Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Metasurfaces based terahertz and mid- and long-wave infrared high-efficiency beam splitting devices

Zhang Hong-Wei Cai Ren-Hao Li Ji-Ning Zhong Kai Wang Yu-Ye Xu De-Gang Yao Jian-Quan

Citation:

Metasurfaces based terahertz and mid- and long-wave infrared high-efficiency beam splitting devices

Zhang Hong-Wei, Cai Ren-Hao, Li Ji-Ning, Zhong Kai, Wang Yu-Ye, Xu De-Gang, Yao Jian-Quan
cstr: 32037.14.aps.73.20241066
PDF
HTML
Get Citation
  • The multi-mode composite imaging technology integrates the advantages of different sensors, and thus has the advantages of high image quality, strong information acquisition capability, high target detection and recognition ability, strong adaptability to complex environments, and high stability and robustness of the system. Among them, the terahertz and infrared composite imaging technology combines the characteristics of terahertz band and infrared band, has the advantages of wide spectrum coverage, high resolution and strong penetration, and has broad application prospects. As one of the key components of the common aperture composite imaging system, the efficient optical splitters in terahertz and infrared band are still lacking at present, and their performance needs to be improved urgently. In this paper, a kind of dichroic metasurface with a simple structure and high performance is proposed by combining simulation experiment and theoretical explanation. When used as a spectroscopic device at an incident angle of 45°, it achieves a transmission coefficient greater than 97% near the center frequency of 1.1 THz, and a reflection coefficient greater than 98% in a wavelength range of 3–5 μm for medium-wave infrared and 8–14 μm for long-wave infrared. The design has good robustness to structural mismatches and machining errors such as structural misalignment, structural fillet, small magnification scaling, and polarization insensitivity. When the incident angle changes in a range of 0–60°, the device still maintains excellent spectral characteristics. In this paper, based on Babinet theorem and equivalent circuit model, the electromagnetic response characteristics of the metasurface are analyzed theoretically, and the analysis results are in agreement with the simulation results. The results of this study prove the feasibility of metasurface as a spectral device in the multiwavelength composite imaging system of terahertz and infrared bands, and provide support for future studying new composite imaging detection technology. In addition, the metasurface structure described in this paper has broad application prospects in many fields such as multi-band infrared stealth, laser and pump light separation in lasers, and provides a valuable reference for designing terahertz and infrared spectroscopy in various scenarios. In the following figure, for S wave and P wave at an incident angle of 45°, panel (a) shows the reflection coefficients varying with the wavelength of metasurface and panel (b) displays terahertz transmission coefficient changing with frequency.
      Corresponding author: Li Ji-Ning, jiningli@tju.edu.cn
    [1]

    Koulouklidis A D, Gollner C, Shumakova V, Fedorov V Y, Pugžlys A, Baltuška A, Tzortzakis S 2020 Nat. Commun. 11 292Google Scholar

    [2]

    Burford N M, El-Shenawee M O 2017 Opt. Eng. 56 010901Google Scholar

    [3]

    Liu Z M, Gao E D, Zhang X, Li H J, Xu H, Zhang Z B, Luo X, Zhou F Q 2020 New J. Phys. 22 053039Google Scholar

    [4]

    Fan F, Zhang X Z, Li S S, Deng D C, Wang N, Zhang H, Chang S J 2015 Opt. Express 23 27204Google Scholar

    [5]

    Shalaby M, Peccianti M, Ozturk Y, Morandotti R 2013 Nat. Commun. 4 1558Google Scholar

    [6]

    Wade C G, Šibalić N, Melo N R, Kondo J M, Adams C S, Weatherill K J 2017 Nat. Photonics 11 40Google Scholar

    [7]

    Cheng Y Y, Qiao L B, Zhu D, Wang Y X, Zhao Z 2021 Opt. Lett. 46 1233Google Scholar

    [8]

    Singh R J, Cao W, Ibraheem A N, Cong L Q, Withawat W, Zhang W L 2014 Appl. Phys. Lett. 105 171101Google Scholar

    [9]

    Cooper K B, Dengler R J, Llombart N, Thomas B, Chattopadhyay G, Siegel P H 2011 IEEE Trans. Terahertz Sci. Technol. 1 169Google Scholar

    [10]

    Yang Y H, Mandehgar M, Grischkowsky D 2014 Opt. Express 22 4388Google Scholar

    [11]

    耿兴宁, 徐德刚, 李吉宁, 陈锴, 钟凯, 姚建铨 2020 强激光与粒子束 32 78Google Scholar

    Geng X N, Xu D G, Li J N, Chen K, Zhong K, Yao J Q 2020 High Power Las. Part. Beams 32 78Google Scholar

    [12]

    陈锴, 耿兴宁, 李吉宁, 钟凯, 徐德刚, 蒋山亚, 张景川, 姚建铨 2020 航天器环境工程 37 421Google Scholar

    Chen K, Geng X N, Li J N, Zhong K, Xu D G, Jiang S Y, Zhang J C, Yao J Q 2020 Spacecraft Environ. Eng. 37 421Google Scholar

    [13]

    刘闯 2016 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Liu C 2016 Ph. D. Dissertation(Harbin: Harbin Institute of Technology

    [14]

    Chen H T, Zhou J F, Hara J F, Chen F, Azad A K, Taylor A J 2010 Phys. Rev. Lett. 105 073901Google Scholar

    [15]

    姚尧, 沈悦, 郝加明, 戴宁 2019 68 147802Google Scholar

    Yao Y, Shen Y, Hao J M, Dai N 2019 Acta Phys. Sin. 68 147802Google Scholar

    [16]

    Sun K, Li J N, Sun J Y, Ge L, Xu D G, Zhong K, Yao J Q 2022 Results Phys. 33 105183Google Scholar

    [17]

    Olmon L R, Slovick B, Johnson W T, Shelton D, Oh S H, Boreman G D, Raschke M B 2012 Phys. Rev. B 86 235147Google Scholar

    [18]

    郁道银, 谈恒英 2015 工程光学(第4版) (北京: 机械工业出版社) 第318页

    Yu D Y, Tan H Y 2015 Engineering Optics (Vol. 4) (Beijing: China Machine Press) p318

    [19]

    本A明克 著 (侯新宇 译) 2009 频率选择表面理论与设计(北京: 科学出版社) 第110—113页

    Munk B A (translated by Hou X Y) 2009 Frequency Selective Surfaces Theory and Design (Beijing: Science Press) pp4–8

    [20]

    张肃文 2009 高频电子线路 (第5版) (北京: 高等教育出版社) 第17—19页

    Zhang S W 2009 High-Frenquency Electronic Circuit (Vol. 5) (Beijing: Higher Education Press) pp17–19

  • 图 1  超表面单元结构示意图

    Figure 1.  Structure diagram of metasurface unit.

    图 2  在45°入射的超表面透反射系数曲线 (a) 红外反射系数; (b) 太赫兹透射系数

    Figure 2.  Transmission and reflection coefficient of this metasurface at 45° incident angle: (a) Infrared reflection coefficient; (b) terahertz transmission coefficient.

    图 3  不同入射角度的红外反射系数(a)和太赫兹透射系数曲线(b)

    Figure 3.  Infrared reflection coefficient (a) and terahertz transmission coefficient (b) at different incidence angles.

    图 4  在45°入射的超表面透反射系数曲线 (a)—(c) 金属结构倒圆角; (d)—(f) 金属结构层间错位

    Figure 4.  Transmission and reflection coefficient of this metasurface at 45° incident angle: (a)–(c) Metal structure chamfer; (d)–(f) dislocation between layers of metal structures.

    图 5  在45°入射的超表面透反射系数曲线 (a), (b) 结构横向缩放; (c), (d) 金属方块边长变化; (e), (f) 介质基底变化

    Figure 5.  Transmission and reflection coefficient of this metasurface at 45° incident angle: (a), (b) Horizontal scaling of structure; (c), (d) metal square side length changes; (e), (f) dielectric basement change.

    图 6  巴比涅定理互补结构示意图 (a) 单层金属网栅; (b) 单层金属方块阵列

    Figure 6.  Diagram of complementary structure of Babinet’s theorem: (a) Single layer metal grid; (b) single layer metal cube array.

    图 7  超表面太赫兹透射系数 (a) 单层超表面; (b) 双层超表面

    Figure 7.  Terahertz transmission coefficient of metasurface: (a) Single layer metasurface; (b) double layer metasurface.

    图 8  等效电路模型示意图 (a) 金属块; (b) 超表面金属方块

    Figure 8.  Equivalent circuit model diagram: (a) Metal block; (b) metasurface metal cube.

    图 9  正入射的单层超表面红外反射系数随金属长度变化曲线

    Figure 9.  Reflection coefficient of this single layer metasurface at normal incident angle varies with the length of metal.

    图 10  在45°入射的单层超表面反射曲线

    Figure 10.  Reflection coefficient of single layer metasurface at 45° incident angle.

    Baidu
  • [1]

    Koulouklidis A D, Gollner C, Shumakova V, Fedorov V Y, Pugžlys A, Baltuška A, Tzortzakis S 2020 Nat. Commun. 11 292Google Scholar

    [2]

    Burford N M, El-Shenawee M O 2017 Opt. Eng. 56 010901Google Scholar

    [3]

    Liu Z M, Gao E D, Zhang X, Li H J, Xu H, Zhang Z B, Luo X, Zhou F Q 2020 New J. Phys. 22 053039Google Scholar

    [4]

    Fan F, Zhang X Z, Li S S, Deng D C, Wang N, Zhang H, Chang S J 2015 Opt. Express 23 27204Google Scholar

    [5]

    Shalaby M, Peccianti M, Ozturk Y, Morandotti R 2013 Nat. Commun. 4 1558Google Scholar

    [6]

    Wade C G, Šibalić N, Melo N R, Kondo J M, Adams C S, Weatherill K J 2017 Nat. Photonics 11 40Google Scholar

    [7]

    Cheng Y Y, Qiao L B, Zhu D, Wang Y X, Zhao Z 2021 Opt. Lett. 46 1233Google Scholar

    [8]

    Singh R J, Cao W, Ibraheem A N, Cong L Q, Withawat W, Zhang W L 2014 Appl. Phys. Lett. 105 171101Google Scholar

    [9]

    Cooper K B, Dengler R J, Llombart N, Thomas B, Chattopadhyay G, Siegel P H 2011 IEEE Trans. Terahertz Sci. Technol. 1 169Google Scholar

    [10]

    Yang Y H, Mandehgar M, Grischkowsky D 2014 Opt. Express 22 4388Google Scholar

    [11]

    耿兴宁, 徐德刚, 李吉宁, 陈锴, 钟凯, 姚建铨 2020 强激光与粒子束 32 78Google Scholar

    Geng X N, Xu D G, Li J N, Chen K, Zhong K, Yao J Q 2020 High Power Las. Part. Beams 32 78Google Scholar

    [12]

    陈锴, 耿兴宁, 李吉宁, 钟凯, 徐德刚, 蒋山亚, 张景川, 姚建铨 2020 航天器环境工程 37 421Google Scholar

    Chen K, Geng X N, Li J N, Zhong K, Xu D G, Jiang S Y, Zhang J C, Yao J Q 2020 Spacecraft Environ. Eng. 37 421Google Scholar

    [13]

    刘闯 2016 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Liu C 2016 Ph. D. Dissertation(Harbin: Harbin Institute of Technology

    [14]

    Chen H T, Zhou J F, Hara J F, Chen F, Azad A K, Taylor A J 2010 Phys. Rev. Lett. 105 073901Google Scholar

    [15]

    姚尧, 沈悦, 郝加明, 戴宁 2019 68 147802Google Scholar

    Yao Y, Shen Y, Hao J M, Dai N 2019 Acta Phys. Sin. 68 147802Google Scholar

    [16]

    Sun K, Li J N, Sun J Y, Ge L, Xu D G, Zhong K, Yao J Q 2022 Results Phys. 33 105183Google Scholar

    [17]

    Olmon L R, Slovick B, Johnson W T, Shelton D, Oh S H, Boreman G D, Raschke M B 2012 Phys. Rev. B 86 235147Google Scholar

    [18]

    郁道银, 谈恒英 2015 工程光学(第4版) (北京: 机械工业出版社) 第318页

    Yu D Y, Tan H Y 2015 Engineering Optics (Vol. 4) (Beijing: China Machine Press) p318

    [19]

    本A明克 著 (侯新宇 译) 2009 频率选择表面理论与设计(北京: 科学出版社) 第110—113页

    Munk B A (translated by Hou X Y) 2009 Frequency Selective Surfaces Theory and Design (Beijing: Science Press) pp4–8

    [20]

    张肃文 2009 高频电子线路 (第5版) (北京: 高等教育出版社) 第17—19页

    Zhang S W 2009 High-Frenquency Electronic Circuit (Vol. 5) (Beijing: Higher Education Press) pp17–19

  • [1] Wang Yue, Wang Hao-Jie, Cui Zi-Jian, Zhang Da-Chi. Bound states in continuum domain of double resonant ring metal metasurfaces. Acta Physica Sinica, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [2] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [3] Xia Zhao-Sheng, Liu Yu-Hang, Bao Zheng, Wang Li-Hua, Wu Bo, Wang Gang, Wang Hui, Ren Xin-Gang, Huang Zhi-Xiang. Strong circular dichroism chiral metasurfaces generated by quasi bound state in continuum domain. Acta Physica Sinica, 2024, 73(17): 178102. doi: 10.7498/aps.73.20240834
    [4] Bai Yu, Zhang Zhen-Fang, Yang Hai-Bin, Cai Li, Yu Dian-Long. Metasurface acoustic liner of engine based on asymmetric absorber. Acta Physica Sinica, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [5] Huang Xiao-Jun, Gao Huan-Huan, He Jia-Hao, Luan Su-Zhen, Yang He-Lin. Dynamically tunable frequency-domain multifunctional reconfigurable polarization conversion metasurface. Acta Physica Sinica, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [6] Fan Hui-Ying, Luo Jie. Research progress of non-Hermitian electromagnetic metasurfaces. Acta Physica Sinica, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [7] Sun Sheng, Yang Ling-Jun, Sha Wei. Offset-fed vortex wave generator based on reflective metasurface. Acta Physica Sinica, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [8] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [9] Xu Ting, Wang Zi-Shuai, Li Xuan-Hua, Sha Wei E. I.. Loss mechanism analyses of perovskite solar cells with equivalent circuit model. Acta Physica Sinica, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [10] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [11] Yan Wei, Wang Ji-Yong, Qu Yu-Rui, Li Qiang, Qiu Min. Tunable metasurfaces based on phase-change materials. Acta Physica Sinica, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [12] Xie Zhi-Qiang, He Yan-Liang, Wang Pei-Pei, Su Ming-Yang, Chen Xue-Yu, Yang Bo, Liu Jun-Min, Zhou Xin-Xing, Li Ying, Chen Shu-Qing, Fan Dian-Yuan. Two-dimensional optical edge detection based on Pancharatnam-Berry phase metasurface. Acta Physica Sinica, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [13] Wang Chao-Hui, Li Yong-Xiang, Zhu Shuai. Absorbers with spin-selection based on metasurface. Acta Physica Sinica, 2020, 69(23): 234103. doi: 10.7498/aps.69.20200511
    [14] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [15] Lou Guo-Feng, Yu Xin-Jie, Lu Shi-Hua. Equivalent circuit model for plate-type magnetoelectric laminate composite considering an interface coupling factor. Acta Physica Sinica, 2018, 67(2): 027501. doi: 10.7498/aps.67.20172080
    [16] Guo Wen-Long, Wang Guang-Ming, Li Hai-Peng, Hou Hai-Sheng. Utra-thin single-layered high-efficiency focusing metasurface lens. Acta Physica Sinica, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [17] Fan Ya, Qu Shao-Bo, Wang Jia-Fu, Zhang Jie-Qiu, Feng Ming-De, Zhang An-Xue. Broadband anomalous reflector based on cross-polarized version phase gradient metasurface. Acta Physica Sinica, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [18] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Circularly polarized wave reflection focusing metasurfaces. Acta Physica Sinica, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [19] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Chen Hong-Ya, Xu Zhuo, Zhang An-Xue. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction. Acta Physica Sinica, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [20] Hu Hui-Yong, Zhang He-Ming, Lü Yi, Dai Xian-Ying, Hou Hui, Ou Jian-Feng, Wang Wei, Wang Xi-Yuan. SiGe HBT large signal equivalent circuit model. Acta Physica Sinica, 2006, 55(1): 403-408. doi: 10.7498/aps.55.403
Metrics
  • Abstract views:  801
  • PDF Downloads:  28
  • Cited By: 0
Publishing process
  • Received Date:  31 July 2024
  • Accepted Date:  21 August 2024
  • Available Online:  07 September 2024
  • Published Online:  05 October 2024

/

返回文章
返回
Baidu
map