搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超材料赋能先进太赫兹生物化学传感检测技术的研究进展

王玥 崔子健 张晓菊 张达篪 张向 周韬 王暄

引用本文:
Citation:

超材料赋能先进太赫兹生物化学传感检测技术的研究进展

王玥, 崔子健, 张晓菊, 张达篪, 张向, 周韬, 王暄

Research progress of metamaterials powered advanced terahertz biochemical sensing detection techniques

Wang Yue, Cui Zi-Jian, Zhang Xiao-Ju, Zhang Da-Chi, Zhang Xiang, Zhou Tao, Wang Xuan
PDF
HTML
导出引用
  • 处于太赫兹频段的电磁波表现出许多极具发展前景的特点, 如非电离、“指纹”谱、对弱共振敏感、对非极性物质穿透性强等特性, 并逐步发展成物理、信息、材料、生物、化学等学科基础与应用研究关注的热点. 然而, 在生物、化学物质的传感检测应用中, 当待测物尺度小于入射太赫兹波长时, 微小扰动和细微特征难以被太赫兹波检测到, 并且无法与太赫兹波之间产生充分的相互作用, 这无疑阻碍了太赫兹生物化学传感检测技术的进一步发展. 而太赫兹超材料的迅速发展提供了解决这一问题的全新思路. 近年来, 一系列基于太赫兹超材料的研究工作与新材料、新结构、新机制结合, 为实现高灵敏太赫兹生物化学传感检测带来了新的机遇. 本文主要综述了最近太赫兹超材料应用于生物化学传感检测技术的研究进展, 并简述了评价器件性能的关键参数. 根据材料特性、设计策略的不同, 对基于金属-介质、碳基纳米材料、全硅等太赫兹超材料生物化学传感检测相关工作做了总结, 并在文末对太赫兹超材料传感检测技术的未来发展方向做出了展望.
    The electromagnetic wave in the terahertz region shows many promising properties, such as non-ionizing, sensitivity to weak resonance, and gradually becomes a basic and applied research hotspot of physics, information, materials, biology, chemistry and other disciplines. However, the analyte molecules tend to be of subwavelength size, and cannot have sufficient interaction with the incident terahertz wave. Small disturbances and subtle features are difficult to detect, which undoubtedly hinders the further development of the terahertz biochemical sensing and detection. The rapid development of terahertz metamaterials provides an alternative method to overcome this obstacle. The intense electromagnetic field enhancement induced by metamaterials allows the sensing and detection application to surpass the limitation of classical terahertz spectroscopy, which is due to the enhancement of the interaction between the analyte and terahertz. In recent years, a series of researches based on terahertz metamaterials combined with new materials, new structures and new mechanisms has offered new opportunities for the application of highly sensitive terahertz biochemical sensing and detection. In this paper, the recent advances in the application of terahertz metamaterials biochemical sensing are reviewed. The related concepts are briefly introduced and the influences of different factors on the sensing performance of metamaterial sensor are analyzed. According to the material selection and design strategies, the related researches of terahertz metamaterial biochemical sensing and detection are summarized. Furthermore, the novel strategy of terahertz metamaterial sensing and detection application based on multidisciplinary are presented, and the future development directions are also discussed, which will greatly conduce to expanding the practicality of terahertz sensing and detection.
      通信作者: 王玥, wangyue2017@xaut.edu.cn ; 王暄, topix@sina.com
    • 基金项目: 国家自然科学基金(批准号: 61975163)、陕西省自然科学基金(批准号: 2020JZ-48)、陕西高校青年创新团队(批准号: 21JP084)和工程电介质及其应用教育部重点实验室(哈尔滨理工大学)开放课题(批准号: KEY1805)资助的课题
      Corresponding author: Wang Yue, wangyue2017@xaut.edu.cn ; Wang Xuan, topix@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61975163), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2020JZ-48), the Youth Innovation Team of Shaanxi Universities, China (Grant No. 21JP084), and the Open Project of the Key Laboratory of Engineering Dielectrics and its Application, Ministry of Education, China (Grant No. KEY1805).
    [1]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [2]

    Seo M, Park H R 2020 Adv. Opt. Mater. 8 1900662Google Scholar

    [3]

    Danciu M, Alexa-Stratulat T, Stefanescu C, Dodi G, Tamba B I, Mihai C T, Stanciu G D, Luca A, Spiridon I A, Ungureanu L B 2019 Materials 12 1519Google Scholar

    [4]

    Hua C, Chen T H, Tseng T F, Lu J T, Sun C K 2011 Opt. Express 19 21552Google Scholar

    [5]

    Yao Z H, Huang Y Y, Zhu L P, Obraztsov P A, Du W Y, Zhang L H, Xu X L 2019 Nanoscale 11 16614Google Scholar

    [6]

    王与烨, 陈霖宇, 徐德刚, 陈图南, 冯华, 姚建铨 2019 光学学报 39 0317002Google Scholar

    Wang Y Y, Chen L Y, Xu D G, Chen T N, Feng H, Yao J Q 2019 Acta Opt. Sin. 39 0317002Google Scholar

    [7]

    Gong A, Qiu Y, Chen X, Zhao Z, Xia L, Shao Y 2019 Appl. Spectrosc. Rev. 55 1Google Scholar

    [8]

    Shi W, Wang Y Z, Hou L, Ma C, Yang L, Dong C G, Wang Z Q, Wang H Q, Guo J, Li J 2020 J. Biophotonics 14 e202000237Google Scholar

    [9]

    何明霞, 陈涛 2012 电子测量与仪器学报 26 471Google Scholar

    He M X, Chen T 2012 J. Electr. Measur. Instr. 26 471Google Scholar

    [10]

    何明霞, 郭帅 2012 电子测量与仪器学报 26 663Google Scholar

    He M X, Guo S 2012 J. Electr. Measur. Instr. 26 663Google Scholar

    [11]

    Kitagami H, Kondo S, Hirano S, Kawakami H, Tanaka M 2007 Pancreas 35 42Google Scholar

    [12]

    Cao Y, Guo T, Wang X, Sun D, Ran Y, Feng X, Guan B O 2015 Opt. Express 23 27061Google Scholar

    [13]

    Trepanier M, Zhang D M, Filippenko L V, Koshelets V P, Anlage S M 2019 AIP Adv. 9 105320Google Scholar

    [14]

    Cao Y, Wang X D, Guo T, Ran Y, Feng X H, Guan B O, Yao J P 2017 Sens. Actuators. B 245 583Google Scholar

    [15]

    Kim H Y, Sato S, Takenaka S, Lee M H 2018 Sensors 18 2933Google Scholar

    [16]

    Bahar A A M, Zakaria Z, Arshad M K M, Alahnomi R A, Abu-Khadrah A I, Sam W Y 2019 Int. J. RF Technol. Res. Appl. 29 e21801Google Scholar

    [17]

    Bahar A A M, Zakaria Z, Arshad M K M, Isa A A M, Dasril Y, Alahnomi R A 2019 2019 Sci. Rep. 9 5467Google Scholar

    [18]

    Pandit N, Jaiswal R K, Pathak N P 2020 Electron. Lett. 56 185Google Scholar

    [19]

    Bunaciu A A, Hoang V D, Aboul-Enein H Y 2015 Crit. Rev. Anal. Chem. 45 156Google Scholar

    [20]

    Jin T, Lin P T 2018 IEEE Conference on Lasers and Electro-Optics (CLEO) San Jose, California, USA, May 13–18, 2018 p18024339

    [21]

    Zhao Y, Lu Y F, Zhu Y K, Wu Y C, Zhai M Y, Wang X, Yin J H 2019 Infrared Phys. Technol. 98 236Google Scholar

    [22]

    Chen G C, Cao Y H, Tang Y X, Yang X, Liu Y Y, Huang D H, Zhang Y J, Li C Y, Wang Q B 2020 Adv. Sci. 7 1903783Google Scholar

    [23]

    Aydin K, Ferry V E, Briggs R M, Atwater H A 2011 Nat. Commun. 2 517Google Scholar

    [24]

    Ding L J, Jiang D, Wen Z R, Xu Y H, Guo Y S, Ding C F, Wang K 2020 Biosens. Bioelectron. 150 111867Google Scholar

    [25]

    李芬, 赵跃进, 孔令琴, 刘明, 董立泉, 惠梅, 刘小华 2020 光学学报 40 229Google Scholar

    Li F, Zhao Y J, Kong L Q, Liu M, Dong L Q, Hui M, Liu X H 2020 Acta Opt. Sin. 40 229Google Scholar

    [26]

    Zhang M, Jia Z H, Lv X Y, Huang X H 2020 IEEE Sens. J. 20 12184Google Scholar

    [27]

    Zhang Y, Wang Q, Liu D M, Wang Q, Li T, Wang Z 2020 Appl. Surf. Sci. 521 146434Google Scholar

    [28]

    Wang S, Wang M K, Liu Y C, Meng X Y, Ye Y, Song X W, Liang Z Q 2021 Sens. Actuators, B 326 128808Google Scholar

    [29]

    Xia Y K, Chen T T, Zhang L, Zhang X L, Shi W H, Chen G Y, Chen W Q, Lan J M, Li C Y, Sun W M, Chen J H 2021 Biosens. Bioelectron. 173 112834Google Scholar

    [30]

    Wang P, He M X 2020 Conference on Infrared, Millimeter-Wave, and Terahertz Technologies VII Electrical Network, October 12–16, 2020 p115590W

    [31]

    Herring G K, Hesselink L 2021 Appl. Phys. Lett. 118 261105Google Scholar

    [32]

    Zhuang R Z, Wang X J, Ma W B, Wu Y H, Chen X, Tang L H, Zhu Haiming, Liu J Y, Wu L L, Zhou W, Liu X, Yang Y 2019 Nat. Photonics 13 602Google Scholar

    [33]

    Toyama M, Mori T, Takahashi J, Iwahashi H 2018 Radiat. Phys. Chem. 146 11Google Scholar

    [34]

    Dai X J, Sivasubramanian K, Xing L 2019 Conference on Molecular-Guided Surgery-Molecules, Devices, and Applications V San Francisco, California, USA, Febuary 02–04, 2019 p1086218

    [35]

    Guilherme Buzanich A 2021 X-Ray Spectrom. 1 1Google Scholar

    [36]

    Lu L, Sun M Z, Lu Q Y, Wu T, Huang B L 2021 Nano Energy 79 105437Google Scholar

    [37]

    Lin S J, Xu X L, Hu F R, Chen Z C, Wang Y L, Zhang L H, Peng Z Y, Li D X, Zeng L Z, Chen Y, Wang Z Y 2021 IEEE J. Sel. Top. Quantum Electron. 27 7Google Scholar

    [38]

    Hou L, Shi W, Dong C G, Yang L, Wang Y Z, Wang H Q, Hang Y H, Xue F 2020 Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 246 119044Google Scholar

    [39]

    Zhu Z J, Cheng C, Chang C, Ren G H, Zhang J B, Peng Y, Han J G, Zhao H W 2019 Analyst 144 2504Google Scholar

    [40]

    Yang J, Tang C, Wang Y D, Chang C, Zhang J B, Hu J, Lu J H 2019 Chem. Commun. 55 15141Google Scholar

    [41]

    Xiang Z X, Tang C X, Chang C, Liu G Z 2020 Sci. Bull. 65 308Google Scholar

    [42]

    杨磊, 范飞, 陈猛, 张选洲, 常胜江 2016 65 080702Google Scholar

    Yang L, Fan F, Chen M, Zhang X Z, Chang S J 2016 Acta Phys. Sin. 65 080702Google Scholar

    [43]

    Wang Y Y, Wang G Q, Xu D G, Jiang B Z, Ge M L, Wu L M, Yang C Y, Mu N, Wang S, Chang C, Chen T N, Feng H, Yao J Q 2020 Biomed. Opt. Express 11 4085Google Scholar

    [44]

    Wu K J, Qi C H, Zhu Z, Wang C L, Song B, Chang C 2020 J. Phys. Chem. Lett. 11 7002Google Scholar

    [45]

    Zhu Z J, Zhang J B, Song Y S, Chang C, Ren G H, Shen J X, Zhang Z C, Ji T, Chen M, Zhao H W 2020 Analyst 145 6006Google Scholar

    [46]

    Tang C, Yang J, Wang Y D, Cheng J, Li X L, Chang C, Hu J, Lu J H 2021 Sens. Actuatosr, B 329 129113Google Scholar

    [47]

    He M H, Zeng J F, Zhang X, Zhu X S, Jing C B, Chang C, Shi Y W 2021 Opt. Express 29 8430Google Scholar

    [48]

    Li Y M, Chang C, Zhu Z, Sun L, Fan C H 2021 J. Am. Chem. Soc. 143 4311Google Scholar

    [49]

    Su Y P, Zheng X P, Deng X J 2017 J. Infrared Millimeter Terahertz Waves 38 972Google Scholar

    [50]

    Li Z J, Rothbart N, Deng X J, Geng H, Zheng X P, Neumaier P, Hubers H W 2020 Chemom. Intell. Lab. Syst. 206 104129Google Scholar

    [51]

    Shi C C, Ma Y T, Zhang J, Wei D S, Wang H B, Peng X Y, Tang M J, Yan S H, Zu G K, Du C L, Cui H L 2018 Biomed. Opt. Express 9 1350Google Scholar

    [52]

    Yu M, Yan S H, Sun Y Q, Sheng W, Tang F, Peng X Y, Hu Y 2019 Sensors 19 1148Google Scholar

    [53]

    Sheng W, Tang F, Zhang Z L, Chen Y P, Peng X Y, Sheng Z M 2021 Opt. Express 29 8676Google Scholar

    [54]

    Wang Y Y, Wang G Q, Xu D G, Jiang B Z, Ge M L, Wu L M, Yang C A Y, Mu N, Wang S, Chen T N, Chang C, Feng H, Yao J Q 2020 Conference on Infrared, Millimeter-Wave, and Terahertz Technologies VII Electrical Network, October 12–16, 2020 p1155919

    [55]

    王与烨, 孙忠成, 徐德刚, 姜智南, 穆宁, 杨川燕, 陈图南, 冯华, 姚建铨 2020 光学学报 40 208Google Scholar

    Wang Y Y, Sun Z C, Xu D G, Jiang Z N, Mu N, Yang C Y, Chen T, Fenh H, Yao J Q 2020 Acta Opt. Sin. 40 208Google Scholar

    [56]

    Wu L M, Liao B, Xu D G, Wang Y Y, Ge M L, Zhang C N, Li J H, Sun Z C, Chen T N, Feng H, Yao J Q 2020 J. Infrared Millimeter Waves 39 553Google Scholar

    [57]

    Zhang J, Mu N, Liu L, Xie J, Feng H, Yao J, Chen T, Zhu W 2021 Biosens. Bioelectron. 185 113241Google Scholar

    [58]

    Duan F, Wang Y Y, Xu D G, Shi J, Chen L Y, Cui L, Bai Y H, Xu Y, Yuan J, Chang C 2019 World J. Gastrointest. Oncol. 11 153Google Scholar

    [59]

    Withayachumnankul W, Abbott D 2009 IEEE Photonics J. 1 99Google Scholar

    [60]

    Chen H T, Padilla W J, Zide J, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597Google Scholar

    [61]

    Tao H, Padilla W J, Zhang X, Averitt R D 2011 IEEE J. Sel. Top. Quantum Electron. 17 92Google Scholar

    [62]

    Singh R, Cao W, Al-Naib I, Cong L Q, Withayachumnankul W, Zhang W L 2014 Appl. Phys. Lett. 105 171101Google Scholar

    [63]

    Yang Y M, Huang R, Cong L Q, Zhu Z H, Gu J Q, Tian Z, Singh R, Zhang S A, Han J G, Zhang W L 2011 Appl. Phys. Lett. 98 121114Google Scholar

    [64]

    Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nat. Photonics 3 148Google Scholar

    [65]

    Horestani A K, Fumeaux C, Al-Sarawi S F, Abbott D 2013 IEEE Sens. J. 13 1153Google Scholar

    [66]

    Cao P F, Wu Y Y, Wang Z L, Li Y, Zhang J, Liu Q, Cheng L, Niu T M 2020 IEEE Access 8 219525Google Scholar

    [67]

    Taleb F, Al-Naib I, Koch M 2020 Sensors 20 2265Google Scholar

    [68]

    Karmakar S, Kumar D, Varshney R K, Chowdhury D R 2020 J. Phys. D: Appl. Phys. 53 415101Google Scholar

    [69]

    Wang J L, Wang X, Han D 2019 J. Infrared Millimeter Waves 38 722Google Scholar

    [70]

    Wang G Q, Zhu F J, Lang T T, Liu J J, Hong Z, Qin J Y 2021 Nanoscale Res. Lett. 16 109Google Scholar

    [71]

    Xu W D, Xie L J, Zhu J F, Tang L H, Singh R, Wang C, Ma Y G, Chen H T, Ying Y B 2019 Carbon 141 247Google Scholar

    [72]

    Ma Y, Chen Q, Khalid A, Saha S C, Cumming D R S 2010 Opt. Lett. 35 469Google Scholar

    [73]

    Wang J, Fan C, He J, Ding P, Liang E, Xue Q 2013 Opt. Express 21 2236Google Scholar

    [74]

    Yang M S, Zhang Z, Liang L J, Yan X, Wei D Q, Song X X, Zhang H T, Lu Y Y, Wang M, Yao J Q 2019 Appl. Opt. 58 6268Google Scholar

    [75]

    Bui T S, Dao T D, Dang L H, Vu L D, Ohi A, Nabatame T, Lee Y P, Nagao T, Hoang C V 2016 Sci. Rep. 6 32123Google Scholar

    [76]

    Liu W, Fan F, Chang S, Hou J, Chen M, Wang X, Bai J 2017 Opt. Commun. 405 17Google Scholar

    [77]

    Lee D K, Kang J H, Kwon J, Lee J S, Lee S, Woo D H, Kim J H, Song C S, Park Q H, Seo M 2017 Sci. Rep. 7 8146Google Scholar

    [78]

    Cui Z, Wang Y, Yue L, Zhao X, Zhang D, Yao Z, Zhang X, Hou L, Zhang X 2021 IEEE Trans. Terahertz Sci. 11 626Google Scholar

    [79]

    Yu Y B, Lin Y S 2019 Results Phys. 13 102321Google Scholar

    [80]

    Wang Y, Cui Z, Zhu D, Yue L 2019 Phys. Status Solidi A 216 1800940Google Scholar

    [81]

    Zhao L, Liu H, He Z, Dong S 2018 Opt. Express 26 12838Google Scholar

    [82]

    Keller J, Maissen C, Haase J, Paravicini-Bagliani G L, Valmorra F, Palomo J, Mangeney J, Tignon J, Dhillon S S, Scalari G, Faist J 2017 Adv. Opt. Mater. 5 1600884Google Scholar

    [83]

    Wang G Z, Wang B X 2015 J. Lightwave Technol. 33 5151Google Scholar

    [84]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111Google Scholar

    [85]

    Lei D Y, Appavoo K, Ligmajer F, Sonnefraud Y, Haglund R F, Maier S A 2015 ACS Photonics 2 1306Google Scholar

    [86]

    Tittl A, Michel A K, Schaferling M, Yin X, Gholipour B, Cui L, Wuttig M, Taubner T, Neubrech F, Giessen H 2015 Adv. Mater. 27 4597Google Scholar

    [87]

    Zhong M 2020 Opt. Laser Technol. 127 106142Google Scholar

    [88]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar

    [89]

    Jia R, Gao Y, Xu Q, Feng X, Wang Q, Gu J, Tian Z, Ouyang C, Han J, Zhang W 2020 Adv. Opt. Mater. 9 2001403Google Scholar

    [90]

    Li L, Jun Cui T, Ji W, Liu S, Ding J, Wan X, Bo Li Y, Jiang M, Qiu C W, Zhang S 2017 Nat. Commun. 8 197Google Scholar

    [91]

    Liu W, Yang Q, Xu Q, Jiang X, Wu T, Wang K, Gu J, Han J, Zhang W 2021 Adv. Opt. Mater. 9 2100506Google Scholar

    [92]

    Ma Q, Cui T J 2020 PhotoniX 1 1Google Scholar

    [93]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [94]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [95]

    Zhang H, Zhang X, Xu Q, Tian C, Wang Q, Xu Y, Li Y, Gu J, Tian Z, Ouyang C, Zhang X, Hu C, Han J, Zhang W 2017 Adv. Opt. Mater. 6 1700773Google Scholar

    [96]

    Zhang Z, Zhang X, Xu Y, Chen X, Feng X, Liu M, Xu Q, Kang M, Han J, Zhang W 2020 Adv. Opt. Mater. 9 2001620Google Scholar

    [97]

    Ako R T, Lee W S L, Atakaramians S, Bhaskaran M, Sriram S, Withayachumnankul W 2020 APL Photonics 5 046101Google Scholar

    [98]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 181111Google Scholar

    [99]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522Google Scholar

    [100]

    Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908Google Scholar

    [101]

    Lee S, Kim W T, Kang J H, Kang B J, Rotermund F, Park Q H 2019 ACS Appl. Mater. Interfaces 11 7655Google Scholar

    [102]

    Liu W, Chen S, Li Z, Cheng H, Yu P, Li J, Tian J 2015 Opt. Lett. 40 3185Google Scholar

    [103]

    Zhao J, Ouyang C, Chen X, Li Y, Zhang C, Feng L, Jin B, Ma J, Liu Y, Zhang S, Xu Q, Han J, Zhang W 2021 Opt. Express 29 21738Google Scholar

    [104]

    Yin X, Schaferling M, Michel A K, Tittl A, Wuttig M, Taubner T, Giessen H 2015 Nano. Lett. 15 4255Google Scholar

    [105]

    Yin X, Steinle T, Huang L, Taubner T, Wuttig M, Zentgraf T, Giessen H 2017 Light Sci. Appl. 6 e17016Google Scholar

    [106]

    Qu Y, Li Q, Du K, Cai L, Lu J, Qiu M 2017 Laser Photonics Rev. 11 1700091Google Scholar

    [107]

    Chen Y G, Kao T S, Ng B, Li X, Luo X G, Luk'yanchuk B, Maier S A, Hong M H 2013 Opt. Express 21 13691Google Scholar

    [108]

    Chaudhary K, Tamagnone M, Yin X, Spagele C M, Oscurato S L, Li J, Persch C, Li R, Rubin N A, Jauregui L A, Watanabe K, Taniguchi T, Kim P, Wuttig M, Edgar J H, Ambrosio A, Capasso F 2019 Nat. Commun. 10 4487Google Scholar

    [109]

    Xu Z, Li Q, Du K, Long S, Yang Y, Cao X, Luo H, Zhu H, Ghosh P, Shen W, Qiu M 2019 Laser Photonics Rev. 14 1900162Google Scholar

    [110]

    Gholipour B, Zhang J, MacDonald K F, Hewak D W, Zheludev N I 2013 Adv. Mater. 25 3050Google Scholar

    [111]

    Gutruf P, Zou C, Withayachumnankul W, Bhaskaran M, Sriram S, Fumeaux C 2016 ACS Nano 10 133Google Scholar

    [112]

    Qin J, Deng L, Kang T, Nie L, Feng H, Wang H, Yang R, Liang X, Tang T, Shen J, Li C, Wang H, Luo Y, Armelles G, Bi L 2020 ACS Nano 14 2808Google Scholar

    [113]

    Yang X, Tian Z, Chen X, Hu M, Yi Z, Ouyang C, Gu J, Han J, Zhang W 2020 Appl. Phys. Lett. 116 241106Google Scholar

    [114]

    Li T, Fan F, Ji Y, Tan Z, Mu Q, Chang S 2019 Opt. Lett. 45 1Google Scholar

    [115]

    Liu X, Wang Q, Zhang X, Li H, Xu Q, Xu Y, Chen X, Li S, Liu M, Tian Z, Zhang C, Zou C, Han J, Zhang W 2019 Adv. Opt. Mater. 7 1900175Google Scholar

    [116]

    Mu Q, Fan F, Chen S, Xu S, Xiong C, Zhang X, Wang X, Chang S 2019 Photonics Res. 7 325Google Scholar

    [117]

    Cui T, Bai B, Sun H B 2019 Adv. Funct. Mater. 29 1806692Google Scholar

    [118]

    Che Y, Wang X, Song Q, Zhu Y, Xiao S 2020 Nanophotonics 9 4407Google Scholar

    [119]

    Tseng M L, Yang J, Semmlinger M, Zhang C, Nordlander P, Halas N J 2017 Nano Lett. 17 6034Google Scholar

    [120]

    Liu X, Padilla W J 2013 Adv. Opt. Mater. 1 559Google Scholar

    [121]

    Roy T, Zhang S, Jung I W, Troccoli M, Capasso F, Lopez D 2018 APL Photonics 3 021302Google Scholar

    [122]

    Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraji-Dana M, Faraon A 2018 Nat. Commun. 9 812Google Scholar

    [123]

    Zhu W M, Liu A Q, Zhang X M, Tsai D P, Bourouina T, Teng J H, Zhang X H, Guo H C, Tanoto H, Mei T, Lo G Q, Kwong D L 2011 Adv. Mater. 23 1792Google Scholar

    [124]

    Reeves J B, Jayne R K, Stark T J, Barrett L K, White A E, Bishop D J 2018 Nano Lett. 18 2802Google Scholar

    [125]

    Jiang M, Hu F, Qian Y, Zhang L, Zhang W, Han J 2020 J. Phys. D: Appl. Phys. 53 065107Google Scholar

    [126]

    Shah S I H, Sarkar A, Phon R, Lim S 2020 Adv. Opt. Mater. 8 2001180Google Scholar

    [127]

    Fan F, Gu W H, Wang X H, Chang S J 2013 Appl. Phys. Lett. 102 121113Google Scholar

    [128]

    Xie L, Gao W, Shu J, Ying Y, Kono J 2015 Sci. Rep. 5 8671Google Scholar

    [129]

    Park S J, Cha S H, Shin G A, Ahn Y H 2017 Biomed. Opt. Express 8 3551Google Scholar

    [130]

    Ahmadivand A, Gerislioglu B, Tomitaka A, Manickam P, Kaushik A, Bhansali S, Nair M, Pala N 2018 Biomed. Opt. Express 9 373Google Scholar

    [131]

    Lan F, Luo F, Mazumder P, Yang Z, Meng L, Bao Z, Zhou J, Zhang Y, Liang S, Shi Z, Khan A R, Zhang Z, Wang L, Yin J, Zeng H 2019 Biomed. Opt. Express 10 3789Google Scholar

    [132]

    Yang M, Liang L, Zhang Z, Xin Y, Wei D, Song X, Zhang H, Lu Y, Wang M, Zhang M, Wang T, Yao J 2019 Opt. Express 27 19520Google Scholar

    [133]

    Zhou H, Yang C, Hu D, Li D, Hui X, Zhang F, Chen M, Mu X 2019 Appl. Phys. Lett. 115 143507Google Scholar

    [134]

    Huang S T, Hsu S F, Tang K Y, Yen T J, Yao D J 2020 Micromachines 11 74Google Scholar

    [135]

    Nie P, Zhu D, Cui Z, Qu F, Lin L, Wang Y 2020 Sens. Actuators, B 307 127642Google Scholar

    [136]

    Qi Y, Zhang Y, Liu C, Zhang T, Zhang B, Wang L, Deng X, Bai Y, Wang X 2020 Results Phys. 16 103012Google Scholar

    [137]

    Wang R, Xu W, Chen D, Zhou R, Wang Q, Gao W, Kono J, Xie L, Ying Y 2020 ACS Appl. Mater. Interfaces 12 40629Google Scholar

    [138]

    Wang Y, Cui Z, Zhang X, Zhang X, Zhu Y, Chen S, Hu H 2020 ACS Appl. Mater. Interfaces 12 52082Google Scholar

    [139]

    Wang Y, Zhu D, Cui Z, Yue L, Zhang X, Hou L, Zhang K, Hu H 2020 IEEE Trans. Terahertz Sci. Technol. 10 599Google Scholar

    [140]

    Yue L, Wang Y, Cui Z, Zhang X, Zhu Y, Zhang X, Chen S, Wang X, Zhang K 2021 Opt. Express 29 13563Google Scholar

    [141]

    Hou X F, Chen X Y, Li T M, Li Y Y, Tian Z, Wang M W 2021 Opt. Mater. Express 11 2268Google Scholar

    [142]

    Tang M J, Zhang M K, Yan S H, Xia L P, Yang Z B, Du C L, Cui H L, Wei D S 2018 PLos One 13 e0191515Google Scholar

    [143]

    He Z H, Li L Q, Ma H Q, Pu L H, Xu H, Yi Z, Cao X L, Cui W 2021 Results Phys. 21 103795Google Scholar

    [144]

    Miyamaru F, Hattori K, Shiraga K, Kawashima S, Suga S, Nishida T, Takeda M W, Ogawa Y 2014 J. Infrared Millimeter Terahertz Waves 35 198Google Scholar

    [145]

    Cong L Q, Tan S Y, Yahiaoui R, Yan F P, Zhang W L, Singh R 2015 Appl. Phys. Lett. 106 31107Google Scholar

    [146]

    Al-Naib I 2017 IEEE J. Sel. Top. Quantum Electron. 23 4700405Google Scholar

    [147]

    Zhang C H, Liang L J, Ding L, Jin B B, Hou Y Y, Li C, Jiang L, Liu W W, Hu W, Lu Y Q, Kang L, Xu W W, Chen J, Wu P H 2016 Appl. Phys. Lett. 108 241105Google Scholar

    [148]

    Chen M, Singh L, Xu N N, Singh R, Zhang W L, Xie L J 2017 Opt. Express 25 14089Google Scholar

    [149]

    Liu Y, Tang M J, Xia L P, Yu W J, Peng J, Zhang Y, de la Chapelle M L, Yang K, Cui H L, Fu W L 2017 RSC Adv. 7 53963Google Scholar

    [150]

    Xu W D, Xie L J, Zhu J F, Wang W, Ye Z Z, Ma Y G, Tsai C Y, Chen S M, Ying Y B 2017 Food Chem. 218 330Google Scholar

    [151]

    Cheng D, He X, Huang X L, Zhang B, Liu G, Shu G X, Fang C, Wang J X, Luo Y 2018 Int. J. RF Microwave Comput. Aided Eng. 28 e21448Google Scholar

    [152]

    Kim H S, Cha S H, Roy B, Kim S, Ahn Y H 2018 Opt. Express 26 33575Google Scholar

    [153]

    Qin B, Li Z, Hu F, Hu C, Chen T, Zhang H, Zhao Y 2018 IEEE Trans. Terahertz Sci. Technol. 8 149Google Scholar

    [154]

    Yang Y, Xu D, Zhang W 2018 Opt. Express 26 31589Google Scholar

    [155]

    Zhang H, Li Z, Hu F R, Qin B Y, Zhao Y H, Chen T, Hu C 2018 Spectrosc. Lett. 51 174Google Scholar

    [156]

    Jauregui-Lopez I, Rodriguez-Ulibarri P, Kuznetsov S A, Quemada C, Beruete M 2019 Sensors 19 4396Google Scholar

    [157]

    Nejad H E, Mir A, Armani A 2019 IEEE Sens. J. 19 4874Google Scholar

    [158]

    Yan X, Yang M S, Zhang Z, Liang L J, Wei D Q, Wang M, Zhang M J, Wang T, Liu L H, Xie J H, Yao J Q 2019 Biosens. Bioelectron. 126 485Google Scholar

    [159]

    Zhao X, Lin Z Q, Wang Y X, Yang X, Yang K, Zhang Y, Peng J, de la Chapelle M L, Zhang L Q, Fu W L 2019 Biomed. Opt. Express 10 1196Google Scholar

    [160]

    Al-Naib I 2020 Crystals 10 372Google Scholar

    [161]

    Cheng D, Zhang B, Liu G, Wang J X, Luo Y 2020 Int. J. Numer. Modell. Electron. 33 e2529Google Scholar

    [162]

    Gu H Y, Shi C J, Wu X, Peng Y 2020 Analyst 145 6705Google Scholar

    [163]

    Liu L, Li T F, Liu Z X, Fan F, Yuan H F, Zhang Z Y, Chang S J, Zhang X D 2020 Biomed. Opt. Express 11 2416Google Scholar

    [164]

    Ou H L, Lu F Y, Xu Z F, Lin Y S 2020 Nanomaterials 10 1038Google Scholar

    [165]

    Tang M J, Xia L P, Wei D S, Yan S H, Zhang M K, Yang Z B, Wang H B, Du C L, Cui H L 2020 Spectrochim. Acta, Part A 228 117736Google Scholar

    [166]

    Zhang Y X, Ye Y X, Song X X, Yang M S, Ren Y P, Ren X D, Liang L J, Yao J Q 2020 Mater. Res. Express 7 095801Google Scholar

    [167]

    Zhao R, Zou B, Zhang G L, Xu D Q, Yang Y P 2020 J. Phys. D: Appl. Phys. 53 195401Google Scholar

    [168]

    Zhong Y J, Du L H, Liu Q, Zhu L G, Zhang B 2020 Opt. Commun. 465 125508Google Scholar

    [169]

    Yang J, Qi L M, Li B, Wu L Q, Shi D, Uqaili J A, Tao X 2021 Results Phys. 26 104332Google Scholar

    [170]

    Qin J Y, Xie L J, Ying Y B 2016 Food Chem. 211 300Google Scholar

    [171]

    Tao H, Chieffo L R, Brenckle M A, Siebert S M, Liu M K, Strikwerda A C, Fan K B, Kaplan D L, Zhang X, Averitt R D, Omenetto F C 2011 Adv. Mater. 23 3197Google Scholar

    [172]

    Wang Y, Cui Z J, Zhu D Y, Wang X M, Chen S G, Nie P C 2019 Opt. Express 27 14133Google Scholar

    [173]

    Hong J T, Jun S W, Cha S H, Park J Y, Lee S, Shin G A, Ahn Y H 2018 Sci. Rep. 8 15536Google Scholar

    [174]

    Wang Y L, Han Z H, Du Y, Qin J Y 2021 Nanophotonics 10 1295Google Scholar

    [175]

    Zhu J F, Jiang S, Xie Y N, Li F J, Du L H, Meng K, Zhu L G, Zhou J 2020 Opt. Lett. 45 2335Google Scholar

    [176]

    Li Q, Cong L Q, Singh R J, Xu N N, Cao W, Zhang X Q, Tian Z, Du L L, Han J G, Zhang W L 2016 Nanoscale 8 17278Google Scholar

    [177]

    Keshavarz A, Vafapour Z 2019 IEEE Sens. J. 19 5161Google Scholar

    [178]

    Asgari S, Granpayeh N, Fabritius T 2020 Opt. Commun. 474 126080Google Scholar

    [179]

    Cai Y J, Guo Y B, Zhou Y G, Wang Y, Zhu J F, Chen C Y 2020 J. Phys. D: Appl. Phys. 53 015105Google Scholar

    [180]

    Amin M, Siddiqui O, Abutarboush H, Farhat M, Ramzan R 2021 Carbon 176 580Google Scholar

    [181]

    Lee S H, Choe J H, Kim C, Bae S, Kim J S, Park Q H, Seo M 2020 Sens. Actuators, B 310 127841Google Scholar

    [182]

    Lee D K, Kang J H, Lee J S, Kim H S, Kim C, Kim J H, Lee T, Son J H, Park Q H, Seo M 2015 Sci. Rep. 5 15459Google Scholar

    [183]

    Han B, Han Z, Qin J, Wang Y, Zhao Z 2019 Talanta 192 1Google Scholar

    [184]

    Wang R, Wu Q, Zhang Y, Xu X, Zhang Q, Zhao W, Zhang B, Cai W, Yao J, Xu J 2019 Appl. Phys. Lett. 114 121102Google Scholar

    [185]

    Xu W, Xie L, Zhu J, Xu X, Ye Z, Wang C, Ma Y, Ying Y 2016 ACS Photonics 3 2308Google Scholar

    [186]

    Wu X, Quan B, Pan X, Xu X, Lu X, Gu C, Wang L 2013 Biosens. Bioelectron. 42 626Google Scholar

    [187]

    Cheng R J, Xu L, Yu X, Zou L E, Shen Y, Deng X H 2020 Opt. Commun. 473 125850Google Scholar

    [188]

    Yang K, Yu W J, Huang G R, Zhou J, Yang X, Fu W L 2020 RSC Adv. 10 26824Google Scholar

    [189]

    Ahmadivand A, Gerislioglu B, Ramezani Z, Kaushik A, Manickam P, Ghoreishi S A 2021 Biosens. Bioelectron. 177 112971Google Scholar

    [190]

    Yang K, Li J N, de la Chapelle M L, Huang G R, Wang Y X, Zhang J B, Xu D G, Yao J Q, Yang X, Fu W L 2021 Biosens. Bioelectron. 175 112874Google Scholar

    [191]

    Zhan X Y, Yang S, Huang G R, Yang L H, Zhang Y, Tian H Y, Xie F X, de la Chapelle M L, Yang X, Fu W L 2021 Biosens. Bioelectron. 188 113314Google Scholar

    [192]

    Park S J, Hong J T, Choi S J, Kim H S, Park W K, Han S T, Park J Y, Lee S, Kim D S, Ahn Y H 2014 Sci. Rep. 4 4988Google Scholar

    [193]

    Ahmadivand A, Gerislioglu B, Manickam P, Kaushik A, Bhansali S, Nair M, Pala N 2017 ACS Sens. 2 1359Google Scholar

    [194]

    Liu K, Zhang R, Liu Y, Chen X, Li K, Pickwell-Macpherson E 2021 Biomed. Opt. Express 12 1559Google Scholar

    [195]

    Hu X, Xu G, Wen L, Wang H, Zhao Y, Zhang Y, Cumming D R S, Chen Q 2016 Laser Photonics Rev. 10 962Google Scholar

    [196]

    Kim H K, Lee D, Lim S 2016 Sensors 16 1246Google Scholar

    [197]

    Hu F, Guo E, Xu X, Li P, Xu X, Yin S, Wang Y, Chen T, Yin X, Zhang W 2017 Opt. Commun. 388 62Google Scholar

    [198]

    Zhao X, Zhang M, Wei D, Wang Y, Yan S, Liu M, Yang X, Yang K, Cui H L, Fu W 2017 Biomed. Opt. Express 8 4427Google Scholar

    [199]

    Salim A, Lim S 2018 Sensors 18 232Google Scholar

    [200]

    Govind G, Akhtar M J 2019 IEEE Sens. J. 19 11900Google Scholar

    [201]

    He G, Lan F, Mazumder P, Wang L, Zeng H, Yang Z, Yin J, Shi Z, Xiao B 2019 IEEE Photonics and Electromagnetics Research Symposium Xiamen, China, December 17−20, 2019 p260

    [202]

    Serita K, Murakami H, Kawayama I, Tonouchi M 2019 Photonics 6 12Google Scholar

    [203]

    Alfihed S, Holzman J F, Foulds I G 2020 Biosens. Bioelectron. 165 112393Google Scholar

    [204]

    Fan F, Zhong C, Zhang Z, Li S, Chang S 2021 Nanoscale Adv. 3 4790Google Scholar

    [205]

    Xu J, Liao D, Gupta M, Zhu Y, Zhuang S, Singh R, Chen L 2021 Adv. Opt. Mater. 9 2100024Google Scholar

    [206]

    Zhou R, Wang C, Huang Y, Huang K, Wang Y, Xu W, Xie L, Ying Y 2021 Biosens. Bioelectron. 188 113336Google Scholar

    [207]

    Shih K, Pitchappa P, Jin L, Chen C H, Singh R, Lee C 2018 Appl. Phys. Lett. 113 071105Google Scholar

    [208]

    Geng Z, Zhang X, Fan Z, Lv X, Chen H 2017 Sci. Rep. 7 16378Google Scholar

    [209]

    Zhou J, Zhao X, Huang G, Yang X, Zhang Y, Zhan X, Tian H, Xiong Y, Wang Y, Fu W 2021 ACS Sens. 6 1884Google Scholar

    [210]

    Zhang Z Y, Fan F, Li T F, Ji Y Y, Chang S J 2020 Chin. Phys. B 29 078707Google Scholar

    [211]

    Zhang Z, Zhong C, Fan F, Liu G, Chang S 2021 Sens. Actuators, B 330 129315Google Scholar

    [212]

    Duan G W, Schalch J, Zhao X G, Zhang J D, Averitt R D, Zhang X 2018 Sens. Actuators, A 280 303Google Scholar

    [213]

    Lee D K, Kim G, Kim C, Jhon Y M, Kim J H, Lee T, Son J H, Seo M 2016 IEEE Trans. Terahertz Sci. Technol. 6 389Google Scholar

    [214]

    Lee S H, Shin S, Roh Y, Oh S J, Lee S H, Song H S, Ryu Y S, Kim Y K, Seo M 2020 Biosens. Bioelectron. 170 112663Google Scholar

    [215]

    Jahani Y, Arvelo E R, Yesilkoy F, Koshelev K, Cianciaruso C, De Palma M, Kivshar Y, Altug H 2021 Nat. Commun. 12 3246Google Scholar

    [216]

    John-Herpin A, Kavungal D, von Mucke L, Altug H 2021 Adv. Mater. 33 2006054Google Scholar

  • 图 1  影响太赫兹超材料生物化学传感检测的关键因素[127-140]

    Fig. 1.  Key factors affecting biochemical sensing and detection of terahertz metamaterials [127-140].

    图 2  金属基太赫兹超材料生物传感器 (a) 用于检测细胞凋亡的周期性同心金圆环结构太赫兹超材料[147]; (b)可实现葡萄糖溶液和尿素检测的金属太赫兹谐振器[171]; (c) 用于农药浓度传感的多频带太赫兹超材料吸收器[172]; (d) 用于病毒检测的银纳米线太赫兹超材料[173]

    Fig. 2.  Metal-based terahertz metamaterial biosensors: (a) Periodic concentric gold ring terahertz metamaterial for cell apoptosis sensing[147]; (b) metal-base terahertz resonator for glucose and urea detection[171]; (c) multiband terahertz metamaterial absorber for pesticide concentration sensing[172]; (d) silver nanowires terahertz metamaterial for virus detection[173].

    图 3  全硅太赫兹超材料传感器 (a)基于周期性同轴环和圆柱结构的太赫兹超材料吸收器, 可实现对毒死蜱溶液的灵敏检测[135]; (b) 单带全硅太赫兹超材料传感器, 用于2, 4-D农药检测[139]; (c) 一种可用于毒死蜱检测的全硅光栅结构的太赫兹超材料吸收器[140]

    Fig. 3.  All-silicon terahertz metamaterial sensors: (a) Terahertz metamaterial absorber based on periodic coaxial ring and cylindrical structure for the sensitive detection of chlorpyrifos solution[135]; (b) single-band all-silicon terahertz metamaterial absorbers for 2, 4-D pesticide sensing[139]; (c) an all-silicon grating metamaterial absorber for chlorpyrifos detection [140].

    图 4  碳基太赫兹超材料传感器 (a) 石墨烯复合纳米槽基太赫兹超材料, 用于识别单链DNA (ssDNA)[181]; (b) 一种碳纳米管超材料, 可用于农药浓度检测[138]

    Fig. 4.  Carbon-based terahertz metamaterial sensors: (a) Graphene composite nanoslot-based terahertz metamaterial for ssDNA detection[181]; (b) a carbon nanotubes metamaterial which can be used for pesticide concentration detection[138].

    图 5  基于指纹光谱的太赫兹超材料传感器 (a) 利用金属狭缝天线对不同种类碳水化合物进行区分和定量检测[182]; (b) 用于检测果糖和L-组氨酸的金属超材料[185]

    Fig. 5.  Terahertz metamaterial sensor based on fingerprint spectrum: (a) Using nano-antenna array to distinguish and quantitatively detect different types of carbohydrates[182]; (b) metal-based metamaterials for detection of fructose and L-histidine[185].

    图 6  与抗体结合的太赫兹超材料传感器 (a) 使用大肠杆菌抗体做表面修饰的超材料, 实现在水环境中对大肠杆菌进行特异性检测[192]; (b) 用于特异性检测ZIKV的超材料[193]; (c) 将抗体修饰的GNPs引入超材料来实现EGFR的特异性检测[194]

    Fig. 6.  Terahertz metamaterial sensor combined with antibody: (a) Specific detection of E. coli in water environment realized by metamaterial with surface modification of E. coli antibody[192]; (b) metamaterial for the specific detection of ZIKV[193]; (c) antibody-modified GNPs are introduced into the metamaterial to achieve specific detection of EGFR[194].

    图 7  集成微流体的太赫兹超材料生物传感器 (a)纳米流体太赫兹超材料传感器用于醇水混合物和三磷酸腺苷(ATP)检测[207]; 用SRR (b) 和Fano谐振器(c)制作的THz超材料芯片的扫描电子显微镜图像及模拟电场分布[207]; (d)集成微流体的太赫兹超材料生物传感器用于早期肝癌生物标志物检测[208]

    Fig. 7.  THz metamaterials biosensor chip integrated with microfluidics. (a) Nanofluidic THz metamaterial sensor and its cross-sectional device structure for alcohol-water mixture and adenosine triphosphate (ATP)[207]. Scanning electron microscopic image of the fabricated THz metamaterial chip with SRR (b) and Fano resonator (c) and their simulated electric field distribution[207]. (d) THz metamaterials biosensor chip integrated with microfluidics for liver cancer biomarker testing[208].

    图 8  太赫兹超材料生化传感检测技术中的新方法 (a) 利用适体水凝胶功能化太赫兹超材料制成的分子特异性太赫兹生物传感器[209]; (b) 应用于太赫兹偏振转换和薄膜厚度检测的双层手性超材料[210]

    Fig. 8.  New methods in terahertz metamaterial biochemical sensing and detection: (a) Molecule-specific THz biosensor was fabricated from an aptamer hydrogel-functionalized THz metamaterial[209]; (b) double-layer chiral metamaterial for terahertz polarization conversion and film thickness detection[210].

    表 1  各种太赫兹超材料生物化学传感器对比

    Table 1.  List of various THz metamaterial biochemical sensors.

    传感检测
    实现方式
    核心
    材料
    功能性能文献
    直接滴加金属黄曲霉毒素B1和B2最小剂量为5 μL[167]
    滴加-干燥金属牛血清蛋白浓度检测最低检测浓度为0.1 mg/mL, 17.6 mg/mL
    浓度引起的频移量为137 GHz
    [141]
    滴加-干燥全金属结构牛血清蛋白检测灵敏度为72.81 GHz/(ng/mm2),
    检测限为0.035 mg/mL
    [70]
    滴加-干燥毒死蜱浓度检测最低浓度20 ppt[140]
    滴加-干燥碳纳米管2, 4-D 和毒死蜱浓度检测最低检测量10 ng,
    灵敏度为1.38 × 10–2/ppm (2, 4-d)
    2.0 × 10–3/ppm (毒死蜱)
    [138]
    特异性抗体修饰金属恶性神经胶质瘤细胞检测最大灵敏度248.75 kHz/(cell mL–1)[57]
    特异性抗体修饰金属癌胚抗原浓度的检测检测限为0.1 ng/mL[37]
    微流通道金属乙醇-水混合物浓度检测124.3 GHz/RIU[205]
    衰减全反射金属水环境蔗糖溶液浓度检测最低检测浓度为0.03125 mol/L[168]
    使用石墨烯-超表面混合结构, 微流通道-特异性结合石墨烯DNA检测100 nmol/L DNA 溶液[206]
    特异性适体水凝胶金属水环境特异性h-TB检测检测限为0.40 pmol/L[209]
    金纳米颗粒-RCA金属金黄色酿脓葡萄球菌检测限为0.08 pg/mL[188]
    石墨烯超表面
    手性传感
    石墨烯禽流感病毒检测对H1N1, H5N2, N9N2三种不同类型
    禽流感病毒特异性识别
    [180]
    手性传感金属纳米颗粒浓度灵敏度为5.5 GHz%–1[204]
    下载: 导出CSV
    Baidu
  • [1]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [2]

    Seo M, Park H R 2020 Adv. Opt. Mater. 8 1900662Google Scholar

    [3]

    Danciu M, Alexa-Stratulat T, Stefanescu C, Dodi G, Tamba B I, Mihai C T, Stanciu G D, Luca A, Spiridon I A, Ungureanu L B 2019 Materials 12 1519Google Scholar

    [4]

    Hua C, Chen T H, Tseng T F, Lu J T, Sun C K 2011 Opt. Express 19 21552Google Scholar

    [5]

    Yao Z H, Huang Y Y, Zhu L P, Obraztsov P A, Du W Y, Zhang L H, Xu X L 2019 Nanoscale 11 16614Google Scholar

    [6]

    王与烨, 陈霖宇, 徐德刚, 陈图南, 冯华, 姚建铨 2019 光学学报 39 0317002Google Scholar

    Wang Y Y, Chen L Y, Xu D G, Chen T N, Feng H, Yao J Q 2019 Acta Opt. Sin. 39 0317002Google Scholar

    [7]

    Gong A, Qiu Y, Chen X, Zhao Z, Xia L, Shao Y 2019 Appl. Spectrosc. Rev. 55 1Google Scholar

    [8]

    Shi W, Wang Y Z, Hou L, Ma C, Yang L, Dong C G, Wang Z Q, Wang H Q, Guo J, Li J 2020 J. Biophotonics 14 e202000237Google Scholar

    [9]

    何明霞, 陈涛 2012 电子测量与仪器学报 26 471Google Scholar

    He M X, Chen T 2012 J. Electr. Measur. Instr. 26 471Google Scholar

    [10]

    何明霞, 郭帅 2012 电子测量与仪器学报 26 663Google Scholar

    He M X, Guo S 2012 J. Electr. Measur. Instr. 26 663Google Scholar

    [11]

    Kitagami H, Kondo S, Hirano S, Kawakami H, Tanaka M 2007 Pancreas 35 42Google Scholar

    [12]

    Cao Y, Guo T, Wang X, Sun D, Ran Y, Feng X, Guan B O 2015 Opt. Express 23 27061Google Scholar

    [13]

    Trepanier M, Zhang D M, Filippenko L V, Koshelets V P, Anlage S M 2019 AIP Adv. 9 105320Google Scholar

    [14]

    Cao Y, Wang X D, Guo T, Ran Y, Feng X H, Guan B O, Yao J P 2017 Sens. Actuators. B 245 583Google Scholar

    [15]

    Kim H Y, Sato S, Takenaka S, Lee M H 2018 Sensors 18 2933Google Scholar

    [16]

    Bahar A A M, Zakaria Z, Arshad M K M, Alahnomi R A, Abu-Khadrah A I, Sam W Y 2019 Int. J. RF Technol. Res. Appl. 29 e21801Google Scholar

    [17]

    Bahar A A M, Zakaria Z, Arshad M K M, Isa A A M, Dasril Y, Alahnomi R A 2019 2019 Sci. Rep. 9 5467Google Scholar

    [18]

    Pandit N, Jaiswal R K, Pathak N P 2020 Electron. Lett. 56 185Google Scholar

    [19]

    Bunaciu A A, Hoang V D, Aboul-Enein H Y 2015 Crit. Rev. Anal. Chem. 45 156Google Scholar

    [20]

    Jin T, Lin P T 2018 IEEE Conference on Lasers and Electro-Optics (CLEO) San Jose, California, USA, May 13–18, 2018 p18024339

    [21]

    Zhao Y, Lu Y F, Zhu Y K, Wu Y C, Zhai M Y, Wang X, Yin J H 2019 Infrared Phys. Technol. 98 236Google Scholar

    [22]

    Chen G C, Cao Y H, Tang Y X, Yang X, Liu Y Y, Huang D H, Zhang Y J, Li C Y, Wang Q B 2020 Adv. Sci. 7 1903783Google Scholar

    [23]

    Aydin K, Ferry V E, Briggs R M, Atwater H A 2011 Nat. Commun. 2 517Google Scholar

    [24]

    Ding L J, Jiang D, Wen Z R, Xu Y H, Guo Y S, Ding C F, Wang K 2020 Biosens. Bioelectron. 150 111867Google Scholar

    [25]

    李芬, 赵跃进, 孔令琴, 刘明, 董立泉, 惠梅, 刘小华 2020 光学学报 40 229Google Scholar

    Li F, Zhao Y J, Kong L Q, Liu M, Dong L Q, Hui M, Liu X H 2020 Acta Opt. Sin. 40 229Google Scholar

    [26]

    Zhang M, Jia Z H, Lv X Y, Huang X H 2020 IEEE Sens. J. 20 12184Google Scholar

    [27]

    Zhang Y, Wang Q, Liu D M, Wang Q, Li T, Wang Z 2020 Appl. Surf. Sci. 521 146434Google Scholar

    [28]

    Wang S, Wang M K, Liu Y C, Meng X Y, Ye Y, Song X W, Liang Z Q 2021 Sens. Actuators, B 326 128808Google Scholar

    [29]

    Xia Y K, Chen T T, Zhang L, Zhang X L, Shi W H, Chen G Y, Chen W Q, Lan J M, Li C Y, Sun W M, Chen J H 2021 Biosens. Bioelectron. 173 112834Google Scholar

    [30]

    Wang P, He M X 2020 Conference on Infrared, Millimeter-Wave, and Terahertz Technologies VII Electrical Network, October 12–16, 2020 p115590W

    [31]

    Herring G K, Hesselink L 2021 Appl. Phys. Lett. 118 261105Google Scholar

    [32]

    Zhuang R Z, Wang X J, Ma W B, Wu Y H, Chen X, Tang L H, Zhu Haiming, Liu J Y, Wu L L, Zhou W, Liu X, Yang Y 2019 Nat. Photonics 13 602Google Scholar

    [33]

    Toyama M, Mori T, Takahashi J, Iwahashi H 2018 Radiat. Phys. Chem. 146 11Google Scholar

    [34]

    Dai X J, Sivasubramanian K, Xing L 2019 Conference on Molecular-Guided Surgery-Molecules, Devices, and Applications V San Francisco, California, USA, Febuary 02–04, 2019 p1086218

    [35]

    Guilherme Buzanich A 2021 X-Ray Spectrom. 1 1Google Scholar

    [36]

    Lu L, Sun M Z, Lu Q Y, Wu T, Huang B L 2021 Nano Energy 79 105437Google Scholar

    [37]

    Lin S J, Xu X L, Hu F R, Chen Z C, Wang Y L, Zhang L H, Peng Z Y, Li D X, Zeng L Z, Chen Y, Wang Z Y 2021 IEEE J. Sel. Top. Quantum Electron. 27 7Google Scholar

    [38]

    Hou L, Shi W, Dong C G, Yang L, Wang Y Z, Wang H Q, Hang Y H, Xue F 2020 Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 246 119044Google Scholar

    [39]

    Zhu Z J, Cheng C, Chang C, Ren G H, Zhang J B, Peng Y, Han J G, Zhao H W 2019 Analyst 144 2504Google Scholar

    [40]

    Yang J, Tang C, Wang Y D, Chang C, Zhang J B, Hu J, Lu J H 2019 Chem. Commun. 55 15141Google Scholar

    [41]

    Xiang Z X, Tang C X, Chang C, Liu G Z 2020 Sci. Bull. 65 308Google Scholar

    [42]

    杨磊, 范飞, 陈猛, 张选洲, 常胜江 2016 65 080702Google Scholar

    Yang L, Fan F, Chen M, Zhang X Z, Chang S J 2016 Acta Phys. Sin. 65 080702Google Scholar

    [43]

    Wang Y Y, Wang G Q, Xu D G, Jiang B Z, Ge M L, Wu L M, Yang C Y, Mu N, Wang S, Chang C, Chen T N, Feng H, Yao J Q 2020 Biomed. Opt. Express 11 4085Google Scholar

    [44]

    Wu K J, Qi C H, Zhu Z, Wang C L, Song B, Chang C 2020 J. Phys. Chem. Lett. 11 7002Google Scholar

    [45]

    Zhu Z J, Zhang J B, Song Y S, Chang C, Ren G H, Shen J X, Zhang Z C, Ji T, Chen M, Zhao H W 2020 Analyst 145 6006Google Scholar

    [46]

    Tang C, Yang J, Wang Y D, Cheng J, Li X L, Chang C, Hu J, Lu J H 2021 Sens. Actuatosr, B 329 129113Google Scholar

    [47]

    He M H, Zeng J F, Zhang X, Zhu X S, Jing C B, Chang C, Shi Y W 2021 Opt. Express 29 8430Google Scholar

    [48]

    Li Y M, Chang C, Zhu Z, Sun L, Fan C H 2021 J. Am. Chem. Soc. 143 4311Google Scholar

    [49]

    Su Y P, Zheng X P, Deng X J 2017 J. Infrared Millimeter Terahertz Waves 38 972Google Scholar

    [50]

    Li Z J, Rothbart N, Deng X J, Geng H, Zheng X P, Neumaier P, Hubers H W 2020 Chemom. Intell. Lab. Syst. 206 104129Google Scholar

    [51]

    Shi C C, Ma Y T, Zhang J, Wei D S, Wang H B, Peng X Y, Tang M J, Yan S H, Zu G K, Du C L, Cui H L 2018 Biomed. Opt. Express 9 1350Google Scholar

    [52]

    Yu M, Yan S H, Sun Y Q, Sheng W, Tang F, Peng X Y, Hu Y 2019 Sensors 19 1148Google Scholar

    [53]

    Sheng W, Tang F, Zhang Z L, Chen Y P, Peng X Y, Sheng Z M 2021 Opt. Express 29 8676Google Scholar

    [54]

    Wang Y Y, Wang G Q, Xu D G, Jiang B Z, Ge M L, Wu L M, Yang C A Y, Mu N, Wang S, Chen T N, Chang C, Feng H, Yao J Q 2020 Conference on Infrared, Millimeter-Wave, and Terahertz Technologies VII Electrical Network, October 12–16, 2020 p1155919

    [55]

    王与烨, 孙忠成, 徐德刚, 姜智南, 穆宁, 杨川燕, 陈图南, 冯华, 姚建铨 2020 光学学报 40 208Google Scholar

    Wang Y Y, Sun Z C, Xu D G, Jiang Z N, Mu N, Yang C Y, Chen T, Fenh H, Yao J Q 2020 Acta Opt. Sin. 40 208Google Scholar

    [56]

    Wu L M, Liao B, Xu D G, Wang Y Y, Ge M L, Zhang C N, Li J H, Sun Z C, Chen T N, Feng H, Yao J Q 2020 J. Infrared Millimeter Waves 39 553Google Scholar

    [57]

    Zhang J, Mu N, Liu L, Xie J, Feng H, Yao J, Chen T, Zhu W 2021 Biosens. Bioelectron. 185 113241Google Scholar

    [58]

    Duan F, Wang Y Y, Xu D G, Shi J, Chen L Y, Cui L, Bai Y H, Xu Y, Yuan J, Chang C 2019 World J. Gastrointest. Oncol. 11 153Google Scholar

    [59]

    Withayachumnankul W, Abbott D 2009 IEEE Photonics J. 1 99Google Scholar

    [60]

    Chen H T, Padilla W J, Zide J, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597Google Scholar

    [61]

    Tao H, Padilla W J, Zhang X, Averitt R D 2011 IEEE J. Sel. Top. Quantum Electron. 17 92Google Scholar

    [62]

    Singh R, Cao W, Al-Naib I, Cong L Q, Withayachumnankul W, Zhang W L 2014 Appl. Phys. Lett. 105 171101Google Scholar

    [63]

    Yang Y M, Huang R, Cong L Q, Zhu Z H, Gu J Q, Tian Z, Singh R, Zhang S A, Han J G, Zhang W L 2011 Appl. Phys. Lett. 98 121114Google Scholar

    [64]

    Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nat. Photonics 3 148Google Scholar

    [65]

    Horestani A K, Fumeaux C, Al-Sarawi S F, Abbott D 2013 IEEE Sens. J. 13 1153Google Scholar

    [66]

    Cao P F, Wu Y Y, Wang Z L, Li Y, Zhang J, Liu Q, Cheng L, Niu T M 2020 IEEE Access 8 219525Google Scholar

    [67]

    Taleb F, Al-Naib I, Koch M 2020 Sensors 20 2265Google Scholar

    [68]

    Karmakar S, Kumar D, Varshney R K, Chowdhury D R 2020 J. Phys. D: Appl. Phys. 53 415101Google Scholar

    [69]

    Wang J L, Wang X, Han D 2019 J. Infrared Millimeter Waves 38 722Google Scholar

    [70]

    Wang G Q, Zhu F J, Lang T T, Liu J J, Hong Z, Qin J Y 2021 Nanoscale Res. Lett. 16 109Google Scholar

    [71]

    Xu W D, Xie L J, Zhu J F, Tang L H, Singh R, Wang C, Ma Y G, Chen H T, Ying Y B 2019 Carbon 141 247Google Scholar

    [72]

    Ma Y, Chen Q, Khalid A, Saha S C, Cumming D R S 2010 Opt. Lett. 35 469Google Scholar

    [73]

    Wang J, Fan C, He J, Ding P, Liang E, Xue Q 2013 Opt. Express 21 2236Google Scholar

    [74]

    Yang M S, Zhang Z, Liang L J, Yan X, Wei D Q, Song X X, Zhang H T, Lu Y Y, Wang M, Yao J Q 2019 Appl. Opt. 58 6268Google Scholar

    [75]

    Bui T S, Dao T D, Dang L H, Vu L D, Ohi A, Nabatame T, Lee Y P, Nagao T, Hoang C V 2016 Sci. Rep. 6 32123Google Scholar

    [76]

    Liu W, Fan F, Chang S, Hou J, Chen M, Wang X, Bai J 2017 Opt. Commun. 405 17Google Scholar

    [77]

    Lee D K, Kang J H, Kwon J, Lee J S, Lee S, Woo D H, Kim J H, Song C S, Park Q H, Seo M 2017 Sci. Rep. 7 8146Google Scholar

    [78]

    Cui Z, Wang Y, Yue L, Zhao X, Zhang D, Yao Z, Zhang X, Hou L, Zhang X 2021 IEEE Trans. Terahertz Sci. 11 626Google Scholar

    [79]

    Yu Y B, Lin Y S 2019 Results Phys. 13 102321Google Scholar

    [80]

    Wang Y, Cui Z, Zhu D, Yue L 2019 Phys. Status Solidi A 216 1800940Google Scholar

    [81]

    Zhao L, Liu H, He Z, Dong S 2018 Opt. Express 26 12838Google Scholar

    [82]

    Keller J, Maissen C, Haase J, Paravicini-Bagliani G L, Valmorra F, Palomo J, Mangeney J, Tignon J, Dhillon S S, Scalari G, Faist J 2017 Adv. Opt. Mater. 5 1600884Google Scholar

    [83]

    Wang G Z, Wang B X 2015 J. Lightwave Technol. 33 5151Google Scholar

    [84]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111Google Scholar

    [85]

    Lei D Y, Appavoo K, Ligmajer F, Sonnefraud Y, Haglund R F, Maier S A 2015 ACS Photonics 2 1306Google Scholar

    [86]

    Tittl A, Michel A K, Schaferling M, Yin X, Gholipour B, Cui L, Wuttig M, Taubner T, Neubrech F, Giessen H 2015 Adv. Mater. 27 4597Google Scholar

    [87]

    Zhong M 2020 Opt. Laser Technol. 127 106142Google Scholar

    [88]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar

    [89]

    Jia R, Gao Y, Xu Q, Feng X, Wang Q, Gu J, Tian Z, Ouyang C, Han J, Zhang W 2020 Adv. Opt. Mater. 9 2001403Google Scholar

    [90]

    Li L, Jun Cui T, Ji W, Liu S, Ding J, Wan X, Bo Li Y, Jiang M, Qiu C W, Zhang S 2017 Nat. Commun. 8 197Google Scholar

    [91]

    Liu W, Yang Q, Xu Q, Jiang X, Wu T, Wang K, Gu J, Han J, Zhang W 2021 Adv. Opt. Mater. 9 2100506Google Scholar

    [92]

    Ma Q, Cui T J 2020 PhotoniX 1 1Google Scholar

    [93]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [94]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [95]

    Zhang H, Zhang X, Xu Q, Tian C, Wang Q, Xu Y, Li Y, Gu J, Tian Z, Ouyang C, Zhang X, Hu C, Han J, Zhang W 2017 Adv. Opt. Mater. 6 1700773Google Scholar

    [96]

    Zhang Z, Zhang X, Xu Y, Chen X, Feng X, Liu M, Xu Q, Kang M, Han J, Zhang W 2020 Adv. Opt. Mater. 9 2001620Google Scholar

    [97]

    Ako R T, Lee W S L, Atakaramians S, Bhaskaran M, Sriram S, Withayachumnankul W 2020 APL Photonics 5 046101Google Scholar

    [98]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 181111Google Scholar

    [99]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522Google Scholar

    [100]

    Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908Google Scholar

    [101]

    Lee S, Kim W T, Kang J H, Kang B J, Rotermund F, Park Q H 2019 ACS Appl. Mater. Interfaces 11 7655Google Scholar

    [102]

    Liu W, Chen S, Li Z, Cheng H, Yu P, Li J, Tian J 2015 Opt. Lett. 40 3185Google Scholar

    [103]

    Zhao J, Ouyang C, Chen X, Li Y, Zhang C, Feng L, Jin B, Ma J, Liu Y, Zhang S, Xu Q, Han J, Zhang W 2021 Opt. Express 29 21738Google Scholar

    [104]

    Yin X, Schaferling M, Michel A K, Tittl A, Wuttig M, Taubner T, Giessen H 2015 Nano. Lett. 15 4255Google Scholar

    [105]

    Yin X, Steinle T, Huang L, Taubner T, Wuttig M, Zentgraf T, Giessen H 2017 Light Sci. Appl. 6 e17016Google Scholar

    [106]

    Qu Y, Li Q, Du K, Cai L, Lu J, Qiu M 2017 Laser Photonics Rev. 11 1700091Google Scholar

    [107]

    Chen Y G, Kao T S, Ng B, Li X, Luo X G, Luk'yanchuk B, Maier S A, Hong M H 2013 Opt. Express 21 13691Google Scholar

    [108]

    Chaudhary K, Tamagnone M, Yin X, Spagele C M, Oscurato S L, Li J, Persch C, Li R, Rubin N A, Jauregui L A, Watanabe K, Taniguchi T, Kim P, Wuttig M, Edgar J H, Ambrosio A, Capasso F 2019 Nat. Commun. 10 4487Google Scholar

    [109]

    Xu Z, Li Q, Du K, Long S, Yang Y, Cao X, Luo H, Zhu H, Ghosh P, Shen W, Qiu M 2019 Laser Photonics Rev. 14 1900162Google Scholar

    [110]

    Gholipour B, Zhang J, MacDonald K F, Hewak D W, Zheludev N I 2013 Adv. Mater. 25 3050Google Scholar

    [111]

    Gutruf P, Zou C, Withayachumnankul W, Bhaskaran M, Sriram S, Fumeaux C 2016 ACS Nano 10 133Google Scholar

    [112]

    Qin J, Deng L, Kang T, Nie L, Feng H, Wang H, Yang R, Liang X, Tang T, Shen J, Li C, Wang H, Luo Y, Armelles G, Bi L 2020 ACS Nano 14 2808Google Scholar

    [113]

    Yang X, Tian Z, Chen X, Hu M, Yi Z, Ouyang C, Gu J, Han J, Zhang W 2020 Appl. Phys. Lett. 116 241106Google Scholar

    [114]

    Li T, Fan F, Ji Y, Tan Z, Mu Q, Chang S 2019 Opt. Lett. 45 1Google Scholar

    [115]

    Liu X, Wang Q, Zhang X, Li H, Xu Q, Xu Y, Chen X, Li S, Liu M, Tian Z, Zhang C, Zou C, Han J, Zhang W 2019 Adv. Opt. Mater. 7 1900175Google Scholar

    [116]

    Mu Q, Fan F, Chen S, Xu S, Xiong C, Zhang X, Wang X, Chang S 2019 Photonics Res. 7 325Google Scholar

    [117]

    Cui T, Bai B, Sun H B 2019 Adv. Funct. Mater. 29 1806692Google Scholar

    [118]

    Che Y, Wang X, Song Q, Zhu Y, Xiao S 2020 Nanophotonics 9 4407Google Scholar

    [119]

    Tseng M L, Yang J, Semmlinger M, Zhang C, Nordlander P, Halas N J 2017 Nano Lett. 17 6034Google Scholar

    [120]

    Liu X, Padilla W J 2013 Adv. Opt. Mater. 1 559Google Scholar

    [121]

    Roy T, Zhang S, Jung I W, Troccoli M, Capasso F, Lopez D 2018 APL Photonics 3 021302Google Scholar

    [122]

    Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraji-Dana M, Faraon A 2018 Nat. Commun. 9 812Google Scholar

    [123]

    Zhu W M, Liu A Q, Zhang X M, Tsai D P, Bourouina T, Teng J H, Zhang X H, Guo H C, Tanoto H, Mei T, Lo G Q, Kwong D L 2011 Adv. Mater. 23 1792Google Scholar

    [124]

    Reeves J B, Jayne R K, Stark T J, Barrett L K, White A E, Bishop D J 2018 Nano Lett. 18 2802Google Scholar

    [125]

    Jiang M, Hu F, Qian Y, Zhang L, Zhang W, Han J 2020 J. Phys. D: Appl. Phys. 53 065107Google Scholar

    [126]

    Shah S I H, Sarkar A, Phon R, Lim S 2020 Adv. Opt. Mater. 8 2001180Google Scholar

    [127]

    Fan F, Gu W H, Wang X H, Chang S J 2013 Appl. Phys. Lett. 102 121113Google Scholar

    [128]

    Xie L, Gao W, Shu J, Ying Y, Kono J 2015 Sci. Rep. 5 8671Google Scholar

    [129]

    Park S J, Cha S H, Shin G A, Ahn Y H 2017 Biomed. Opt. Express 8 3551Google Scholar

    [130]

    Ahmadivand A, Gerislioglu B, Tomitaka A, Manickam P, Kaushik A, Bhansali S, Nair M, Pala N 2018 Biomed. Opt. Express 9 373Google Scholar

    [131]

    Lan F, Luo F, Mazumder P, Yang Z, Meng L, Bao Z, Zhou J, Zhang Y, Liang S, Shi Z, Khan A R, Zhang Z, Wang L, Yin J, Zeng H 2019 Biomed. Opt. Express 10 3789Google Scholar

    [132]

    Yang M, Liang L, Zhang Z, Xin Y, Wei D, Song X, Zhang H, Lu Y, Wang M, Zhang M, Wang T, Yao J 2019 Opt. Express 27 19520Google Scholar

    [133]

    Zhou H, Yang C, Hu D, Li D, Hui X, Zhang F, Chen M, Mu X 2019 Appl. Phys. Lett. 115 143507Google Scholar

    [134]

    Huang S T, Hsu S F, Tang K Y, Yen T J, Yao D J 2020 Micromachines 11 74Google Scholar

    [135]

    Nie P, Zhu D, Cui Z, Qu F, Lin L, Wang Y 2020 Sens. Actuators, B 307 127642Google Scholar

    [136]

    Qi Y, Zhang Y, Liu C, Zhang T, Zhang B, Wang L, Deng X, Bai Y, Wang X 2020 Results Phys. 16 103012Google Scholar

    [137]

    Wang R, Xu W, Chen D, Zhou R, Wang Q, Gao W, Kono J, Xie L, Ying Y 2020 ACS Appl. Mater. Interfaces 12 40629Google Scholar

    [138]

    Wang Y, Cui Z, Zhang X, Zhang X, Zhu Y, Chen S, Hu H 2020 ACS Appl. Mater. Interfaces 12 52082Google Scholar

    [139]

    Wang Y, Zhu D, Cui Z, Yue L, Zhang X, Hou L, Zhang K, Hu H 2020 IEEE Trans. Terahertz Sci. Technol. 10 599Google Scholar

    [140]

    Yue L, Wang Y, Cui Z, Zhang X, Zhu Y, Zhang X, Chen S, Wang X, Zhang K 2021 Opt. Express 29 13563Google Scholar

    [141]

    Hou X F, Chen X Y, Li T M, Li Y Y, Tian Z, Wang M W 2021 Opt. Mater. Express 11 2268Google Scholar

    [142]

    Tang M J, Zhang M K, Yan S H, Xia L P, Yang Z B, Du C L, Cui H L, Wei D S 2018 PLos One 13 e0191515Google Scholar

    [143]

    He Z H, Li L Q, Ma H Q, Pu L H, Xu H, Yi Z, Cao X L, Cui W 2021 Results Phys. 21 103795Google Scholar

    [144]

    Miyamaru F, Hattori K, Shiraga K, Kawashima S, Suga S, Nishida T, Takeda M W, Ogawa Y 2014 J. Infrared Millimeter Terahertz Waves 35 198Google Scholar

    [145]

    Cong L Q, Tan S Y, Yahiaoui R, Yan F P, Zhang W L, Singh R 2015 Appl. Phys. Lett. 106 31107Google Scholar

    [146]

    Al-Naib I 2017 IEEE J. Sel. Top. Quantum Electron. 23 4700405Google Scholar

    [147]

    Zhang C H, Liang L J, Ding L, Jin B B, Hou Y Y, Li C, Jiang L, Liu W W, Hu W, Lu Y Q, Kang L, Xu W W, Chen J, Wu P H 2016 Appl. Phys. Lett. 108 241105Google Scholar

    [148]

    Chen M, Singh L, Xu N N, Singh R, Zhang W L, Xie L J 2017 Opt. Express 25 14089Google Scholar

    [149]

    Liu Y, Tang M J, Xia L P, Yu W J, Peng J, Zhang Y, de la Chapelle M L, Yang K, Cui H L, Fu W L 2017 RSC Adv. 7 53963Google Scholar

    [150]

    Xu W D, Xie L J, Zhu J F, Wang W, Ye Z Z, Ma Y G, Tsai C Y, Chen S M, Ying Y B 2017 Food Chem. 218 330Google Scholar

    [151]

    Cheng D, He X, Huang X L, Zhang B, Liu G, Shu G X, Fang C, Wang J X, Luo Y 2018 Int. J. RF Microwave Comput. Aided Eng. 28 e21448Google Scholar

    [152]

    Kim H S, Cha S H, Roy B, Kim S, Ahn Y H 2018 Opt. Express 26 33575Google Scholar

    [153]

    Qin B, Li Z, Hu F, Hu C, Chen T, Zhang H, Zhao Y 2018 IEEE Trans. Terahertz Sci. Technol. 8 149Google Scholar

    [154]

    Yang Y, Xu D, Zhang W 2018 Opt. Express 26 31589Google Scholar

    [155]

    Zhang H, Li Z, Hu F R, Qin B Y, Zhao Y H, Chen T, Hu C 2018 Spectrosc. Lett. 51 174Google Scholar

    [156]

    Jauregui-Lopez I, Rodriguez-Ulibarri P, Kuznetsov S A, Quemada C, Beruete M 2019 Sensors 19 4396Google Scholar

    [157]

    Nejad H E, Mir A, Armani A 2019 IEEE Sens. J. 19 4874Google Scholar

    [158]

    Yan X, Yang M S, Zhang Z, Liang L J, Wei D Q, Wang M, Zhang M J, Wang T, Liu L H, Xie J H, Yao J Q 2019 Biosens. Bioelectron. 126 485Google Scholar

    [159]

    Zhao X, Lin Z Q, Wang Y X, Yang X, Yang K, Zhang Y, Peng J, de la Chapelle M L, Zhang L Q, Fu W L 2019 Biomed. Opt. Express 10 1196Google Scholar

    [160]

    Al-Naib I 2020 Crystals 10 372Google Scholar

    [161]

    Cheng D, Zhang B, Liu G, Wang J X, Luo Y 2020 Int. J. Numer. Modell. Electron. 33 e2529Google Scholar

    [162]

    Gu H Y, Shi C J, Wu X, Peng Y 2020 Analyst 145 6705Google Scholar

    [163]

    Liu L, Li T F, Liu Z X, Fan F, Yuan H F, Zhang Z Y, Chang S J, Zhang X D 2020 Biomed. Opt. Express 11 2416Google Scholar

    [164]

    Ou H L, Lu F Y, Xu Z F, Lin Y S 2020 Nanomaterials 10 1038Google Scholar

    [165]

    Tang M J, Xia L P, Wei D S, Yan S H, Zhang M K, Yang Z B, Wang H B, Du C L, Cui H L 2020 Spectrochim. Acta, Part A 228 117736Google Scholar

    [166]

    Zhang Y X, Ye Y X, Song X X, Yang M S, Ren Y P, Ren X D, Liang L J, Yao J Q 2020 Mater. Res. Express 7 095801Google Scholar

    [167]

    Zhao R, Zou B, Zhang G L, Xu D Q, Yang Y P 2020 J. Phys. D: Appl. Phys. 53 195401Google Scholar

    [168]

    Zhong Y J, Du L H, Liu Q, Zhu L G, Zhang B 2020 Opt. Commun. 465 125508Google Scholar

    [169]

    Yang J, Qi L M, Li B, Wu L Q, Shi D, Uqaili J A, Tao X 2021 Results Phys. 26 104332Google Scholar

    [170]

    Qin J Y, Xie L J, Ying Y B 2016 Food Chem. 211 300Google Scholar

    [171]

    Tao H, Chieffo L R, Brenckle M A, Siebert S M, Liu M K, Strikwerda A C, Fan K B, Kaplan D L, Zhang X, Averitt R D, Omenetto F C 2011 Adv. Mater. 23 3197Google Scholar

    [172]

    Wang Y, Cui Z J, Zhu D Y, Wang X M, Chen S G, Nie P C 2019 Opt. Express 27 14133Google Scholar

    [173]

    Hong J T, Jun S W, Cha S H, Park J Y, Lee S, Shin G A, Ahn Y H 2018 Sci. Rep. 8 15536Google Scholar

    [174]

    Wang Y L, Han Z H, Du Y, Qin J Y 2021 Nanophotonics 10 1295Google Scholar

    [175]

    Zhu J F, Jiang S, Xie Y N, Li F J, Du L H, Meng K, Zhu L G, Zhou J 2020 Opt. Lett. 45 2335Google Scholar

    [176]

    Li Q, Cong L Q, Singh R J, Xu N N, Cao W, Zhang X Q, Tian Z, Du L L, Han J G, Zhang W L 2016 Nanoscale 8 17278Google Scholar

    [177]

    Keshavarz A, Vafapour Z 2019 IEEE Sens. J. 19 5161Google Scholar

    [178]

    Asgari S, Granpayeh N, Fabritius T 2020 Opt. Commun. 474 126080Google Scholar

    [179]

    Cai Y J, Guo Y B, Zhou Y G, Wang Y, Zhu J F, Chen C Y 2020 J. Phys. D: Appl. Phys. 53 015105Google Scholar

    [180]

    Amin M, Siddiqui O, Abutarboush H, Farhat M, Ramzan R 2021 Carbon 176 580Google Scholar

    [181]

    Lee S H, Choe J H, Kim C, Bae S, Kim J S, Park Q H, Seo M 2020 Sens. Actuators, B 310 127841Google Scholar

    [182]

    Lee D K, Kang J H, Lee J S, Kim H S, Kim C, Kim J H, Lee T, Son J H, Park Q H, Seo M 2015 Sci. Rep. 5 15459Google Scholar

    [183]

    Han B, Han Z, Qin J, Wang Y, Zhao Z 2019 Talanta 192 1Google Scholar

    [184]

    Wang R, Wu Q, Zhang Y, Xu X, Zhang Q, Zhao W, Zhang B, Cai W, Yao J, Xu J 2019 Appl. Phys. Lett. 114 121102Google Scholar

    [185]

    Xu W, Xie L, Zhu J, Xu X, Ye Z, Wang C, Ma Y, Ying Y 2016 ACS Photonics 3 2308Google Scholar

    [186]

    Wu X, Quan B, Pan X, Xu X, Lu X, Gu C, Wang L 2013 Biosens. Bioelectron. 42 626Google Scholar

    [187]

    Cheng R J, Xu L, Yu X, Zou L E, Shen Y, Deng X H 2020 Opt. Commun. 473 125850Google Scholar

    [188]

    Yang K, Yu W J, Huang G R, Zhou J, Yang X, Fu W L 2020 RSC Adv. 10 26824Google Scholar

    [189]

    Ahmadivand A, Gerislioglu B, Ramezani Z, Kaushik A, Manickam P, Ghoreishi S A 2021 Biosens. Bioelectron. 177 112971Google Scholar

    [190]

    Yang K, Li J N, de la Chapelle M L, Huang G R, Wang Y X, Zhang J B, Xu D G, Yao J Q, Yang X, Fu W L 2021 Biosens. Bioelectron. 175 112874Google Scholar

    [191]

    Zhan X Y, Yang S, Huang G R, Yang L H, Zhang Y, Tian H Y, Xie F X, de la Chapelle M L, Yang X, Fu W L 2021 Biosens. Bioelectron. 188 113314Google Scholar

    [192]

    Park S J, Hong J T, Choi S J, Kim H S, Park W K, Han S T, Park J Y, Lee S, Kim D S, Ahn Y H 2014 Sci. Rep. 4 4988Google Scholar

    [193]

    Ahmadivand A, Gerislioglu B, Manickam P, Kaushik A, Bhansali S, Nair M, Pala N 2017 ACS Sens. 2 1359Google Scholar

    [194]

    Liu K, Zhang R, Liu Y, Chen X, Li K, Pickwell-Macpherson E 2021 Biomed. Opt. Express 12 1559Google Scholar

    [195]

    Hu X, Xu G, Wen L, Wang H, Zhao Y, Zhang Y, Cumming D R S, Chen Q 2016 Laser Photonics Rev. 10 962Google Scholar

    [196]

    Kim H K, Lee D, Lim S 2016 Sensors 16 1246Google Scholar

    [197]

    Hu F, Guo E, Xu X, Li P, Xu X, Yin S, Wang Y, Chen T, Yin X, Zhang W 2017 Opt. Commun. 388 62Google Scholar

    [198]

    Zhao X, Zhang M, Wei D, Wang Y, Yan S, Liu M, Yang X, Yang K, Cui H L, Fu W 2017 Biomed. Opt. Express 8 4427Google Scholar

    [199]

    Salim A, Lim S 2018 Sensors 18 232Google Scholar

    [200]

    Govind G, Akhtar M J 2019 IEEE Sens. J. 19 11900Google Scholar

    [201]

    He G, Lan F, Mazumder P, Wang L, Zeng H, Yang Z, Yin J, Shi Z, Xiao B 2019 IEEE Photonics and Electromagnetics Research Symposium Xiamen, China, December 17−20, 2019 p260

    [202]

    Serita K, Murakami H, Kawayama I, Tonouchi M 2019 Photonics 6 12Google Scholar

    [203]

    Alfihed S, Holzman J F, Foulds I G 2020 Biosens. Bioelectron. 165 112393Google Scholar

    [204]

    Fan F, Zhong C, Zhang Z, Li S, Chang S 2021 Nanoscale Adv. 3 4790Google Scholar

    [205]

    Xu J, Liao D, Gupta M, Zhu Y, Zhuang S, Singh R, Chen L 2021 Adv. Opt. Mater. 9 2100024Google Scholar

    [206]

    Zhou R, Wang C, Huang Y, Huang K, Wang Y, Xu W, Xie L, Ying Y 2021 Biosens. Bioelectron. 188 113336Google Scholar

    [207]

    Shih K, Pitchappa P, Jin L, Chen C H, Singh R, Lee C 2018 Appl. Phys. Lett. 113 071105Google Scholar

    [208]

    Geng Z, Zhang X, Fan Z, Lv X, Chen H 2017 Sci. Rep. 7 16378Google Scholar

    [209]

    Zhou J, Zhao X, Huang G, Yang X, Zhang Y, Zhan X, Tian H, Xiong Y, Wang Y, Fu W 2021 ACS Sens. 6 1884Google Scholar

    [210]

    Zhang Z Y, Fan F, Li T F, Ji Y Y, Chang S J 2020 Chin. Phys. B 29 078707Google Scholar

    [211]

    Zhang Z, Zhong C, Fan F, Liu G, Chang S 2021 Sens. Actuators, B 330 129315Google Scholar

    [212]

    Duan G W, Schalch J, Zhao X G, Zhang J D, Averitt R D, Zhang X 2018 Sens. Actuators, A 280 303Google Scholar

    [213]

    Lee D K, Kim G, Kim C, Jhon Y M, Kim J H, Lee T, Son J H, Seo M 2016 IEEE Trans. Terahertz Sci. Technol. 6 389Google Scholar

    [214]

    Lee S H, Shin S, Roh Y, Oh S J, Lee S H, Song H S, Ryu Y S, Kim Y K, Seo M 2020 Biosens. Bioelectron. 170 112663Google Scholar

    [215]

    Jahani Y, Arvelo E R, Yesilkoy F, Koshelev K, Cianciaruso C, De Palma M, Kivshar Y, Altug H 2021 Nat. Commun. 12 3246Google Scholar

    [216]

    John-Herpin A, Kavungal D, von Mucke L, Altug H 2021 Adv. Mater. 33 2006054Google Scholar

  • [1] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性.  , 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [2] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全. 基于石墨烯等离激元太赫兹结构的传感及慢光应用.  , 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [3] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面.  , 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [4] 向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 利用样品阱实现太赫兹超材料的超微量传感.  , 2023, 72(12): 128701. doi: 10.7498/aps.72.20230080
    [5] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料.  , 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [6] 杨泽浩, 刘紫威, 杨博, 张成龙, 蔡宸, 祁志美. 基于多孔金膜的太赫兹导模共振生化传感特性仿真.  , 2022, 71(21): 218701. doi: 10.7498/aps.71.20220722
    [7] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器.  , 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [8] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器.  , 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [9] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器.  , 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [10] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性.  , 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [11] 王鑫, 王俊林. 太赫兹波段电磁超材料吸波器折射率传感特性.  , 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [12] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束.  , 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [13] 王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青. 太赫兹液晶材料与器件研究进展.  , 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [14] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器.  , 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [15] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控.  , 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [16] 郭畅, 张岩. 利用波矢滤波超表面实现超衍射成像.  , 2017, 66(14): 147804. doi: 10.7498/aps.66.147804
    [17] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体.  , 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [18] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器.  , 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [19] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究.  , 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [20] 邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名. 基于超材料的偏振不敏感太赫兹宽带吸波体设计.  , 2014, 63(17): 178103. doi: 10.7498/aps.63.178103
计量
  • 文章访问数:  13762
  • PDF下载量:  567
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-19
  • 修回日期:  2021-10-18
  • 上网日期:  2021-11-08
  • 刊出日期:  2021-12-20

/

返回文章
返回
Baidu
map