搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双频带太赫兹超材料吸波体传感器传感特性

庞慧中 王鑫 王俊林 王宗利 刘苏雅拉图 田虎强

引用本文:
Citation:

双频带太赫兹超材料吸波体传感器传感特性

庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强

Sensing characteristics of dual band terahertz metamaterial absorber sensor

Pang Hui-Zhong, Wang Xin, Wang Jun-Lin, Wang Zong-Li, Liu Su-Yalatu, Tian Hu-Qiang
PDF
HTML
导出引用
  • 本文提出了一种双频带太赫兹超材料吸波器, 该超材料吸波器在0.387和0.694 THz两个谐振点的吸收率可达到99%以上, 实现了对入射太赫兹波的“完美吸收”. 该双频带太赫兹超材料吸波体传感器在两个谐振频率处的Q值分别为28.1和29.3, 折射率灵敏度$S(f)$分别为39.5和85 GHz/RIU, 均具有较优的传感特性. 研究结果表明, 对于该太赫兹超材料吸波器来说, 除了可以选用折射率较小的中间介质层材料提高传感特性外, 还可以根据待测物折射率的不同选取相应的待测物厚度来提高传感特性. 本文设计的双频带超材料吸波体传感器可实现谐振频率与待测物质特征频率间的多点匹配, 增加反映被测物质差异的信息量, 从而提升物质探测的准确性和灵敏度. 通过对三种食用油样本的分析, 验证了本文所设计的双频带太赫兹超材料吸波体传感器的实际应用价值. 本次研究丰富了双频带超材料吸波体传感器的种类, 在传感检测领域具有广阔的发展空间.
    The terahertz metamaterial absorber sensor is an important functional device of the metamaterials. It can realize not only the perfect absorption in the incident terahertz wave, but also the detect sample by monitoring the deviation of the absorption frequency of the metamaterial absorber sensor. Dual-band metamaterial absorber sensor has double frequency resonance peak. By matching the characteristic frequency between the sensor and the substance to be measured, the information reflecting the difference of the substance to be measured is increased, to improve the accuracy and sensitivity of material detection. Compared with the traditional metamaterial absorber sensor, the dual-band metamaterial absorber sensor can realize very accurate sensing and detection function through multi-point matching of information. In this paper, a double band terahertz band metamaterial absorber sensor is proposed. The absorption rate of the metamaterial absorber sensor reaches over 99% at 0.387 THz and 0.694 THz frequency point, achieving “perfect absorption”. Through the analysis of a series of materials with different refractive indices to be measured, the suitable sensing range of the designed terahertz metamaterial absorber sensor is obtained. By analyzing the different thickness of the substance to be measured and the different medium layer materials, the thickness of the substance to be measured and the medium layer materials which can improve the sensing performance of the sensor are obtained. In this paper, the sensing identification of edible oil is taken for example to verify that the dual-band terahertz metamaterial absorber sensor designed in this paper can realize high sensitivity and rapid detection, and has a broad development prospect in the field of sensing and detection.
      通信作者: 王鑫, wangxin219@imu.edu.cn ; 王俊林, wangjunlin@imu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51965047)、内蒙古自然科学基金(批准号: 2018MS06007)、内蒙古大学2018年高层次人才引进科研启动项目(批准号: 21700-5185128, 21700-5185131)、内蒙古科技攻关项目(批准号: 2020GG0185)资助的课题
      Corresponding author: Wang Xin, wangxin219@imu.edu.cn ; Wang Jun-Lin, wangjunlin@imu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51965047), the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2018MS06007), the 2018High-level Talent Introduction and Research Startup Project of Inner Mongolia University, China (Grant Nos. 21700-5185128, 21700-5185131), and the Science and Technology Research Project of Inner Mongolia Autonomous Region, China (Grant No. 2020GG0185)
    [1]

    李允植 2012 太赫兹科学与技术原理 (北京: 国防工业出版社) 第1−30页

    Lee Y K 2012 Principles of Terahertz Science and Technology (Beijing: National Defense Industry Press) pp1−30 (in Chinese)

    [2]

    Sun S, He Q, Hao J, Xiao S, Zhou L 2019 Adv. Opt. Photonics 11 380Google Scholar

    [3]

    Su Z, Yin J, Zhao X 2015 Opt. Express 23 1679Google Scholar

    [4]

    张玉萍, 李彤彤, 吕欢欢 2015 64 117801Google Scholar

    Zhang Y P, Li T T, Lv H H 2015 Acta Phys. Sin. 64 117801Google Scholar

    [5]

    闫昕, 张兴坊, 梁兰菊, 姚建铨 2014 光谱学与光谱分析 09 2365Google Scholar

    Yan X, Zhang X F, Liang L J, Yao J Q 2014 Spectrosc. Spect. Anal. 09 2365Google Scholar

    [6]

    高劲松, 王珊珊, 冯晓国, 徐念喜, 赵晶丽, 陈红 2010 59 7338Google Scholar

    Gao J S, Wang S S, Feng X G, Xu N X, Zhao J L, Chen H 2010 Acta Phys. Sin. 59 7338Google Scholar

    [7]

    王秀芝, 高劲松, 徐念喜 2013 62 237302Google Scholar

    Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 237302Google Scholar

    [8]

    Li S Y, Ai X C, Wu R H 2018 Opt. Commun. 428 251Google Scholar

    [9]

    Kern D J, Werner D H 2003 Microwave Opt. Technol. Lett. 38 61Google Scholar

    [10]

    Moritake Y, Tanaka T 2018 Opt. Express 26 3674Google Scholar

    [11]

    Hu T, Strikwerda A C, Liu M 2010 Appl. Phys. Lett. 97 261909Google Scholar

    [12]

    Li M, Li S, Yu Y F, Ni X, Chen R S 2018 Opt. Express 26 24702Google Scholar

    [13]

    Xu W, Sonkusale S 2013 Appl. Phys. Lett. 103 031902Google Scholar

    [14]

    丰茂昌, 李勇峰, 张介秋, 王甲富, 王超, 马华, 屈绍波 2018 67 198101Google Scholar

    Feng M C, Li Y F, Zhang J Q, Wang J F, Wang C, Ma H, Qu S B 2018 Acta Phys. Sin. 67 198101Google Scholar

    [15]

    Cai T, Tang S, Wang G, Xu H, Sun S, He Q, Zhou L 2017 Adv. Opt. Mater. 5 1600506Google Scholar

    [16]

    Rahimabady M, Statharas E C, Yao K, Mirshekarloo M S, Chen S, Tay F E H 2017 Appl. Phys. Lett. 111 241601Google Scholar

    [17]

    Brian B, Sepúlveda B, Alaverdyan Y, Lechuga L M, Käll M 2009 Opt. Express 17 2015Google Scholar

    [18]

    Wang W, Yan F P, Tan S Y 2020 Photonics Res. 8 519Google Scholar

    [19]

    Meng K, Park S J, Burnett A D 2019 Opt. Express 27 23164Google Scholar

    [20]

    Xiong H, Hong J S, Jin D L 2013 Chin. Phys. B 22 014101Google Scholar

    [21]

    Wang X Z, Gao J S, Xu N X, Liu H 2014 Chin. Phys. B 23 047303Google Scholar

    [22]

    He X Y, Liu F, Lin F T, and Shi W Z 2021 Opt. Lett. 46 472Google Scholar

    [23]

    He X Y, Lin F T, Liu F, Shi W Z 2020 J. Phys. D: Appl. Phys. 53 155105Google Scholar

    [24]

    Peng J, He X Y, Shi C Y Y, Leng J, Lin F T, Liu F, Zhang H, Shi W Z 2020 Phys. E 124 114309Google Scholar

    [25]

    Hu T, Chieffo Logan R, Brenckle Mark A 2011 Adv. Mater. 23 3197Google Scholar

    [26]

    Whitesides G M 2006 Nature 442 368Google Scholar

    [27]

    Zhou H, Hu D L, Yang C 2018 Sci. Rep. 8 14801Google Scholar

    [28]

    Hu X, Xu G Q, Wen L 2016 Laser Photonics Rev. 10 962Google Scholar

    [29]

    Janneh M, De Marcellis A, Palange E 2018 Opt. Commun. 416 152Google Scholar

    [30]

    Wang B X, Zhai X, Wang G Z 2015 Appl. Phys. Lett. 117 014504Google Scholar

  • 图 1  双频带太赫兹超材料吸波体传感器结构示意图

    Fig. 1.  Schematic diagram of dual-band THz MM absorber sensor structure.

    图 2  双频带太赫兹超材料吸波体传感器吸收与反射特性仿真曲线

    Fig. 2.  Simulated absorption and reflection characteristic curve of dual-band THz MM absorber sensor.

    图 3  (a) 谐振频率${f_1}$处表面电场分布; (b) 谐振频率${f_2}$处表面电场分布

    Fig. 3.  (a) Surface electric field distribution at the ${f_1}$ resonance frequency; (b) surface electric field distribution at the ${f_2}$ resonance frequency.

    图 4  (a) 谐振频率${f_1}$处表面电流分布; (b) 谐振频率${f_2}$处表面电流分布

    Fig. 4.  (a) Surface current distribution at the ${f_1}$ resonance frequency; (b) surface current distribution at the ${f_2}$ resonance frequency.

    图 5  (a) 谐振频率${f_1}$处底面电流分布; (b) 谐振频率${f_2}$处底面电流分布

    Fig. 5.  (a) Undersurface current distribution at the ${f_1}$ resonance frequency; (b) undersurface current distribution at the ${f_2}$ resonance frequency.

    图 6  (a) 谐振频率${f_1}$处磁场分布; (b) 谐振频率${f_2}$处磁场分布

    Fig. 6.  (a) Magnetic field distribution at the ${f_1}$ resonance frequency; (b) magnetic field distribution at the ${f_2}$ resonance frequency.

    图 7  折射率从$n$ = 1变化到$n$ = 2时双频带太赫兹超材料吸波体的吸收特性仿真曲线

    Fig. 7.  Simulated absorption characteristic curve of dual-band THz MM absorber with refractive index changes from $n$ = 1 to $n$ = 2.

    图 8  待测分析物折射率从$n$ = 1变化到$n$ = 2时传感器的谐振频率偏移及其线性拟合

    Fig. 8.  Resonance frequency shift of the sensor and linear fitting with determined refractive index changes from $n$ = 1 to $n$ = 2.

    图 9  (a) 待测分析物折射率从$n$ = 1变化到$n$ = 2时谐振频率${f_1}$偏移量及其线性拟合; (b) 待测分析物折射率从$n$ = 1变化到$n$ = 2时谐振频率${f_2}$偏移量及其线性拟合

    Fig. 9.  (a) Resonance frequency shifts of ${f_1}$ resonance frequency with refractive index changes from $n$ = 1 to $n$ = 2 and linear fitting; (b) resonance frequency shifts of ${f_2}$ resonance frequency with refractive index changes from $n$ = 1 to $n$ = 2 and linear fitting.

    图 10  待测分析物厚度对传感器折射率频率灵敏度的影响

    Fig. 10.  Influence of the thickness of the analyte to be measured on the refractive index frequency sensitivity of the sensor.

    图 11  (a) 不同中间介质层材料对传感器谐振频率${f_1}$处偏移量的影响及其线性拟合; (b) 不同中间介质层材料对传感器谐振频率${f_2}$处偏移量的影响及其线性拟合

    Fig. 11.  (a) Influence of different dielectric layer materials on the resonance frequency ${f_1}$ shift of sensor and linear fitting; (b) influence of different dielectric layer materials on the resonance frequency ${f_2}$ shift of sensor and linear fitting.

    图 12  (a) 传感器检测食用油的谐振频点${f_1}$; (b) 传感器检测食用油的谐振频点${f_2}$

    Fig. 12.  (a) Sensor resonance frequency ${f_1}$ of detects edible oil; (b) sensor resonance frequency ${f_2}$ of detects edible oil.

    Baidu
  • [1]

    李允植 2012 太赫兹科学与技术原理 (北京: 国防工业出版社) 第1−30页

    Lee Y K 2012 Principles of Terahertz Science and Technology (Beijing: National Defense Industry Press) pp1−30 (in Chinese)

    [2]

    Sun S, He Q, Hao J, Xiao S, Zhou L 2019 Adv. Opt. Photonics 11 380Google Scholar

    [3]

    Su Z, Yin J, Zhao X 2015 Opt. Express 23 1679Google Scholar

    [4]

    张玉萍, 李彤彤, 吕欢欢 2015 64 117801Google Scholar

    Zhang Y P, Li T T, Lv H H 2015 Acta Phys. Sin. 64 117801Google Scholar

    [5]

    闫昕, 张兴坊, 梁兰菊, 姚建铨 2014 光谱学与光谱分析 09 2365Google Scholar

    Yan X, Zhang X F, Liang L J, Yao J Q 2014 Spectrosc. Spect. Anal. 09 2365Google Scholar

    [6]

    高劲松, 王珊珊, 冯晓国, 徐念喜, 赵晶丽, 陈红 2010 59 7338Google Scholar

    Gao J S, Wang S S, Feng X G, Xu N X, Zhao J L, Chen H 2010 Acta Phys. Sin. 59 7338Google Scholar

    [7]

    王秀芝, 高劲松, 徐念喜 2013 62 237302Google Scholar

    Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 237302Google Scholar

    [8]

    Li S Y, Ai X C, Wu R H 2018 Opt. Commun. 428 251Google Scholar

    [9]

    Kern D J, Werner D H 2003 Microwave Opt. Technol. Lett. 38 61Google Scholar

    [10]

    Moritake Y, Tanaka T 2018 Opt. Express 26 3674Google Scholar

    [11]

    Hu T, Strikwerda A C, Liu M 2010 Appl. Phys. Lett. 97 261909Google Scholar

    [12]

    Li M, Li S, Yu Y F, Ni X, Chen R S 2018 Opt. Express 26 24702Google Scholar

    [13]

    Xu W, Sonkusale S 2013 Appl. Phys. Lett. 103 031902Google Scholar

    [14]

    丰茂昌, 李勇峰, 张介秋, 王甲富, 王超, 马华, 屈绍波 2018 67 198101Google Scholar

    Feng M C, Li Y F, Zhang J Q, Wang J F, Wang C, Ma H, Qu S B 2018 Acta Phys. Sin. 67 198101Google Scholar

    [15]

    Cai T, Tang S, Wang G, Xu H, Sun S, He Q, Zhou L 2017 Adv. Opt. Mater. 5 1600506Google Scholar

    [16]

    Rahimabady M, Statharas E C, Yao K, Mirshekarloo M S, Chen S, Tay F E H 2017 Appl. Phys. Lett. 111 241601Google Scholar

    [17]

    Brian B, Sepúlveda B, Alaverdyan Y, Lechuga L M, Käll M 2009 Opt. Express 17 2015Google Scholar

    [18]

    Wang W, Yan F P, Tan S Y 2020 Photonics Res. 8 519Google Scholar

    [19]

    Meng K, Park S J, Burnett A D 2019 Opt. Express 27 23164Google Scholar

    [20]

    Xiong H, Hong J S, Jin D L 2013 Chin. Phys. B 22 014101Google Scholar

    [21]

    Wang X Z, Gao J S, Xu N X, Liu H 2014 Chin. Phys. B 23 047303Google Scholar

    [22]

    He X Y, Liu F, Lin F T, and Shi W Z 2021 Opt. Lett. 46 472Google Scholar

    [23]

    He X Y, Lin F T, Liu F, Shi W Z 2020 J. Phys. D: Appl. Phys. 53 155105Google Scholar

    [24]

    Peng J, He X Y, Shi C Y Y, Leng J, Lin F T, Liu F, Zhang H, Shi W Z 2020 Phys. E 124 114309Google Scholar

    [25]

    Hu T, Chieffo Logan R, Brenckle Mark A 2011 Adv. Mater. 23 3197Google Scholar

    [26]

    Whitesides G M 2006 Nature 442 368Google Scholar

    [27]

    Zhou H, Hu D L, Yang C 2018 Sci. Rep. 8 14801Google Scholar

    [28]

    Hu X, Xu G Q, Wen L 2016 Laser Photonics Rev. 10 962Google Scholar

    [29]

    Janneh M, De Marcellis A, Palange E 2018 Opt. Commun. 416 152Google Scholar

    [30]

    Wang B X, Zhai X, Wang G Z 2015 Appl. Phys. Lett. 117 014504Google Scholar

  • [1] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性.  , 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [2] 向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 利用样品阱实现太赫兹超材料的超微量传感.  , 2023, 72(12): 128701. doi: 10.7498/aps.72.20230080
    [3] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面.  , 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [4] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器.  , 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [5] 惠战强. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器.  , 2021, (): . doi: 10.7498/aps.70.20211650
    [6] 丁子平, 廖健飞, 曾泽楷. 基于表面等离子体共振的新型超宽带微结构光纤传感器研究.  , 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [7] 王鑫, 王俊林. 太赫兹波段电磁超材料吸波器折射率传感特性.  , 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [8] 严德贤, 李九生, 王怡. 基于向日葵型圆形光子晶体的高灵敏度太赫兹折射率传感器.  , 2019, 68(20): 207801. doi: 10.7498/aps.68.20191024
    [9] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散.  , 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [10] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器.  , 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [11] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器.  , 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [12] 陈再高, 王建国, 王玥, 张殿辉, 乔海亮. 欧姆损耗对太赫兹频段同轴表面波振荡器的影响.  , 2015, 64(7): 070703. doi: 10.7498/aps.64.070703
    [13] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究.  , 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [14] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究.  , 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [15] 刘海文, 朱爽爽, 文品, 覃凤, 任宝平, 肖湘, 侯新宇. 基于发卡式开口谐振环的柔性双频带超材料.  , 2015, 64(3): 038101. doi: 10.7498/aps.64.038101
    [16] 陈再高, 王建国, 王光强, 李爽, 王玥, 张殿辉, 乔海亮. 0.14太赫兹同轴表面波振荡器研究.  , 2014, 63(11): 110703. doi: 10.7498/aps.63.110703
    [17] 杨怀, 王春华, 郭小蓉. 基于正六边形多开口的新型双频带左手材料.  , 2014, 63(1): 014103. doi: 10.7498/aps.63.014103
    [18] 白晋军, 王昌辉, 侯宇, 范飞, 常胜江. 太赫兹双芯光子带隙光纤定向耦合器.  , 2012, 61(10): 108701. doi: 10.7498/aps.61.108701
    [19] 唐明春, 肖绍球, 邓天伟, 王多, 柏艳英, 金大鹏, 王秉中. 一种新颖的变异开口谐振环双频带磁谐振特异材料.  , 2011, 60(6): 064101. doi: 10.7498/aps.60.064101
    [20] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究.  , 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
计量
  • 文章访问数:  6539
  • PDF下载量:  298
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-10
  • 修回日期:  2021-03-29
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回
Baidu
map