搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯的太赫兹波散射可调谐超表面

张银 冯一军 姜田 曹杰 赵俊明 朱博

引用本文:
Citation:

基于石墨烯的太赫兹波散射可调谐超表面

张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博

Graphene based tunable metasurface for terahertz scattering manipulation

Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo
PDF
导出引用
  • 设计了一个可调谐的太赫兹超表面,由在随机反射超表面基底中嵌入可偏置的双层石墨烯构成,可以实现对太赫兹波散射特性的动态调控.全波仿真试验结果证实了所预期的超表面散射可调性能.通过增大偏置电压提升石墨烯的费米能级,使得该超表面的太赫兹波散射样式从漫反射逐渐向镜面反射过渡,从而实现散射特性的连续调控,且该超表面具有对电磁波极化角度不敏感的特点.这些特性使得该超表面能很好地融合到变化的环境中,在太赫兹隐身方面具有潜在的应用价值.
    Recently, the terahertz waves have attracted increasing attention due to the growing practical applications in astronomy, communication, imaging, spectroscopy, etc. While the metasurfaces, with extraordinary ability to control the electromagnetic waves, have been increasingly employed to tailor their interaction with terahertz waves and offer fascinating capabilities unavailable from natural materials. However, there are more and more requirements for the dynamical tune of the responses to electromagnetic components for the practical applications such as the terahertz stealth in variable environment. As such, considerable attention to terahertz frequencies has been focused on the tunable metasurfaces. Graphene has been proved to be a good candidate to meet the requirements for tunable electromagnetic properties, especially at the terahertz frequencies. In this paper, we design a tunable terahertz metasurface and achieve dynamically manipulating the scattering of terahertz waves. The metasurface is constructed by embedding double graphene layers with voltage control into the polyimide substrate of the diffuse scattering metasurface, which consists of the random array of rectangular metal patches, polyimide substrate, and metal ground. By adjusting the bias voltage on the double graphene layers, the terahertz scattering distribution can be controlled. At zero bias, the conductivity of graphene approaches to zero, and the random phase distribution is formed over the metasurface so that the reflected terahertz waves are dispersed into the upper half space with much lower intensity from various directions. With the bias voltage increasing, the conductivity of graphene increases, then the changeable range of the phase over the metasurface can be changed from 2up to up/4. As a result, the random phase distribution of the metasurface is gradually destroyed and increasingly transformed into a uniform phase distribution, resulting in the scattering characteristic changes from the approximate diffuse reflection to the specular reflection. The expected performance of proposed metasurface is demonstrated through the full-wave simulation. The corresponding results show that the terahertz scattering pattern of the metasurface is gradually varied from diffuse scattering to specular reflection by dynamically increasing the Fermi level of graphene through increasing the bias voltage. Moreover, the performance of the proposed metasurface is insensitive to the polarization of the incident wave. All of these indicate that the proposed metasurface can continuously control the scattering characteristics of terahertz wave. Thus, the proposed metasurface can be well integrated into the changing environment, and may offer potential stealth applications at terahertz frequencies. Moreover, as we employ complete graphene layers as the controlling elements instead of structured graphene layers in other metamaterial designs, the proposed metasurface may provide an example of relating the theory to possible experimental realization in tunable graphene metasurfaces.
      通信作者: 姜田, jt@nju.edu.cn
    • 基金项目: 江苏省自然科学基金(批准号:BK20151393)、国家科技支撑计划(批准号:2015BAD18B02,2015BAK36B02)和粮食公益性行业科研专项(批准号:201513004)资助的课题.
      Corresponding author: Jiang Tian, jt@nju.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151393), the National Key Technologies Research and Development Program of China (Grant Nos. 2015BAD18B02, 2015BAK36B02), and the China Special Fund for Grain-Scientific Research in the Public Interest (Grant No. 201513004).
    [1]

    Sirtori C 2002 Nature 417 132

    [2]

    Williams G P 2005 Rep. Prog. Phys. 69 301

    [3]

    Tonouchi M 2007 Nature Photon. 1 97

    [4]

    Song H J, Nagatsuma T 2011 IEEE Trans. Terahertz Sci. Technol. 1 256

    [5]

    Liu X, Tyler T, Starr T, Starr A F, Jokerst N M, Padilla W J 2011 Phys. Rev. Lett. 107 045901

    [6]

    Bao D, Shen X P, Cui T J 2015 Acta Phys. Sin. 64 228701 (in Chinese)[鲍迪, 沈晓鹏, 崔铁军2015 64 228701]

    [7]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [8]

    Holloway C L, Kuester E F, Gordon J A, O' Hara J, Booth J, Smith D R 2012 IEEE Antenn. Propag. Magazine 54 10

    [9]

    Zhao J M, Sima B Y, Jia N, Wang C, Zhu B, Jiang T, Feng Y J 2016 Opt. Express 24 27849

    [10]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426

    [11]

    Zhu B, Feng Y J 2015 IEEE Trans. Antennas Propag. 63 5500

    [12]

    Zhu B, Chen K, Jia N, Sun L, Zhao J M, Jiang T, Feng Y J 2014 Sci. Rep. 4 4971

    [13]

    Yang L, Fan F, Chen M, Zhang X Z, Chang S J 2016 Acta Phys. Sin. 65 080702 (in Chinese)[杨磊, 范飞, 陈猛, 张选洲, 常胜江2016 65 080702]

    [14]

    Liu S, Cui T J, Xu Q, Bao D, Du L L, Wan X, Tang W X, Ouyang C M, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J G, Zhang W L, Cheng Q 2016 Light:Sci. Appl. 5 e16076

    [15]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light:Sci. Appl. 3 e218

    [16]

    Gao L H, Cheng Q, Yang J, Ma S J, Zhao J, Liu S, Chen H B, He Q, Jiang W X, Ma H F, Wen Q Y, Liang L J, Jin B B, Liu W W, Zhou L, Yao J Q, Wu P H, Cui T J 2015 Light:Sci. Appl. 4 e324

    [17]

    Zhang Y, Liang L J, Yang J, Feng Y J, Zhu B, Zhao J, Jiang T, Jin B B, Liu W W 2016 Sci. Rep. 6 26875

    [18]

    Chen K, Feng Y J, Yang Z J, Cui L, Zhao J M, Zhu B, Jiang T 2016 Sci. Rep. 6 35968

    [19]

    Liang L J, Qi M Q, Yang J, Shen X P, Zhai J Q, Xu W Z, Jin B B, Liu W W, Feng Y J, Zhang C H, Lu H, Chen H T, Kang L, Xu W W, Chen J, Cui T J, Wu P H, Liu S G 2015 Adv. Opt. Mater. 3 1374

    [20]

    Sun S, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S Y, kung W T, Guo G Y, Zhou L, Tsai D P 2012 Nano Lett. 12 6223

    [21]

    Chen H T, Padilla W J, Zide J M, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597

    [22]

    Feng W, Zhang R, Cao J C 2015 Acta Phys. Sin. 64 229501 (in Chinese)[冯伟, 张戎, 曹俊诚2015 64 229501]

    [23]

    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630

    [24]

    Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nat. Mater. 11 936

    [25]

    Zhang Y, Feng Y J, Zhu B, Zhao J M, Jiang T 2014 Opt. Express 22 22743

    [26]

    Zhang Y, Feng Y J, Zhu B, Zhao J M, Jiang T 2015 Opt. Express 23 27230

    [27]

    Xu B Z, Gu C Q, Li Z, Niu Z Y 2013 Opt. Express 21 23803

    [28]

    Zhang H Y, Huang X Y, Chen Q, Ding C F, Li T T, L H H, Xu S L, Zhang X, Zhang Y P, Yao J Q 2016 Acta Phys. Sin. 65 018101 (in Chinese)[张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨2016 65 018101]

    [29]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [30]

    Kim J Y, Lee C, Bae S, Kim K S, Hong B H, Choi E J 2011 Appl. Phys. Lett. 98 201907

    [31]

    Gmez-Daz J S, Perruisseau-Carrier J 2013 Opt. Express 21 15490

    [32]

    Rodriguez B S, Yan R, Kelly M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H L G 2012 Nat. Commun. 3 780

  • [1]

    Sirtori C 2002 Nature 417 132

    [2]

    Williams G P 2005 Rep. Prog. Phys. 69 301

    [3]

    Tonouchi M 2007 Nature Photon. 1 97

    [4]

    Song H J, Nagatsuma T 2011 IEEE Trans. Terahertz Sci. Technol. 1 256

    [5]

    Liu X, Tyler T, Starr T, Starr A F, Jokerst N M, Padilla W J 2011 Phys. Rev. Lett. 107 045901

    [6]

    Bao D, Shen X P, Cui T J 2015 Acta Phys. Sin. 64 228701 (in Chinese)[鲍迪, 沈晓鹏, 崔铁军2015 64 228701]

    [7]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [8]

    Holloway C L, Kuester E F, Gordon J A, O' Hara J, Booth J, Smith D R 2012 IEEE Antenn. Propag. Magazine 54 10

    [9]

    Zhao J M, Sima B Y, Jia N, Wang C, Zhu B, Jiang T, Feng Y J 2016 Opt. Express 24 27849

    [10]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426

    [11]

    Zhu B, Feng Y J 2015 IEEE Trans. Antennas Propag. 63 5500

    [12]

    Zhu B, Chen K, Jia N, Sun L, Zhao J M, Jiang T, Feng Y J 2014 Sci. Rep. 4 4971

    [13]

    Yang L, Fan F, Chen M, Zhang X Z, Chang S J 2016 Acta Phys. Sin. 65 080702 (in Chinese)[杨磊, 范飞, 陈猛, 张选洲, 常胜江2016 65 080702]

    [14]

    Liu S, Cui T J, Xu Q, Bao D, Du L L, Wan X, Tang W X, Ouyang C M, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J G, Zhang W L, Cheng Q 2016 Light:Sci. Appl. 5 e16076

    [15]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light:Sci. Appl. 3 e218

    [16]

    Gao L H, Cheng Q, Yang J, Ma S J, Zhao J, Liu S, Chen H B, He Q, Jiang W X, Ma H F, Wen Q Y, Liang L J, Jin B B, Liu W W, Zhou L, Yao J Q, Wu P H, Cui T J 2015 Light:Sci. Appl. 4 e324

    [17]

    Zhang Y, Liang L J, Yang J, Feng Y J, Zhu B, Zhao J, Jiang T, Jin B B, Liu W W 2016 Sci. Rep. 6 26875

    [18]

    Chen K, Feng Y J, Yang Z J, Cui L, Zhao J M, Zhu B, Jiang T 2016 Sci. Rep. 6 35968

    [19]

    Liang L J, Qi M Q, Yang J, Shen X P, Zhai J Q, Xu W Z, Jin B B, Liu W W, Feng Y J, Zhang C H, Lu H, Chen H T, Kang L, Xu W W, Chen J, Cui T J, Wu P H, Liu S G 2015 Adv. Opt. Mater. 3 1374

    [20]

    Sun S, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S Y, kung W T, Guo G Y, Zhou L, Tsai D P 2012 Nano Lett. 12 6223

    [21]

    Chen H T, Padilla W J, Zide J M, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597

    [22]

    Feng W, Zhang R, Cao J C 2015 Acta Phys. Sin. 64 229501 (in Chinese)[冯伟, 张戎, 曹俊诚2015 64 229501]

    [23]

    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630

    [24]

    Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nat. Mater. 11 936

    [25]

    Zhang Y, Feng Y J, Zhu B, Zhao J M, Jiang T 2014 Opt. Express 22 22743

    [26]

    Zhang Y, Feng Y J, Zhu B, Zhao J M, Jiang T 2015 Opt. Express 23 27230

    [27]

    Xu B Z, Gu C Q, Li Z, Niu Z Y 2013 Opt. Express 21 23803

    [28]

    Zhang H Y, Huang X Y, Chen Q, Ding C F, Li T T, L H H, Xu S L, Zhang X, Zhang Y P, Yao J Q 2016 Acta Phys. Sin. 65 018101 (in Chinese)[张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨2016 65 018101]

    [29]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [30]

    Kim J Y, Lee C, Bae S, Kim K S, Hong B H, Choi E J 2011 Appl. Phys. Lett. 98 201907

    [31]

    Gmez-Daz J S, Perruisseau-Carrier J 2013 Opt. Express 21 15490

    [32]

    Rodriguez B S, Yan R, Kelly M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H L G 2012 Nat. Commun. 3 780

  • [1] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态.  , 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [2] 王丹, 李九生, 郭风雷. 宽带吸收与极化转换可切换的太赫兹超表面.  , 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [3] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性.  , 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [4] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面.  , 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [5] 于博, 庄书磊, 王正心, 王曼诗, 郭兰军, 李鑫煜, 郭文瑞, 苏文明, 龚诚, 刘伟伟. 基于纳米印刷技术的双螺旋太赫兹可调超表面.  , 2022, 71(11): 117801. doi: 10.7498/aps.71.20212408
    [6] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器.  , 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [7] 李泽宇, 姜去寒, 马腾洲, 袁英豪, 陈麟. 基于太赫兹石墨烯等离激元的多参数相位可调谐结构及其应用.  , 2021, 70(22): 224202. doi: 10.7498/aps.70.20210445
    [8] 王健, 张超越, 姚昭宇, 张弛, 许锋, 阳媛. 基于石墨烯的太赫兹漫反射表面快速设计方法.  , 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [9] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器.  , 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [10] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生.  , 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [11] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束.  , 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [12] 陶泽华, 董海明, 段益峰. 太赫兹辐射场下的石墨烯光生载流子和光子发射.  , 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [13] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控.  , 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [14] 李小兵, 陆卫兵, 刘震国, 陈昊. 基于可调石墨烯超表面的宽角度动态波束控制.  , 2018, 67(18): 184101. doi: 10.7498/aps.67.20180592
    [15] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性.  , 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [16] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体.  , 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [17] 冯伟, 张戎, 曹俊诚. 基于石墨烯的太赫兹器件研究进展.  , 2015, 64(22): 229501. doi: 10.7498/aps.64.229501
    [18] 邓新华, 袁吉仁, 刘江涛, 王同标. 基于石墨烯的可调谐太赫兹光子晶体结构.  , 2015, 64(7): 074101. doi: 10.7498/aps.64.074101
    [19] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究.  , 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [20] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究.  , 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
计量
  • 文章访问数:  8676
  • PDF下载量:  604
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-02
  • 修回日期:  2017-06-16
  • 刊出日期:  2017-10-05

/

返回文章
返回
Baidu
map