-
In recent years, bound states in the continuum (BICs) have become a hot research topic because of their strong ability to facilitate light-matter interactions, and they are also an ideal platform for realizing optical resonances with ultra-high quality factors (Q). Nowadays, BICs have been found to exist in various photonic microstructures and nanostructures such as waveguides, gratings, and metasurfaces, among which metasurfaces have attracted much attention due to their ease of adjustment and considerable robustness. Traditional precious metal-based metasurfaces inevitably have low Q-factors due to the inherent defect of high ohmic losses. In contrast, due to lower ohmic losses, all-dielectric metasurfaces can be an excellent alternative to metallic metasurface structures. In this work, an all-dielectric metasurface is designed, with a silicon disc as the unit cell, and symmetric protected BIC (SP-BIC) is observed on the metasurface. When introducing eccentric holes to break the symmetry in the structural plane (QBIC), the SP-BIC can be transformed into a quasi-BIC, with radiation dominated by magnetic dipoles and has a high-quality Q-factor. For QBICs formed on the metasurface, the resonance wavelength is usually greatly dependent on the refractive index of the surroundings due to the strong localization of the electric field within the cell. As the refractive index of the background changes, the positions of the resonance peaks change accordingly, and identification sensing of some biological components is achieved by this principle. This metasurface-based bio-refractive index sensor is less invasive in free space and is expected to overcome the drawbacks of traditional electrochemical-based biosensing technologies, which have cumbersome detection steps and high time and material costs. In terms of sensing parameters, due to the quadratic inverse relationship between the quality factor and asymmetric parameters, by adjusting the asymmetric parameters, the quality factor will also change, thereby enhancing and adjusting the sensing performance. After adjusting, the refractive index sensing sensitivity and figure of merit of this metasurface reach 162.55 nm/RIU and 1711.05 RIU–1, respectively, which are higher than those achieved in many other existing studies. This high Q-factor all-dielectric metasurface design provides a new avenue for achieving high-sensitivity and high-precision bio-detection.
-
Keywords:
- all-dielectric metasurface /
- bound states in the continuum /
- refractive index sensing /
- optical biosensing
-
图 1 (a) 所提出的全介质超表面示意图, 结构参数为Px = Py = 900 nm, R = 300 nm, H = 100 nm, 玻璃衬底的厚度设定为1000 nm; (b) 在距离盘中心150 nm的固定距离内引入一个半径r可变的偏心孔以破坏结构的C2对称性; (c) 硅纳米盘超表面的前视图
Figure 1. (a) Schematic of the proposed all-dielectric metasurface, the structural parameters are Px = Py = 900 nm, R = 300 nm, H = 100 nm, and the thickness of the glass substrate is set to 1000 nm; (b) an off-centered hole with variable radius r is introduced at a fixed distance of 150 nm from the center of the disc to break the C2 symmetry of the structure; (c) front view of the silicon nanodisc metasurface.
图 2 (a) 由周期排列的硅纳米盘阵列组成的超表面示意图; (b) 计算出图(a)中周期排列的硅纳米盘阵列的光子带结构, 灰色阴影表示位于自由空间光锥下方的区域, 被困的对称保护的BIC位置用红圈标记
Figure 2. (a) Schematic of a metasurface consisting of periodically aligned arrays of silicon nanodiscs; (b) calculated photonic band structure of the periodically aligned silicon nanodisk array in panel (a), grey shading indicates the region located below the free-space light cone, the location of the trapped symmetrically protected BIC is marked with a red circle.
图 3 (a) 玻璃衬底上硅纳米盘超表面的透射谱相对于偏心孔半径的变化, SP-BIC的对应位置使用篮圈标记; (b)在r = 75 nm时的透射光谱, 以及与法诺公式拟合曲线的对比; (c) 在r = 75 nm时, 硅超表面共振的多级展开, 可以看出在共振波长位置处MD响应占绝对的主导地位; (d) Q因子和不对称参数α的关系, 为直观反映两者之间的关系采用对数坐标绘制; (e) 在r = 75 nm的情况下共振时的x-y平面电场分布图像, 红色箭头表示面内循环位移电流
Figure 3. (a) Transmission spectrum of the silicon nanodisk metasurface on a glass substrate concerning the radius of the off-centered hole, the corresponding position of the SP-BIC is marked using a basket circle; (b) transmission spectrum at r = 75 nm and comparison with the fitted curve of Fano’s formula; (c) the multilevel unfolding of the silicon metasurface resonance at r = 75 nm shows that the MD response is dominant at the resonance wavelength position; (d) the relationship between the Q-factor and the asymmetry parameter α, which is plotted in logarithmic coordinates to visualize the relationship; (e) image of the x-y plane electric field distribution at resonance in the case of r = 75 nm, with the red arrows indicating the in-plane circulating displacement currents.
图 4 (a)不同背景折射率下的透射光谱; (b)共振波长随背景折射率的变化; (c)半高宽FWHM随背景折射率的变化; (d)对共振波长随背景折射率红移变化的线性拟合, 灵敏度S和优值FOM根据拟合梯度计算, 在拟合直线中标记了多种生物成分的RI
Figure 4. (a) Transmission spectra at different background refractive indices; (b) variation of resonance wavelength with background refractive index; (c) variation of half-height width FWHM with background refractive index; (d) linear fit to the variation of resonance wavelength with background refractive index redshift, the sensitivity S and the superior value FOM are calculated from the fitted gradient, the RIs of multiple biological components are labeled in the fitted straight line.
表 1 不同机制超表面结构传感性能和本研究的对比
Table 1. Comparison of the sensing performance of different mechanisms of metasurface structures and the present study.
Mechanism Materical Q-factor S/
(nm·RIU–1)FOM/
RIU–1Reference Surface
plasmonAu 121 250 28 [68] Surface
plasmonAu ~40 450 28.8 [69] Surface
plasmonAu ~8 170 1.3 [70] SP-BIC Si 3326 145 389 [71] SP-BIC Si 8428 160 575 [72] SP-BIC Si3N4 ~103 178 445 [73] Fano resonance TiO2 5126 186.96 721 [74] Accidental BIC GaP <104 135 <103 [39] SP-BIC Si 16506 162.55 1711.05 This work -
[1] Sadreev A F 2021 Rep. Prog. Phys. 84 055901
Google Scholar
[2] Koshelev K, Bogdanov A, Kivshar Y 2019 Sci. Bull. 64 836
Google Scholar
[3] Huang L J, Li G Q, Gurarslan A, Yu Y L, Kirste R, Guo W, Zhao J J, Collazo R, Sitar Z, Parsons G N, Kudenov M, Cao L Y 2016 ACS Nano 10 7493
Google Scholar
[4] Neumann J V, Wigner E P 1929 Phys. Z 30 465
[5] Tong H, Liu S Y, Zhao M D, Fang K J 2020 Nat. Commun. 11 5216
Google Scholar
[6] Linton C M, McIver P 2007 Wave Motion 45 16
Google Scholar
[7] Marinica D C, Borisov A G, Shabanov S V 2008 Phys. Rev. Lett. 100 183902
Google Scholar
[8] Plotnik Y, Peleg O, Dreisow F, Heinrich M, Nolte S, Szameit A, Segev M 2011 Phys. Rev. Lett. 107 183901
Google Scholar
[9] Hsu C W, Zhen B, Lee J, Chua S L, Johnson S G, Joannopoulos J D, Soljačić M 2013 Nature 499 188
Google Scholar
[10] Monticone F, Alù A 2014 Phys. Rev. Lett. 112 213903
Google Scholar
[11] Gomis-Bresco J, Artigas D, Torner L 2017 Nat. Photonics 11 232
Google Scholar
[12] Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kanté B 2017 Nature 541 196
Google Scholar
[13] Doeleman H M, Monticone F, den Hollander W, Alù A, Koenderink A F 2018 Nat. Photonics 12 397
Google Scholar
[14] Li Z Y, Chang H N, Lai J M, Song F L, Yao Q F, Liu H Q, Ni H Q, Niu Z C, Zhang J 2023 J. Semicond. 44 082901
Google Scholar
[15] Salmanogli A 2023 J. Semicond. 44 052901
Google Scholar
[16] Bulgakov E N, Sadreev A F 2008 Phys. Rev. B 78 075105
Google Scholar
[17] Romano S, Zito G, Lara Yépez S N, Cabrini S, Penzo E, Coppola G, Rendina I, Mocellaark V 2019 Opt. Express 27 18776
Google Scholar
[18] 刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛 2024 73 047802
Google Scholar
Liu H G, Zhang X Y, Nan X Y, Zhao E G, Liu H T 2024 Acta Phys. Sin. 73 047802
Google Scholar
[19] Srivastava Y K, Ako R T, Gupta M, Bhaskaran M, Sriram S, Singh R 2019 Appl. Phys. Lett. 115 151105
Google Scholar
[20] Liu D J, Wu F, Yang R, Chen L, He X Y, Liu F 2021 Opt. Lett. 46 4370
Google Scholar
[21] Koshelev K, Favraud G, Bogdanov A, Kivshar Y, Fratalocchi A 2019 Nanophotonics 8 725
Google Scholar
[22] Lee J, Zhen B, Chua S L, Qiu W, Joannopoulos J D, Soljačić M, Shapira O 2012 Phys. Rev. Lett. 109 067401
Google Scholar
[23] Hsu C W, Zhen B, Stone A D, Joannopoulos J D, Soljačić M 2016 Nat. Rev. Mater. 1 1
[24] Xu L, Zangeneh Kamali K Z, Huang L J, Rahmani M, Smirnov A, Camacho-Morales R, Ma Y X, Zhang G Q, Woolley M, Neshev D, Miroshnichenko A E 2019 Adv. Sci. 6 1802119
Google Scholar
[25] Paddon P, Young J F 2000 Phys. Rev. B 61 2090
Google Scholar
[26] Bulgakov E N, Sadreev A F 2014 Opt. Lett. 39 5212
Google Scholar
[27] Barrow M, Phillips J 2020 Opt. Lett. 45 4348
Google Scholar
[28] Zong X Y, Li L X, Liu Y F 2021 Opt. Lett. 46 6095
Google Scholar
[29] Jain A, Moitra P, Koschny T, Valentine J, Soukoulis C M 2015 Adv. Opt. Mater. 3 1431
Google Scholar
[30] Wang Y H, Fan Y B, Zhang X D, Tang H J, Song Q H, Han J C, Xiao S M 2021 ACS Nano 15 7386
Google Scholar
[31] Chen Y, Zhao C, Zhang Y Z, Qiu C W 2020 Nano Lett. 20 8696
Google Scholar
[32] Koshelev K, Lepeshov S, Liu M, Bogdanov A, Kivshar Y 2018 Phys. Rev. Lett. 121 193903
Google Scholar
[33] Alipour A, Farmani A, Mir A 2018 IEEE Sensors J. 18 7047
Google Scholar
[34] Kong Y, Cao J J, Qian W C, Liu C, Wang S Y 2018 IEEE Photonics J. 10 6804410
[35] Bezus E A, Bykov D A, Doskolovich L L 2018 Photon. Res. 6 1084
Google Scholar
[36] Zeng T Y, Liu G D, Wang L L, Lin Q 2021 Opt. Express 29 40177
Google Scholar
[37] Al-Ani I A M, As’Ham K, Huang L, Miroshnichenko A E, Hattori H T 2021 Laser Photonics Rev. 15 2100240
Google Scholar
[38] Xiang J, Chen J, Lan S, Miroshnichenko A E 2020 Adv. Opt. Mater. 8 2000489
Google Scholar
[39] Li Z T, Panmai M, Zhou L D, Li S L, Liu S M, Zeng J H, Lan S 2023 Appl. Surf. Sci. 620 156779
Google Scholar
[40] Chen C, Wang J 2020 Analyst 145 1605
Google Scholar
[41] Sharma S, Kumari R, Varshney S K, Lahiri B 2020 Reviews in Physics 5 100044
Google Scholar
[42] Wang Z, Tan C H, Peng M, Yu Y Y, Zhong F, Wang P, He T, Wang Y, Zhang Z H, Xie R Z, Wang F, He S J, Zhou P, Hu W D 2024 Light. Sci. Appl. 13 277
Google Scholar
[43] Roingeard P, Raynal P I, Eymieux S, Blanchard E 2019 Rev. Med. Virol. 29 e2019
Google Scholar
[44] Caucheteur C, Villatoro J, Liu F, Loyez M, Guo T, Albert J 2022 Adv. Opt. Photon. 14 1
Google Scholar
[45] Polz L, Dutz F J, Maier R R J, Bartelt H, Roths J 2021 Optics & Laser Technology 134 106650
[46] Valušis G, Lisauskas A, Yuan H, Knap W, Roskos H G 2021 Sensors 21 4092
Google Scholar
[47] Toropov N, Cabello G, Serrano M P, Gutha R R, Rafti M, Vollmer F 2021 Light Sci. Appl. 10 42
Google Scholar
[48] Azzouz A, Hejji L, Kim K H, Kukkar D, Souhail B, Bhardwaj N, Brown R J C, Zhang W 2022 Biosens. Bioelectron. 197 113767
Google Scholar
[49] Li Q, Meng J P, Li Z 2022 J. Mater. Chem. A 10 8107
Google Scholar
[50] Wang J, Kühne J, Karamanos T, Rockstuhl C, Maier S A, Tittl A 2021 Adv. Funct. Mater. 31 2104652
Google Scholar
[51] Guo L H, Zhang Z X, Xie Q, Li W X, Xia F, Wang M, Feng H, You C L, Yun M J 2023 Appl. Surf. Sci. 615 156408
Google Scholar
[52] https://www.lumerical.com/tcad-products/fdtd/ for FDTD method.
[53] Johnson S G, Joannopoulos J D 2001 Opt. Express 8 173
Google Scholar
[54] Xu T, Wheeler M S, Nair S V, Ruda H E, Mojahedi M, Aitchison J S 2008 Appl. Phys. Lett. 93 241105
Google Scholar
[55] Zhen B, Hsu C W, Lu L, Stone A D, Soljačić M 2014 Phys. Rev. Lett. 113 257401
Google Scholar
[56] Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S 2017 Nat. Photonics 11 543
Google Scholar
[57] Miroshnichenko A E, Flach S, Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
Google Scholar
[58] Yang Z J, Hao Z H, Lin H Q, Wang Q Q 2014 Nanoscale 6 4985
Google Scholar
[59] Hinamoto T, Fujii M 2021 OSA Continuum. 4 1640
Google Scholar
[60] Alaee R, Rockstuhl C, Fernandez-Corbaton I 2018 Opt. Commun. 407 17
Google Scholar
[61] Wang X, Duan J, Chen W, Zhou C, Liu T, Xiao S 2020 Phys. Rev. B 102 155432
Google Scholar
[62] Li Z, Xie M, Nie G, Wang J, Huang L 2023 J. Phys. Chem. Lett. 14 10762
Google Scholar
[63] Hu H, Lu W, Antonov A, Berté R, Maier S A, Tittl A 2024 Nat. Commun. 15 7050
Google Scholar
[64] Zhou C B, Liu G Q, Ban G X, Li S Y, Huang Q Z, Xia J S, Wang Y, Zhan M S 2018 Appl. Phys. Lett. 112 101904
Google Scholar
[65] Maji P S, Shukla M K, Das R 2018 Sensor. Actuat. B: Chem. 255 729
Google Scholar
[66] Bankapur A, Zachariah E, Chidangil S, Valiathan M, Mathur D 2010 PLOS ONE 5 e10427
Google Scholar
[67] Tuchin V V, Zhestkov D M, Bashkatov A N, Genina E A 2004 Opt. Express, OE 12 2966
Google Scholar
[68] Chen J, Yuan J, Zhang Q, Ge H M, Tang C J, Liu Y, Guo B N 2018 Opt. Mater. Express 8 342
Google Scholar
[69] Gao B W, Wang Y L, Zhang T Z, Xu Y, He A X, Dai L, Zhang J S 2019 ACS Nano 13 9131
Google Scholar
[70] Sun F, Yang W C, Du C L, Chen Y X, Fu T Y, Shi D N 2020 Plasmonics 15 949
Google Scholar
[71] Li H, Yu S L, Yang L, Zhao T G 2021 Optics Laser Technology 140 107072
Google Scholar
[72] Song S, Yu S L, Li H, Zhao T G 2022 Laser Phys. 32 025403
Google Scholar
[73] Zito G, Sanità G, Alulema B G, Yépez S N L, Lanzio V, Riminucci F, Cabrini S, Moccia M, Avitabile C, Lamberti A, Mocella V, Rendina I, Romano S 2021 Nanophotonics 10 4279
[74] Liu H G, Zheng L, Ma P Z, Zhong Y, Liu B, Chen X Z, Liu H T 2019 Opt. Express 27 13252
Google Scholar
Metrics
- Abstract views: 313
- PDF Downloads: 0
- Cited By: 0