搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双开口谐振环超表面的宽带太赫兹涡旋光束产生

周璐 赵国忠 李晓楠

引用本文:
Citation:

基于双开口谐振环超表面的宽带太赫兹涡旋光束产生

周璐, 赵国忠, 李晓楠

Broadband terahertz vortex beam generation based on metasurface of double-split resonant rings

Zhou Lu, Zhao Guo-Zhong, Li Xiao-Nan
PDF
HTML
导出引用
  • 提出了一种基于双开口谐振环单元结构超表面的太赫兹宽带涡旋光束产生器. 该结构由金属-电介质两层构成, 位于顶层的是基于双开口谐振环单元结构的超表面, 底层为介质层. 对单元结构阵列进行数值仿真, 圆偏振的入射光可以被转换成相应的交叉偏振透射光, 通过旋转表层金属谐振环, 可以控制交叉偏振透射光具有相同的振幅和不同的相位. 这些单元结构按照特定的规律排列, 可以形成用以产生不同拓扑荷数的涡旋光束的涡旋相位板. 以拓扑荷数1和2为例, 设计了两种涡旋相位板, 数值分析了圆偏振波垂直入射到该涡旋相位板生成交叉圆偏振涡旋光束的特性. 结果表明, 在1.39—1.91 THz的频率范围内产生了比较理想的不同拓扑荷数的涡旋光束, 且透过率高于20%, 最高可达到24%, 接近单层透射式超表面的理论极限值.
    Terahertz vortex beam generators have potential applications in optical micro-manipulation, terahertz communications and many other fields. A broadband vortex beam generator in a terahertz frequency range is proposed based on the metasurface of double-split resonant rings’ array. The designed structure consists of two layers, i.e., the top layer, which is a metasurface of double-split resonant rings, and the bottom layer, which is the dielectric layer of polymide. The numerical simulation of the cell structure array is performed by using the CST microwave studio. In order to obtain the best performance, the structure parameters of metasurface are continuously optimized and a set of optimal geometric parameters is finally determined. The simulation results show that the circularly polarized incident light can be converted into corresponding cross-polarized transmitted light. By rotating the metal resonant ring on the top layer, the cross-polarized transmitted light can be controlled to have the same amplitude and correspondingly different phases. The relationship between the phase change and the angle of rotation conforms to the P-B phase principle. These cell structures are arranged according to a specific order and can form the vortex phase plates for generating the vortex beams with different topological charges. Taking the topological charge numbers 1 and 2 for example, two kinds of vortex phase plates are designed. The characteristics of the circularly cross-polarized vortex beams generated by a circularly polarized wave perpendicularly incident on the vortex phase plates are numerically analyzed. The results show that the ideal vortex beams with different topological charge numbers are generated. The characteristics of vortex beams appear to be consistent with those theoretical results. Moreover, the vortex beams can be generated in a frequency range from 1.39 THz to 1.91 THz. The operating bandwidth is much wider than the previously obtained result of the transmission terahertz vortex phase plates. The transmission is higher than 20%, and the maximum value of transmission can reach 24%, which is close to the theoretical limit value of the single-layered transmission-type metasurface. This work provides a reference for generating the terahertz vortex beams based on metasurface. It is expected to possess a practical application in generating the device of terahertz vortex beam.
      通信作者: 赵国忠, guozhong-zhao@126.com
    • 基金项目: 国家自然科学基金(批准号: 61575130)资助课题.
      Corresponding author: Zhao Guo-Zhong, guozhong-zhao@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61575130).
    [1]

    寇宽, 赵国忠, 刘英, 申彦春 2015 中国激光 42 0815001

    Kou K, Zhao G Z, Liu Y, Shen Y C 2015 Chin. J. Las. 42 0815001

    [2]

    Jansen C, Wietzke S, Peters O, Scheller M, Vieweg N, Salhi M, Krumbholz N, Jördens C, Hochrein T, Koch M 2010 Appl. Opt. 49 E48Google Scholar

    [3]

    Zhou X D, Li L J, Zhao D, Ren J J 2016 Infrared and Laser Engineering 45 0825001−1Google Scholar

    [4]

    Wang W, Guo Z Y, Sun Y X, Shen F, Li Y, Liu Y, Wang X S, Qu S L 2015 Opt. Commun. 355 321Google Scholar

    [5]

    Tan Y H, Li Y L, Ruan H X 2015 Microwave Opt. Technol. Lett. 57 1708Google Scholar

    [6]

    Karimi E, Schulz S A, Leon I D, Qassim H, Upham J, Boyd R W 2014 Light-Sci. Appl. 3 1

    [7]

    Skidanov R V, Ganchevskaya S V 2016 Proc. SPIE Saratov, September 26-30, 2016 103370R-1

    [8]

    Kirilenko M S, Khonina S N 2013 Optical Memory and Neural Networks 22 81Google Scholar

    [9]

    Lee W M, Yuan X C, Cheong W C 2004 Opt. Lett. 29 1796Google Scholar

    [10]

    Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V 2013 Opt. Lett. 38 534Google Scholar

    [11]

    Liu Y J, Sun X W, Wang Q, Luo D 2007 Opt. Express 15 16645Google Scholar

    [12]

    Zhou H L, Dong J J, Yan S Q, Zhou Y F, Zhang X L 2014 IEEE Photonics J 6 5900107

    [13]

    Zhang H F, Zhang X Q, Xu Q, Wang Q, Xu Y H, Wei M G, Li Y F, Gu J Q, Tian Z, Ouyang C M, Zhang X X, Hu C, Han J G, Zhang W L 2018 Photonics Res. 6 24Google Scholar

    [14]

    He J W, Wang X K, Hu D, Ye J S, Feng S F, Kan Q, Zhang Y 2013 Opt. Express 21 20230Google Scholar

    [15]

    李瑶, 莫伟成, 杨振刚, 刘劲松, 王可嘉 2017 激光技术 41 644Google Scholar

    Li Y, Mo W C, Yang Z G, Liu J S, Wang K J 2017 Laser Technol. 41 644Google Scholar

    [16]

    Shi Y, Zhang Y 2018 IEEE Access 6 5341Google Scholar

    [17]

    Genevet P, Yu N F, Aieta F, Lin J, Kats M A, Blanchard R, Scully M O, Gaburro Z, Capasso F 2012 Appl. Phys. Lett. 100 013101−1

    [18]

    Ding X M, Monticone F, Zhang K, Zhang L, Gao D L, Burokur S N, Lustrac A D, Wu Q, Qiu C W, Alù A 2015 Adv. Mater. 27 1195Google Scholar

    [19]

    Ding X M, Yu H, Zhang S Q, Wu Y M, Zhang K, Wu Q 2015 IEEE Trans. Magn. 51 1

    [20]

    Hasman E, Kleiner V, Biener G, Niv A 2003 Appl. Phys. Lett. 82 328Google Scholar

    [21]

    Xu H X, Liu H W, Ling X H, Sun Y M, Yuan F 2017 IEEE Trans. Antennas Propag. 65 7378Google Scholar

    [22]

    Wang W, Li Y, Guo Z Y, Li R Z, Zhang J R, Zhang A J, Qu S L 2015 J. Opt. 17 045102−1Google Scholar

  • 图 1  单元结构示意图

    Fig. 1.  Schematic of the unit cell structure.

    图 2  在左旋圆偏振波入射下不同旋转角度双开口谐振环单元结构的太赫兹透射特性模拟结果 (a)交叉偏振分量的透射系数; (b)交叉偏振分量的相位改变

    Fig. 2.  Transmission characteristic of the unit cells with different rotation angle of double-split resonant rings under the left circularly polarized incidence: (a) Transmission coefficients of the cross-polarized component; (b) phase shift of the cross-polarized component.

    图 3  两种用于产生拓扑荷数分别为 (a) l = 1和(b) l = 2的涡旋光束超表面

    Fig. 3.  Schematic of two different designed metasurface for generating vortex beams with topological charges of (a) l = 1 and (b) l = 2

    图 4  通过超表面产生拓扑荷数为1和2的涡旋光束的振幅和相位分布. 对于l = 1, 在z = –500 µm平面处的(a)振幅和(b)相位分布. 对于l = 1, 在z = –1000 µm平面处的(c)振幅和(d)相位分布. 对于l = 2, 在z = –500 µm平面处的(e)振幅和(f)相位分布. 对于l = 2, 在z = –1000 µm平面处的(g)振幅和(h)相位分布

    Fig. 4.  Distributions of the amplitude and phase of the two metasurfaces for generating vortex beams with topological charges of 1 and 2 at 1.7 THz: (a) Amplitude and (b) phase distributions at the plane of z = –500 µm for l = 1; (c) amplitude and (d) phase distributions at the plane of z = –1000 µm for l = 1; (e) amplitude and (f) phase distributions at the plane of z = –500 µm for l = 2; (g) amplitude and (h) phase distributions at the plane of z = –1000 µm for l = 2.

    图 5  超表面产生拓扑荷数为1的涡旋光束的振幅和相位分布. 在1.4 THz下, 对于l = 1, 在z = –500 µm平面处的(a)振幅和(b)相位分布; 在1.9 THz下, 对于l = 1, 在z = –500 µm平面处的(c)振幅和(d)相位分布

    Fig. 5.  Distributions of the amplitude and phase of metasurface for generating vortex beam with topological charge of 1: (a) Amplitude and (b) phase distributions at the plane of z = –500 µm for l = 1 at 1.4 THz; (c) amplitude and (d) phase distributions at the plane of z = –500 µm for l = 1 at 1.9 THz.

    表 1  双开口谐振环单元结构仿真优化后的结构参数

    Table 1.  Optimized parameters of structure based on the double-split resonant rings.

    结构参数结构参数意义优化值/µm
    p单元结构周期90
    a表层金属谐振环边长58
    d开口谐振环的开口宽度11
    w双开口谐振环的金属线宽11
    t1顶层金属层厚度0.2
    t2底层介质层厚度50
    下载: 导出CSV
    Baidu
  • [1]

    寇宽, 赵国忠, 刘英, 申彦春 2015 中国激光 42 0815001

    Kou K, Zhao G Z, Liu Y, Shen Y C 2015 Chin. J. Las. 42 0815001

    [2]

    Jansen C, Wietzke S, Peters O, Scheller M, Vieweg N, Salhi M, Krumbholz N, Jördens C, Hochrein T, Koch M 2010 Appl. Opt. 49 E48Google Scholar

    [3]

    Zhou X D, Li L J, Zhao D, Ren J J 2016 Infrared and Laser Engineering 45 0825001−1Google Scholar

    [4]

    Wang W, Guo Z Y, Sun Y X, Shen F, Li Y, Liu Y, Wang X S, Qu S L 2015 Opt. Commun. 355 321Google Scholar

    [5]

    Tan Y H, Li Y L, Ruan H X 2015 Microwave Opt. Technol. Lett. 57 1708Google Scholar

    [6]

    Karimi E, Schulz S A, Leon I D, Qassim H, Upham J, Boyd R W 2014 Light-Sci. Appl. 3 1

    [7]

    Skidanov R V, Ganchevskaya S V 2016 Proc. SPIE Saratov, September 26-30, 2016 103370R-1

    [8]

    Kirilenko M S, Khonina S N 2013 Optical Memory and Neural Networks 22 81Google Scholar

    [9]

    Lee W M, Yuan X C, Cheong W C 2004 Opt. Lett. 29 1796Google Scholar

    [10]

    Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V 2013 Opt. Lett. 38 534Google Scholar

    [11]

    Liu Y J, Sun X W, Wang Q, Luo D 2007 Opt. Express 15 16645Google Scholar

    [12]

    Zhou H L, Dong J J, Yan S Q, Zhou Y F, Zhang X L 2014 IEEE Photonics J 6 5900107

    [13]

    Zhang H F, Zhang X Q, Xu Q, Wang Q, Xu Y H, Wei M G, Li Y F, Gu J Q, Tian Z, Ouyang C M, Zhang X X, Hu C, Han J G, Zhang W L 2018 Photonics Res. 6 24Google Scholar

    [14]

    He J W, Wang X K, Hu D, Ye J S, Feng S F, Kan Q, Zhang Y 2013 Opt. Express 21 20230Google Scholar

    [15]

    李瑶, 莫伟成, 杨振刚, 刘劲松, 王可嘉 2017 激光技术 41 644Google Scholar

    Li Y, Mo W C, Yang Z G, Liu J S, Wang K J 2017 Laser Technol. 41 644Google Scholar

    [16]

    Shi Y, Zhang Y 2018 IEEE Access 6 5341Google Scholar

    [17]

    Genevet P, Yu N F, Aieta F, Lin J, Kats M A, Blanchard R, Scully M O, Gaburro Z, Capasso F 2012 Appl. Phys. Lett. 100 013101−1

    [18]

    Ding X M, Monticone F, Zhang K, Zhang L, Gao D L, Burokur S N, Lustrac A D, Wu Q, Qiu C W, Alù A 2015 Adv. Mater. 27 1195Google Scholar

    [19]

    Ding X M, Yu H, Zhang S Q, Wu Y M, Zhang K, Wu Q 2015 IEEE Trans. Magn. 51 1

    [20]

    Hasman E, Kleiner V, Biener G, Niv A 2003 Appl. Phys. Lett. 82 328Google Scholar

    [21]

    Xu H X, Liu H W, Ling X H, Sun Y M, Yuan F 2017 IEEE Trans. Antennas Propag. 65 7378Google Scholar

    [22]

    Wang W, Li Y, Guo Z Y, Li R Z, Zhang J R, Zhang A J, Qu S L 2015 J. Opt. 17 045102−1Google Scholar

  • [1] 张鸿伟, 蔡仁昊, 李吉宁, 钟凯, 王与烨, 徐德刚, 姚建铨. 基于超表面的太赫兹与中长波红外高效分光器件.  , 2024, 73(19): 197801. doi: 10.7498/aps.73.20241066
    [2] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态.  , 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [3] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性.  , 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [4] 王丹, 李九生, 郭风雷. 宽带吸收与极化转换可切换的太赫兹超表面.  , 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [5] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面.  , 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [6] 于博, 庄书磊, 王正心, 王曼诗, 郭兰军, 李鑫煜, 郭文瑞, 苏文明, 龚诚, 刘伟伟. 基于纳米印刷技术的双螺旋太赫兹可调超表面.  , 2022, 71(11): 117801. doi: 10.7498/aps.71.20212408
    [7] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器.  , 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [8] 李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓. 基于超表面的多波束多模态太赫兹涡旋波产生.  , 2021, 70(18): 188701. doi: 10.7498/aps.70.20210897
    [9] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器.  , 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [10] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束.  , 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [11] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究.  , 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [12] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面.  , 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [13] 付亚男, 张新群, 赵国忠, 李永花, 于佳怡. 基于谐振环的太赫兹宽带偏振转换器件研究.  , 2017, 66(18): 180701. doi: 10.7498/aps.66.180701
    [14] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计.  , 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [15] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用.  , 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [16] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计.  , 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [17] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 二维宽带相位梯度超表面设计及实验验证.  , 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [18] 陈吴玉婷, 韩鹏昱, Kuo Mei-Ling, Lin Shawn-Yu, 张希成. 具有缓变折射率的太赫兹宽带增透器件.  , 2012, 61(8): 088401. doi: 10.7498/aps.61.088401
    [19] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究.  , 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [20] 张庆斌, 兰鹏飞, 洪伟毅, 廖青, 杨振宇, 陆培祥. 控制场对宽带超连续谱产生的影响.  , 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
计量
  • 文章访问数:  10233
  • PDF下载量:  256
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-07
  • 修回日期:  2019-03-12
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回
Baidu
map