-
In this paper, we propose a dual-polarization ultra-wideband metasurface with half-reflection and half-transmission based on a double-split-ring (DSR) structure operating in a terahertz (THz) frequency range. The designed metasurface can simultaneously control the circularly polarized (CP) wave and linearly polarized (LP) wave in reflection mode and transmission mode, covering an extensive THz frequency range. The unit-cell architecture of the metasurface consists of a periodic arrangement of the DSR structure made of metal, which is affixed to an ultra-thin dielectric substrate. By manipulating the size and rotation direction of the DSR structure, we achieve full phase coverage of 0–2π of the orthogonally polarized LP wave and CP wave across a frequency span of 0.3–1.2 THz, encompassing transmission and reflection scenarios. The relative bandwidths of the corresponding orthogonal LP wave and CP wave with an average amplitude of 0.45 reach 86% and 120%, respectively. Specifically, through numerical simulations, we demonstrate that the designed metasurface has the ability to achieve THz beam deflection and vortex beam generation while reflecting and transmitting LP wave and CP wave. The proposed dual-polarization ultra-wideband metasurface holds great promise for various applications in the terahertz frequency range. These findings pave the way for the development of flexible and versatile THz devices with expanded functionality, thereby opening up new possibilities for wavefront manipulation in metasurfaces.
-
Keywords:
- terahertz /
- metasurface /
- circular polarization /
- linear polarization /
- beam deflection /
- vortex beam
[1] 郝宏刚, 冉雪红, 郑森, 唐逸豪, 阮巍 2022 电子与信息学报 44 114284741Google Scholar
Hao H G, Ran X H, Zheng S, Tang Y H, Ruan W 2022 J. Electron. Inform. Technol. 44 114284741Google Scholar
[2] 刘靖宇, 李文宇, 刘智星, 舒敬懿, 赵国忠 2022 71 230701Google Scholar
Liu J Y, Li W Y, Liu Z X, Shu J Y, Zhao G Z 2022 Acta Phys. Sin. 71 230701Google Scholar
[3] 王俊瑶, 樊俊鹏, 舒好, 刘畅, 程用志 2021 光电工程 48 200319Google Scholar
Wang J Y, Fan J P, Shu H, Liu C, Cheng Y Z 2021 Opto-Electronic Eng. 48 200319Google Scholar
[4] Fan J P, Cheng Y Z 2020 J. Phys. D. Appl. Phys. 53 025109Google Scholar
[5] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 33Google Scholar
[6] He B, Liu J Q, Cheng Y Z, Chen F, Luo H, Li X C 2022 Physica E 144 115373Google Scholar
[7] 李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓 2021 70 188701Google Scholar
Li G Q, Shi H Y, Liu K, Li B L, Yi J J, Zhang A X, Xu Z 2021 Acta Phys. Sin. 70 188701Google Scholar
[8] 周璐, 赵国忠, 李晓楠 2019 68 108701Google Scholar
Zhou L, Zhao G Z, Li X N 2019 Acta Phys. Sin. 68 108701Google Scholar
[9] Li N, Zhao J, Tang P, Cheng Y 2023 Phys. Status Solidi B 5 2300104
[10] Cheng Y Z, Qian Y J, Luo H, Chen F, Cheng Z 2023 Physica E 146 115527Google Scholar
[11] Liu M, Huo P, Zhu W, Zhang C, Zhang S, Song M, Zhang S, Zhou Q, Chen L, Lezec H J, Agrawal A, Lu Y, Xu T 2021 Nat. Commun. 12 2230Google Scholar
[12] Hou H S, Wang G M, Li H P, Guo W L, Cai T 2020 Opt. Express 19 27575
[13] Zhu X Z, Cheng Y Z, Chen F, Luo H, Ling W 2022 J. Opt. Soc. Am. B 39 705Google Scholar
[14] Cai T, Wang G M, Tang S W, Xu H X, Duan J W, Guo H J, Guan F X, Sun S L, He Q, Zhou L 2017 Phys. Rev. Appl. 8 034033Google Scholar
[15] Wu R Y, Zhang L, Bao L, Wu L W, Ma Q, Bai G D, Wu H T, Cui T J 2019 Adv. Optical Mater. 7 1801429Google Scholar
[16] Fan J P, Cheng Y Z, He B 2021 J. Phys. D. Appl. Phys. 54 115101Google Scholar
[17] Li J, Cheng Y Z, Li X C 2022 Adv. Theor. Simul. 5 2200151Google Scholar
[18] Zhang C B, Wang G M, Xu H X, Zhang X, Li H P 2020 Adv. Opt. Mater. 8 1901719Google Scholar
[19] Zhang H C, Zhang X, Ma X L, Pu M B, Huang C, Zhang Z J, Wang Y X, Guo Y H, Luo J, Luo X G 2022 Opt. Express 30 36949Google Scholar
[20] Mao R Q, Wang G M, Cai T, Liu K, Wang D P, Wu B 2020 Opt. Express 21 31216
[21] Yang D R, Cheng Y Z, Luo H, Chen F, Wu, 2023 Adv. Theor. Simul. 4 2300162
[22] Zhao J, Li N, Cheng Y 2023 Opt. Commun. 536 129372Google Scholar
[23] Zhao Y, Alù A 2011 Phys. Rev. B 84 205428Google Scholar
[24] Yang L J, Li J S 2022 Opt. Eng. 61 047105
[25] Liu J Q, Cheng Y Z, Chen F, Luo H, Li X C 2023 J. Opt. Soc. Am. B 40 441Google Scholar
[26] 刘佳琪, 程用志, 陈浮, 罗辉, 李享成 2023 红外与激光工程 52 20220377Google Scholar
Liu J Q, Cheng Y Z, Chen F, Luo H 2023 Infrared Laser Engineer. 52 20220377Google Scholar
-
图 1 MS示意图 (a), (b)单元结构前视图和透视图; LPy波垂直入射下在(c) 0.4 THz, (d) 0.8 THz和(e) 1.1 THz处单元结构表面电流分布
Figure 1. Schematic diagram of MS: (a), (b) Front and perspective view of the unit-cell structure; the surface current distributions of the unit-cell structure under the normal incident LPy wave at (c) 0.4 THz, (d) 0.8 THz and (e) 1.1 THz.
图 2 入射LP波和CP波通过单层MS转化成正交偏振波的(a1), (c1)反射系数(rxy, ryx, r–+, r+–)和(b1), (d1)透射系数(txy, tyx, t–+, t+–)以及(a2)—(d2)对应的相位
Figure 2. Reflection coefficient (rxy, ryx, r–+, r+–) (a1), (c1) and transmission coefficient (txy, tyx, t–+, t+–) (b1), (d1) of the orthogonal polarization wave for the normal incident LP wave and CP wave through the designed single-layer MS, and the corresponding phase (a2)–(d2).
图 3 在0.5 THz, 8个不同单元结构的(a), (c)反射和透射(b), (d)正交LP和CP波的幅值和相位 (a), (b) LP波; (c), (d) CP波; 插图是一个具有(a), (b)传输相位和(c), (d)几何相位梯度分布的8个不同单元MS超单元结构
Figure 3. Amplitude and phase of the (a), (c) reflected and (b), (d) transmitted orthogonal LP and CP waves for 8 different unit-cells at 0.5 THz: (a), (b) LP wave; (c), (d) CP wave. The inset shows a supercell of the MS with 8 unit-cells with gradient distributions of (a), (b) propagation phase and (c), (d) geometric phase.
图 6 仿真得到的不同频率下正交LP波和CP波的(a), (c)反射角和(b), (d)折射角 (a), (b) LP波; (c), (d) CP波; 虚线是对应的理论计算得到的依赖于频率的正交LP和CP波反射和折射角
Figure 6. Simulated (a), (c) reflection and (b), (d) refraction angles of the orthogonal LP waves and CP waves via different frequencies: (a), (b) LP waves; (c), (d) CP waves. Dash lines indicate the theoretical calculation frequency-dependent reflection and refraction angles of the orthogonal LP and CP waves.
图 8 在0.8 THz垂直入射的LP波通过设计的单层MS后拓扑电荷数为(a1)—(a4) l = +1, (b1)—(b4) l = –1, (c1)—(c4) l = +2, (d1)—(d4) l = –2的反射和透射涡旋光束的电场强度分布和对应的OAM模式纯度分布 (a1)—(d1)反射涡旋光束的电场强度分布; (a2)—(d2)透射涡旋光束的电场强度分布; (a3)—(d3)反射涡旋光束的OAM模式纯度分布; (a4)—(d4)透射涡旋光束的OAM模式纯度分布
Figure 8. Electric field intensity and the corresponding OAM mode purity distributions of the reflected and transmitted vortex beams with a topological charge of (a1)–(a4) l = +1, (b1)–(b4) l = –1, (c1)–(c4) l = +2 and (d1)–(d4) l = –2 for the normal incident LP wave at 0.8 THz: (a1)–(d1) Electric field intensity of reflected vortex beams; (a2)–(d2) electric field intensity of transmitted vortex beams; (a3)–(d3) OAM mode purity distributions of reflected vortex beams; (a4)–(d4) OAM mode purity distributions of transmitted vortex beams.
图 9 在0.4 THz垂直入射的CP波通过设计的单层MS后拓扑电荷数为(a1)—(a4)l = +1, (b1)—(b4) l = –1, (c1)—(c4) l = +2和(d1)—(d4) l = –2的反射和透射涡旋光束电场强度分布和对应的OAM模式纯度分布 (a1)—(d1)反射涡旋光束的电场强度分布; (a2)—(d2)透射涡旋光束的电场强度分布; (a3)—(d3)反射涡旋光束的OAM模式纯度分布; (a4)—(d4)透射涡旋光束的OAM模式纯度分布
Figure 9. Electric field intensity and the corresponding OAM mode purity distributions of the reflected and transmitted vortex beams with a topological charge of (a1)–(a4) l = +1, (b1)–(b4) l = –1, (c1)–(c4) l = +2 and (d1)–(d4) l = –2 for the normal incident CP wave at 0.4 THz: (a1)–(d1) Electric field intensity of reflected vortex beams; (a2)–(d2) electric field intensity of transmitted vortex beams; (a3)–(d3) OAM mode purity distributions of reflected vortex beams; (a4)–(d4) OAM mode purity distributions of transmitted vortex beams.
表 1 本文提出的MS与之前提出的结构性能对比
Table 1. Performance comparison of the proposed metasurface with the previous ones.
-
[1] 郝宏刚, 冉雪红, 郑森, 唐逸豪, 阮巍 2022 电子与信息学报 44 114284741Google Scholar
Hao H G, Ran X H, Zheng S, Tang Y H, Ruan W 2022 J. Electron. Inform. Technol. 44 114284741Google Scholar
[2] 刘靖宇, 李文宇, 刘智星, 舒敬懿, 赵国忠 2022 71 230701Google Scholar
Liu J Y, Li W Y, Liu Z X, Shu J Y, Zhao G Z 2022 Acta Phys. Sin. 71 230701Google Scholar
[3] 王俊瑶, 樊俊鹏, 舒好, 刘畅, 程用志 2021 光电工程 48 200319Google Scholar
Wang J Y, Fan J P, Shu H, Liu C, Cheng Y Z 2021 Opto-Electronic Eng. 48 200319Google Scholar
[4] Fan J P, Cheng Y Z 2020 J. Phys. D. Appl. Phys. 53 025109Google Scholar
[5] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 33Google Scholar
[6] He B, Liu J Q, Cheng Y Z, Chen F, Luo H, Li X C 2022 Physica E 144 115373Google Scholar
[7] 李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓 2021 70 188701Google Scholar
Li G Q, Shi H Y, Liu K, Li B L, Yi J J, Zhang A X, Xu Z 2021 Acta Phys. Sin. 70 188701Google Scholar
[8] 周璐, 赵国忠, 李晓楠 2019 68 108701Google Scholar
Zhou L, Zhao G Z, Li X N 2019 Acta Phys. Sin. 68 108701Google Scholar
[9] Li N, Zhao J, Tang P, Cheng Y 2023 Phys. Status Solidi B 5 2300104
[10] Cheng Y Z, Qian Y J, Luo H, Chen F, Cheng Z 2023 Physica E 146 115527Google Scholar
[11] Liu M, Huo P, Zhu W, Zhang C, Zhang S, Song M, Zhang S, Zhou Q, Chen L, Lezec H J, Agrawal A, Lu Y, Xu T 2021 Nat. Commun. 12 2230Google Scholar
[12] Hou H S, Wang G M, Li H P, Guo W L, Cai T 2020 Opt. Express 19 27575
[13] Zhu X Z, Cheng Y Z, Chen F, Luo H, Ling W 2022 J. Opt. Soc. Am. B 39 705Google Scholar
[14] Cai T, Wang G M, Tang S W, Xu H X, Duan J W, Guo H J, Guan F X, Sun S L, He Q, Zhou L 2017 Phys. Rev. Appl. 8 034033Google Scholar
[15] Wu R Y, Zhang L, Bao L, Wu L W, Ma Q, Bai G D, Wu H T, Cui T J 2019 Adv. Optical Mater. 7 1801429Google Scholar
[16] Fan J P, Cheng Y Z, He B 2021 J. Phys. D. Appl. Phys. 54 115101Google Scholar
[17] Li J, Cheng Y Z, Li X C 2022 Adv. Theor. Simul. 5 2200151Google Scholar
[18] Zhang C B, Wang G M, Xu H X, Zhang X, Li H P 2020 Adv. Opt. Mater. 8 1901719Google Scholar
[19] Zhang H C, Zhang X, Ma X L, Pu M B, Huang C, Zhang Z J, Wang Y X, Guo Y H, Luo J, Luo X G 2022 Opt. Express 30 36949Google Scholar
[20] Mao R Q, Wang G M, Cai T, Liu K, Wang D P, Wu B 2020 Opt. Express 21 31216
[21] Yang D R, Cheng Y Z, Luo H, Chen F, Wu, 2023 Adv. Theor. Simul. 4 2300162
[22] Zhao J, Li N, Cheng Y 2023 Opt. Commun. 536 129372Google Scholar
[23] Zhao Y, Alù A 2011 Phys. Rev. B 84 205428Google Scholar
[24] Yang L J, Li J S 2022 Opt. Eng. 61 047105
[25] Liu J Q, Cheng Y Z, Chen F, Luo H, Li X C 2023 J. Opt. Soc. Am. B 40 441Google Scholar
[26] 刘佳琪, 程用志, 陈浮, 罗辉, 李享成 2023 红外与激光工程 52 20220377Google Scholar
Liu J Q, Cheng Y Z, Chen F, Luo H 2023 Infrared Laser Engineer. 52 20220377Google Scholar
Catalog
Metrics
- Abstract views: 3403
- PDF Downloads: 97
- Cited By: 0