz MM absorber, the analyte to be measured filled in the microcavity structure can serve as the intermediate dielectric layer of the THz MM absorber, and when the metallic split-ring resonator array is completely immersed in the analyte to be measured, the resonant EM field originally confined in the intermediate dielectric layer and the analyte to be measured completely overlap in space. Therefore, compared with the first two THz MM absorbers, THz MM absorber with a microcavity structure achieves the tightly and fully contacting the resonant EM field, thereby greatly improving its sensitivity as a sensor. The results show that in order to improve the sensing characteristics of the THz MM absorber, such as the refractive index sensitivity and the maximum detection range, in addition to using the materials with lower relatively permittivity as the intermediate dielectric layer, the morphology of the intermediate dielectric layer can be changed, thereby reducing the restraint of the intermediate dielectric layer on the resonant field and enhancing the coupling between the resonant field and the analyte to be measured. Compared with the conventional THz MM absorber with continuous dielectric layer, the MM absorber with discontinuous dielectric layer and microcavity structure have many superior sensing characteristics, and can be applied to the high-sensitivity and rapid detection of analytes to be measured, and has a broader application prospect in the future sensing field.
      Corresponding author: Wang Jun-Lin, wangjunlin@imu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51965047), the Inner Mongolia Natural Science Foundation, China (Grant No. 2018MS06007), and the Inner Mongolia University 2018 High-level Talent Introduction and Research Startup Project, China (Grant Nos. 21700-5185128, 21700-5185131).
    [1]

    Lee Y K 2012 太赫兹科学与技术原理 (北京: 国防工业出版社) 第1−30页

    Lee Y K 2012 Principles of Terahertz Science and Technology (Beijing: National Defense Industry Press) pp1−30 (in Chinese)

    [2]

    Zhang X C, Alexander S, Zhang Y 2017 Nat. Photonics 11 16Google Scholar

    [3]

    Zhang X C, Xu J Z 2010 Introduction to THz Wave Photonics (New York: Springer US) pp1−26

    [4]

    张活 2018 博士学位论文 (西安: 西安电子科技大学)

    Zhang H 2018 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [5]

    Wang J, Wang S, Singh R 2013 Chin. Opt. Lett. 11 011602Google Scholar

    [6]

    Wang X, Zhang B Z, Wang W J, Wang J L, Duan J P 2017 IEEE Photonics J. 9 4600512Google Scholar

    [7]

    黄文媛 2013 硕士学位论文 (成都: 西南交通大学)

    Huang W Y 2013 M. S. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese)

    [8]

    Li S Y, Ai X C, Wu R H 2018 Opt. Commun. 428 251Google Scholar

    [9]

    闫昕, 张兴坊, 梁兰菊, 姚建铨 2014 光谱学与光谱分析 2365Google Scholar

    Yan X, Zhang X F, Liang L J, Yao J Q 2014 Spectrosc. Spect. Anal. 2365Google Scholar

    [10]

    Chen T, Li S, Sun H 2012 Sensors 12 2742Google Scholar

    [11]

    张玉萍, 李彤彤, 吕欢欢 2015 64 117801Google Scholar

    Zhang Y P, Li T T, Lv H H 2015 Acta Phys. Sin. 64 117801Google Scholar

    [12]

    Wang X, Zhang B Z, Wang W J, Duan J P 2017 IEEE Photonics J. 9 4600213Google Scholar

    [13]

    毛前军, 冯春早 2019 光学学报 39 0816001Google Scholar

    Mao Q J, Feng C Z 2019 Acta Opt. Sin. 39 0816001Google Scholar

    [14]

    Wang W, Yan F P, Tan S Y 2017 Photonics Res. 5 571Google Scholar

    [15]

    Yan X, Yang M S, Zhang Z 2019 Biosens. Bioelectron. 126 485Google Scholar

    [16]

    Srivastava Y K, Cong L Q, Singh R 2017 Appl. Phys. Lett. 111 201101Google Scholar

    [17]

    Ahmed S, Sungjoon L 2018 Biosens. Bioelectron. 117 398Google Scholar

    [18]

    Han B J, Han Z H, Qin J Y 2019 Talanta 192 1Google Scholar

    [19]

    Singh R, Al-Naib A I, Koch M 2010 Opt. Express 18 13044Google Scholar

    [20]

    Saraswati B, Kyoungsik K 2019 J. Phys. D: Appl. Phys. 52 275106Google Scholar

    [21]

    Li W Y, Su Y, Zhai X 2018 IEEE Photonic. Tech. Lett. 30 2068Google Scholar

    [22]

    Shen S M, Liu Y L, Liu W Q 2018 Mater. Res. Express 5 125804Google Scholar

    [23]

    Hu T, Strikwerda A C, Liu M 2010 Appl. Phys. Lett. 97 261909Google Scholar

    [24]

    Moritake Y, Tanaka T 2018 Opt. Express 26 3674Google Scholar

    [25]

    Brian B, Sepúlveda B, Alaverdyan Y, Lechuga L M, Käll M 2009 Opt. Express 17 2015Google Scholar

    [26]

    Wang W, Yan F P, Tan S Y 2020 Photonics Res. 8 519Google Scholar

    [27]

    Meng K, Park S J, Burnett A D 2019 Opt. Express 27 23164Google Scholar

    [28]

    Hu T, Chieffo L R, Brenckle M A, et al. 2016 Adv. Mater. 23 3197Google Scholar

    [29]

    Dmitriev A, Hägglund C, Chen S 2008 Nano Lett. 8 3893Google Scholar

    [30]

    Whitesides G M 2006 Nature 442 368Google Scholar

    [31]

    Zhou H, Hu D L, Yang C 2018 Sci. Rep. 8 14801Google Scholar

    [32]

    Hu X, Xu G Q, Wen L 2016 Laser Photonics Rev. 10 962Google Scholar

    [33]

    Janneh M, De Marcellis A, Palange E 2018 Opt. Commun. 416 152Google Scholar

    [34]

    Wang B X, Zhai X, Wang G Z 2015 Appl. Phys. 117 014504Google Scholar

  • 图 1  基于连续介质层和金属开口谐振环阵列的太赫兹超材料吸波器的结构示意图

    Figure 1.  Schematic diagram of THz MM absorber based on continuous dielectric layer and metallic split-ring resonator array.

    图 2  具有连续介质层的太赫兹超材料吸波器的吸收特性仿真曲线

    Figure 2.  Simulated absorption characteristic curve of THz MM absorber with continuous dielectric layer.

    图 3  (a) 谐振频率处的表面电流分布; (b) 谐振频率处的表面电场分布

    Figure 3.  (a) Surface current distribution at the resonance frequency; (b) surface electric field distribution at the resonance frequency.

    图 4  (a) 谐振频率处$y$ = 0 截面的电场分布; (b) 谐振频率处$x$ = 0 截面的磁场分布

    Figure 4.  (a) Electric field distribution at cross section of $y$ = 0 at the resonance frequency; (b) magnetic field distribution at cross section of $x$ = 0 at the resonance frequency

    图 5  在分析物折射率从n = 1变化到n = 1.8时具有连续介质层的太赫兹超材料吸波器的吸收特性仿真曲线

    Figure 5.  Simulated absorption characteristic curves of THz MM absorber with continuous dielectric layer under analyte refractive index changes from n = 1 to n = 1.8.

    图 6  在分析物折射率从n = 1变化到n = 1.8时具有连续介质层的太赫兹超材料吸波器的谐振频率偏移及其线性拟合

    Figure 6.  Resonance frequency shifts and linear fitting of THz MM absorber with continuous dielectric layer under analyte refractive index changes from n = 1 to n = 1.8.

    图 7  介质层材料的相对介电常数变化对传感器折射率频率灵敏度的影响

    Figure 7.  Influence of relative permittivity of dielectric layer material on the refractive index frequency sensitivity of the sensor.

    图 8  在分析物厚度不同条件下, 分析物折射率从n = 1变化到n = 1.8时具有连续介质层的太赫兹超材料吸波器的谐振频率偏移

    Figure 8.  Resonance frequency shifts of THz MM absorber with continuous dielectric layer under analyte refractive index changes from n = 1 to n = 1.8 for different thicknesses of the analyte.

    图 9  选用连续介质层的太赫兹超材料吸波器作为传感器时, 被测分析物厚度对传感器折射率频率灵敏度的影响

    Figure 9.  Influence of the thickness of the analyte to be measured on the refractive index frequency sensitivity of the sensor for the THz MM absorber with continuous dielectric layer.

    图 10  基于非连续介质层和金属开口谐振环阵列的太赫兹超材料吸波器的结构示意图

    Figure 10.  Schematic diagram of THz MM absorber based on discontinuous dielectric layer and metallic split-ring resonator array.

    图 11  具有非连续介质层的太赫兹超材料吸波器的吸收特性仿真曲线

    Figure 11.  Simulated absorption characteristic curve of THz MM absorber with discontinuous dielectric layer.

    图 12  在分析物折射率从n = 1变化到n = 1.8时具有非连续介质层的太赫兹超材料吸波器的吸收特性仿真曲线

    Figure 12.  Simulated absorption characteristic curves of THz MM absorber with discontinuous dielectric layer under analyte refractive index changes from n = 1 to n = 1.8.

    图 13  在分析物折射率从n = 1变化到n = 1.8时具有非连续介质层的太赫兹超材料吸波器的谐振频率偏移及其线性拟合

    Figure 13.  Resonance frequency shifts and linear fitting of THz MM absorber with discontinuous dielectric layer under analyte refractive index changes from n = 1 to n = 1.8.

    图 14  在分析物厚度不同条件下, 分析物折射率从n = 1变化到n = 1.8时具有非连续介质层的太赫兹超材料吸波器的谐振频率偏移

    Figure 14.  Resonance frequency shifts of THz MM absorber with discontinuous dielectric layer under analyte refractive index changes from n = 1 to n = 1.8 for different thicknesses of the analyte.

    图 15  选用非连续介质层的太赫兹超材料吸波器作为传感器时, 被测分析物厚度对传感器折射率频率灵敏度的影响

    Figure 15.  Influence of the thickness of the analyte to be measured on the refractive index frequency sensitivity of the sensor for the THz MM absorber with discontinuous dielectric layer.

    图 16  待测分析物充当介质层的太赫兹超材料吸波器的结构示意图

    Figure 16.  Schematic diagram of THz MM absorber whose analyte to be measured acts as dielectric layer.

    图 17  未填充待测分析物的太赫兹超材料吸波器的吸收特性仿真曲线

    Figure 17.  Simulated absorption characteristic curve of THz MM absorber without filling the analyte to be measured.

    图 18  分析物折射率从n = 1变化到n=1.8时具有微腔结构的太赫兹超材料吸波器的吸收特性仿真曲线

    Figure 18.  Simulated absorption characteristic curve of THz MM absorber with microcavity structure under analyte refractive index range from n = 1 to n = 1.8.

    图 19  分析物折射率从n = 1变化到n = 1.8时具有微腔结构的太赫兹超材料吸波器的谐振频率偏移及其线性拟合

    Figure 19.  Resonance frequency shifts and linear fitting of THz MM absorber with microcavity structure under analyte refractive index changes from n = 1 to n = 1.8.

    表 1  太赫兹超材料吸波器的参数对比

    Table 1.  Comparison of parameters of THz MM absorbers

    太赫兹超材料吸波器的
    吸收与传感特性参数
    具有不同介质层的太赫兹超材料吸波器
    连续介质层非连续介质层微腔结构
    谐振频率/THz0.1830.2450.277
    吸收率/%99.9793.3086.60
    谐振峰半高宽FWHM/GHz9.313.015.0
    品质因数Q19.718.818.4
    折射率灵敏度S/(GHz·RIU–1)8.665.8101.5
    FOM值0.925.066.77
    DownLoad: CSV
    Baidu
  • [1]

    Lee Y K 2012 太赫兹科学与技术原理 (北京: 国防工业出版社) 第1−30页

    Lee Y K 2012 Principles of Terahertz Science and Technology (Beijing: National Defense Industry Press) pp1−30 (in Chinese)

    [2]

    Zhang X C, Alexander S, Zhang Y 2017 Nat. Photonics 11 16Google Scholar

    [3]

    Zhang X C, Xu J Z 2010 Introduction to THz Wave Photonics (New York: Springer US) pp1−26

    [4]

    张活 2018 博士学位论文 (西安: 西安电子科技大学)

    Zhang H 2018 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [5]

    Wang J, Wang S, Singh R 2013 Chin. Opt. Lett. 11 011602Google Scholar

    [6]

    Wang X, Zhang B Z, Wang W J, Wang J L, Duan J P 2017 IEEE Photonics J. 9 4600512Google Scholar

    [7]

    黄文媛 2013 硕士学位论文 (成都: 西南交通大学)

    Huang W Y 2013 M. S. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese)

    [8]

    Li S Y, Ai X C, Wu R H 2018 Opt. Commun. 428 251Google Scholar

    [9]

    闫昕, 张兴坊, 梁兰菊, 姚建铨 2014 光谱学与光谱分析 2365Google Scholar

    Yan X, Zhang X F, Liang L J, Yao J Q 2014 Spectrosc. Spect. Anal. 2365Google Scholar

    [10]

    Chen T, Li S, Sun H 2012 Sensors 12 2742Google Scholar

    [11]

    张玉萍, 李彤彤, 吕欢欢 2015 64 117801Google Scholar

    Zhang Y P, Li T T, Lv H H 2015 Acta Phys. Sin. 64 117801Google Scholar

    [12]

    Wang X, Zhang B Z, Wang W J, Duan J P 2017 IEEE Photonics J. 9 4600213Google Scholar

    [13]

    毛前军, 冯春早 2019 光学学报 39 0816001Google Scholar

    Mao Q J, Feng C Z 2019 Acta Opt. Sin. 39 0816001Google Scholar

    [14]

    Wang W, Yan F P, Tan S Y 2017 Photonics Res. 5 571Google Scholar

    [15]

    Yan X, Yang M S, Zhang Z 2019 Biosens. Bioelectron. 126 485Google Scholar

    [16]

    Srivastava Y K, Cong L Q, Singh R 2017 Appl. Phys. Lett. 111 201101Google Scholar

    [17]

    Ahmed S, Sungjoon L 2018 Biosens. Bioelectron. 117 398Google Scholar

    [18]

    Han B J, Han Z H, Qin J Y 2019 Talanta 192 1Google Scholar

    [19]

    Singh R, Al-Naib A I, Koch M 2010 Opt. Express 18 13044Google Scholar

    [20]

    Saraswati B, Kyoungsik K 2019 J. Phys. D: Appl. Phys. 52 275106Google Scholar

    [21]

    Li W Y, Su Y, Zhai X 2018 IEEE Photonic. Tech. Lett. 30 2068Google Scholar

    [22]

    Shen S M, Liu Y L, Liu W Q 2018 Mater. Res. Express 5 125804Google Scholar

    [23]

    Hu T, Strikwerda A C, Liu M 2010 Appl. Phys. Lett. 97 261909Google Scholar

    [24]

    Moritake Y, Tanaka T 2018 Opt. Express 26 3674Google Scholar

    [25]

    Brian B, Sepúlveda B, Alaverdyan Y, Lechuga L M, Käll M 2009 Opt. Express 17 2015Google Scholar

    [26]

    Wang W, Yan F P, Tan S Y 2020 Photonics Res. 8 519Google Scholar

    [27]

    Meng K, Park S J, Burnett A D 2019 Opt. Express 27 23164Google Scholar

    [28]

    Hu T, Chieffo L R, Brenckle M A, et al. 2016 Adv. Mater. 23 3197Google Scholar

    [29]

    Dmitriev A, Hägglund C, Chen S 2008 Nano Lett. 8 3893Google Scholar

    [30]

    Whitesides G M 2006 Nature 442 368Google Scholar

    [31]

    Zhou H, Hu D L, Yang C 2018 Sci. Rep. 8 14801Google Scholar

    [32]

    Hu X, Xu G Q, Wen L 2016 Laser Photonics Rev. 10 962Google Scholar

    [33]

    Janneh M, De Marcellis A, Palange E 2018 Opt. Commun. 416 152Google Scholar

    [34]

    Wang B X, Zhai X, Wang G Z 2015 Appl. Phys. 117 014504Google Scholar

  • [1] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [2] Yang Xiao-Jie, Xu Hui, Xu Hai-Ye, Li Ming, Yu Hong-Fei, Cheng Yu-Xuan, Hou Hai-Liang, Chen Zhi-Quan. Sensing and slow light applications of graphene plasmonic terahertz structure. Acta Physica Sinica, 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [3] Jin Jia-Sheng, Ma Cheng-Ju, Zhang Yao, Zhang Yue-Bin, Bao Shi-Qian, Li Mi, Li Dong-Ming, Liu Ming, Liu Qian-Zhen, Zhang Yi-Xin. Switchable multifunctional terahertz metamaterial with slow-light and absorption functions based on phase change materials. Acta Physica Sinica, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [4] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [5] Xiang Xing-Cheng, Ma Hai-Bei, Wang Lei, Tian Da, Zhang Wei, Zhang Cai-Hong, Wu Jing-Bo, Fan Ke-Bin, Jin Biao-Bing, Chen Jian, Wu Pei-Heng. Ultramicro-sensing of terahertz metamaterials implemented by using sample traps. Acta Physica Sinica, 2023, 72(12): 128701. doi: 10.7498/aps.72.20230080
    [6] Yang Ze-Hao, Liu Zi-Wei, Yang Bo, Zhang Cheng-Long, Cai Chen, Qi Zhi-Mei. Performance simulation of terahertz waveguide resonance biochemical sensor based on nanoporous gold films. Acta Physica Sinica, 2022, 71(21): 218701. doi: 10.7498/aps.71.20220722
    [7] Chen Wen-Bo, Chen He-Ming. Terahertz liquid crystal phase shifter based on metamaterial composite structure. Acta Physica Sinica, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [8] Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi. Double-opening metal ring based terahertz metamaterial absorber sensor. Acta Physica Sinica, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [9] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [10] Wang Yue, Cui Zi-Jian, Zhang Xiao-Ju, Zhang Da-Chi, Zhang Xiang, Zhou Tao, Wang Xuan. Research progress of metamaterials powered advanced terahertz biochemical sensing detection techniques. Acta Physica Sinica, 2021, 70(24): 247802. doi: 10.7498/aps.70.20211752
    [11] Pang Hui-Zhong, Wang Xin, Wang Jun-Lin, Wang Zong-Li, Liu Su-Yalatu, Tian Hu-Qiang. Sensing characteristics of dual band terahertz metamaterial absorber sensor. Acta Physica Sinica, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [12] Yan Hao-Lan, Cheng Ya-Qing, Wang Kai-Li, Wang Ya-Xin, Chen Yang-Wei, Yuan Qiu-Lin, Ma Heng. Terahertz wave absorption for alkylcyclohexyl-isothiocyanatobenzene liquid crystal materials. Acta Physica Sinica, 2019, 68(11): 116102. doi: 10.7498/aps.68.20190209
    [13] Zhou Kang, Li Hua, Wan Wen-Jian, Li Zi-Ping, Cao Jun-Cheng. Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb. Acta Physica Sinica, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [14] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [15] Yan De-Xian, Li Jiu-Sheng, Wang Yi. High sensitivity terahertz refractive index sensor based on sunflower-shaped circular photonic crystal. Acta Physica Sinica, 2019, 68(20): 207801. doi: 10.7498/aps.68.20191024
    [16] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [17] Zhang Zhen-Zhen, Li Hua, Cao Jun-Cheng. Ultrafast terahertz detectors. Acta Physica Sinica, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [18] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [19] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [20] Zhang Yu-Ping, Li Tong-Tong, Lü Huan-Huan, Huang Xiao-Yan, Zhang Hui-Yun. Study on sensing characteristics of I-shaped terahertz metamaterial absorber. Acta Physica Sinica, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
Metrics
  • Abstract views:  9486
  • PDF Downloads:  307
  • Cited By: 0
Publishing process
  • Received Date:  03 July 2020
  • Accepted Date:  04 September 2020
  • Available Online:  21 January 2021
  • Published Online:  05 February 2021

/

返回文章
返回
Baidu
map