Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Graphene based tunable metasurface for terahertz scattering manipulation

Zhang Yin Feng Yi-Jun Jiang Tian Cao Jie Zhao Jun-Ming Zhu Bo

Citation:

Graphene based tunable metasurface for terahertz scattering manipulation

Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Recently, the terahertz waves have attracted increasing attention due to the growing practical applications in astronomy, communication, imaging, spectroscopy, etc. While the metasurfaces, with extraordinary ability to control the electromagnetic waves, have been increasingly employed to tailor their interaction with terahertz waves and offer fascinating capabilities unavailable from natural materials. However, there are more and more requirements for the dynamical tune of the responses to electromagnetic components for the practical applications such as the terahertz stealth in variable environment. As such, considerable attention to terahertz frequencies has been focused on the tunable metasurfaces. Graphene has been proved to be a good candidate to meet the requirements for tunable electromagnetic properties, especially at the terahertz frequencies. In this paper, we design a tunable terahertz metasurface and achieve dynamically manipulating the scattering of terahertz waves. The metasurface is constructed by embedding double graphene layers with voltage control into the polyimide substrate of the diffuse scattering metasurface, which consists of the random array of rectangular metal patches, polyimide substrate, and metal ground. By adjusting the bias voltage on the double graphene layers, the terahertz scattering distribution can be controlled. At zero bias, the conductivity of graphene approaches to zero, and the random phase distribution is formed over the metasurface so that the reflected terahertz waves are dispersed into the upper half space with much lower intensity from various directions. With the bias voltage increasing, the conductivity of graphene increases, then the changeable range of the phase over the metasurface can be changed from 2up to up/4. As a result, the random phase distribution of the metasurface is gradually destroyed and increasingly transformed into a uniform phase distribution, resulting in the scattering characteristic changes from the approximate diffuse reflection to the specular reflection. The expected performance of proposed metasurface is demonstrated through the full-wave simulation. The corresponding results show that the terahertz scattering pattern of the metasurface is gradually varied from diffuse scattering to specular reflection by dynamically increasing the Fermi level of graphene through increasing the bias voltage. Moreover, the performance of the proposed metasurface is insensitive to the polarization of the incident wave. All of these indicate that the proposed metasurface can continuously control the scattering characteristics of terahertz wave. Thus, the proposed metasurface can be well integrated into the changing environment, and may offer potential stealth applications at terahertz frequencies. Moreover, as we employ complete graphene layers as the controlling elements instead of structured graphene layers in other metamaterial designs, the proposed metasurface may provide an example of relating the theory to possible experimental realization in tunable graphene metasurfaces.
      Corresponding author: Jiang Tian, jt@nju.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151393), the National Key Technologies Research and Development Program of China (Grant Nos. 2015BAD18B02, 2015BAK36B02), and the China Special Fund for Grain-Scientific Research in the Public Interest (Grant No. 201513004).
    [1]

    Sirtori C 2002 Nature 417 132

    [2]

    Williams G P 2005 Rep. Prog. Phys. 69 301

    [3]

    Tonouchi M 2007 Nature Photon. 1 97

    [4]

    Song H J, Nagatsuma T 2011 IEEE Trans. Terahertz Sci. Technol. 1 256

    [5]

    Liu X, Tyler T, Starr T, Starr A F, Jokerst N M, Padilla W J 2011 Phys. Rev. Lett. 107 045901

    [6]

    Bao D, Shen X P, Cui T J 2015 Acta Phys. Sin. 64 228701 (in Chinese)[鲍迪, 沈晓鹏, 崔铁军2015 64 228701]

    [7]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [8]

    Holloway C L, Kuester E F, Gordon J A, O' Hara J, Booth J, Smith D R 2012 IEEE Antenn. Propag. Magazine 54 10

    [9]

    Zhao J M, Sima B Y, Jia N, Wang C, Zhu B, Jiang T, Feng Y J 2016 Opt. Express 24 27849

    [10]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426

    [11]

    Zhu B, Feng Y J 2015 IEEE Trans. Antennas Propag. 63 5500

    [12]

    Zhu B, Chen K, Jia N, Sun L, Zhao J M, Jiang T, Feng Y J 2014 Sci. Rep. 4 4971

    [13]

    Yang L, Fan F, Chen M, Zhang X Z, Chang S J 2016 Acta Phys. Sin. 65 080702 (in Chinese)[杨磊, 范飞, 陈猛, 张选洲, 常胜江2016 65 080702]

    [14]

    Liu S, Cui T J, Xu Q, Bao D, Du L L, Wan X, Tang W X, Ouyang C M, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J G, Zhang W L, Cheng Q 2016 Light:Sci. Appl. 5 e16076

    [15]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light:Sci. Appl. 3 e218

    [16]

    Gao L H, Cheng Q, Yang J, Ma S J, Zhao J, Liu S, Chen H B, He Q, Jiang W X, Ma H F, Wen Q Y, Liang L J, Jin B B, Liu W W, Zhou L, Yao J Q, Wu P H, Cui T J 2015 Light:Sci. Appl. 4 e324

    [17]

    Zhang Y, Liang L J, Yang J, Feng Y J, Zhu B, Zhao J, Jiang T, Jin B B, Liu W W 2016 Sci. Rep. 6 26875

    [18]

    Chen K, Feng Y J, Yang Z J, Cui L, Zhao J M, Zhu B, Jiang T 2016 Sci. Rep. 6 35968

    [19]

    Liang L J, Qi M Q, Yang J, Shen X P, Zhai J Q, Xu W Z, Jin B B, Liu W W, Feng Y J, Zhang C H, Lu H, Chen H T, Kang L, Xu W W, Chen J, Cui T J, Wu P H, Liu S G 2015 Adv. Opt. Mater. 3 1374

    [20]

    Sun S, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S Y, kung W T, Guo G Y, Zhou L, Tsai D P 2012 Nano Lett. 12 6223

    [21]

    Chen H T, Padilla W J, Zide J M, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597

    [22]

    Feng W, Zhang R, Cao J C 2015 Acta Phys. Sin. 64 229501 (in Chinese)[冯伟, 张戎, 曹俊诚2015 64 229501]

    [23]

    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630

    [24]

    Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nat. Mater. 11 936

    [25]

    Zhang Y, Feng Y J, Zhu B, Zhao J M, Jiang T 2014 Opt. Express 22 22743

    [26]

    Zhang Y, Feng Y J, Zhu B, Zhao J M, Jiang T 2015 Opt. Express 23 27230

    [27]

    Xu B Z, Gu C Q, Li Z, Niu Z Y 2013 Opt. Express 21 23803

    [28]

    Zhang H Y, Huang X Y, Chen Q, Ding C F, Li T T, L H H, Xu S L, Zhang X, Zhang Y P, Yao J Q 2016 Acta Phys. Sin. 65 018101 (in Chinese)[张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨2016 65 018101]

    [29]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [30]

    Kim J Y, Lee C, Bae S, Kim K S, Hong B H, Choi E J 2011 Appl. Phys. Lett. 98 201907

    [31]

    Gmez-Daz J S, Perruisseau-Carrier J 2013 Opt. Express 21 15490

    [32]

    Rodriguez B S, Yan R, Kelly M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H L G 2012 Nat. Commun. 3 780

  • [1]

    Sirtori C 2002 Nature 417 132

    [2]

    Williams G P 2005 Rep. Prog. Phys. 69 301

    [3]

    Tonouchi M 2007 Nature Photon. 1 97

    [4]

    Song H J, Nagatsuma T 2011 IEEE Trans. Terahertz Sci. Technol. 1 256

    [5]

    Liu X, Tyler T, Starr T, Starr A F, Jokerst N M, Padilla W J 2011 Phys. Rev. Lett. 107 045901

    [6]

    Bao D, Shen X P, Cui T J 2015 Acta Phys. Sin. 64 228701 (in Chinese)[鲍迪, 沈晓鹏, 崔铁军2015 64 228701]

    [7]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [8]

    Holloway C L, Kuester E F, Gordon J A, O' Hara J, Booth J, Smith D R 2012 IEEE Antenn. Propag. Magazine 54 10

    [9]

    Zhao J M, Sima B Y, Jia N, Wang C, Zhu B, Jiang T, Feng Y J 2016 Opt. Express 24 27849

    [10]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426

    [11]

    Zhu B, Feng Y J 2015 IEEE Trans. Antennas Propag. 63 5500

    [12]

    Zhu B, Chen K, Jia N, Sun L, Zhao J M, Jiang T, Feng Y J 2014 Sci. Rep. 4 4971

    [13]

    Yang L, Fan F, Chen M, Zhang X Z, Chang S J 2016 Acta Phys. Sin. 65 080702 (in Chinese)[杨磊, 范飞, 陈猛, 张选洲, 常胜江2016 65 080702]

    [14]

    Liu S, Cui T J, Xu Q, Bao D, Du L L, Wan X, Tang W X, Ouyang C M, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J G, Zhang W L, Cheng Q 2016 Light:Sci. Appl. 5 e16076

    [15]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light:Sci. Appl. 3 e218

    [16]

    Gao L H, Cheng Q, Yang J, Ma S J, Zhao J, Liu S, Chen H B, He Q, Jiang W X, Ma H F, Wen Q Y, Liang L J, Jin B B, Liu W W, Zhou L, Yao J Q, Wu P H, Cui T J 2015 Light:Sci. Appl. 4 e324

    [17]

    Zhang Y, Liang L J, Yang J, Feng Y J, Zhu B, Zhao J, Jiang T, Jin B B, Liu W W 2016 Sci. Rep. 6 26875

    [18]

    Chen K, Feng Y J, Yang Z J, Cui L, Zhao J M, Zhu B, Jiang T 2016 Sci. Rep. 6 35968

    [19]

    Liang L J, Qi M Q, Yang J, Shen X P, Zhai J Q, Xu W Z, Jin B B, Liu W W, Feng Y J, Zhang C H, Lu H, Chen H T, Kang L, Xu W W, Chen J, Cui T J, Wu P H, Liu S G 2015 Adv. Opt. Mater. 3 1374

    [20]

    Sun S, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S Y, kung W T, Guo G Y, Zhou L, Tsai D P 2012 Nano Lett. 12 6223

    [21]

    Chen H T, Padilla W J, Zide J M, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597

    [22]

    Feng W, Zhang R, Cao J C 2015 Acta Phys. Sin. 64 229501 (in Chinese)[冯伟, 张戎, 曹俊诚2015 64 229501]

    [23]

    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630

    [24]

    Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nat. Mater. 11 936

    [25]

    Zhang Y, Feng Y J, Zhu B, Zhao J M, Jiang T 2014 Opt. Express 22 22743

    [26]

    Zhang Y, Feng Y J, Zhu B, Zhao J M, Jiang T 2015 Opt. Express 23 27230

    [27]

    Xu B Z, Gu C Q, Li Z, Niu Z Y 2013 Opt. Express 21 23803

    [28]

    Zhang H Y, Huang X Y, Chen Q, Ding C F, Li T T, L H H, Xu S L, Zhang X, Zhang Y P, Yao J Q 2016 Acta Phys. Sin. 65 018101 (in Chinese)[张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨2016 65 018101]

    [29]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [30]

    Kim J Y, Lee C, Bae S, Kim K S, Hong B H, Choi E J 2011 Appl. Phys. Lett. 98 201907

    [31]

    Gmez-Daz J S, Perruisseau-Carrier J 2013 Opt. Express 21 15490

    [32]

    Rodriguez B S, Yan R, Kelly M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H L G 2012 Nat. Commun. 3 780

  • [1] Wang Yue, Wang Hao-Jie, Cui Zi-Jian, Zhang Da-Chi. Bound states in continuum domain of double resonant ring metal metasurfaces. Acta Physica Sinica, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [2] Wang Dan, Li Jiu-Sheng, Guo Feng-Lei. Switchable ultra-broadband absorption and polarization conversion terahertz metasurface. Acta Physica Sinica, 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [3] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [4] Yang Dong-Ru, Cheng Yong-Zhi, Luo Hui, Chen Fu, Li Xiang-Cheng. Double-split-ring structure based ultra-broadband and ultra-thin dual-polarization terahertz metasurface with half-reflection and half-transmission. Acta Physica Sinica, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [5] Yu Bo, Zhuang Shu-Lei, Wang Zheng-Xin, Wang Man-Shi, Guo Lan-Jun, Li Xin-Yu, Guo Wen-Rui, Su Wen-Ming, Gong Cheng, Liu Wei-Wei. Nano-printing technology based double-spiral terahertz tunable metasurface. Acta Physica Sinica, 2022, 71(11): 117801. doi: 10.7498/aps.71.20212408
    [6] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [7] Li Ze-Yu, Jiang Qu-Han, Ma Teng-Zhou, Yuan Ying-Hao, Chen Lin. Multi-parameter tunable phase transition based terahertz graphene plasmons and its application. Acta Physica Sinica, 2021, 70(22): 224202. doi: 10.7498/aps.70.20210445
    [8] Wang Jian, Zhang Chao-Yue, Yao Zhao-Yu, Zhang Chi, Xu Feng, Yang Yuan. A method of rapidly designing graphene-based terahertz diffusion surface. Acta Physica Sinica, 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [9] Zhai Shi-Long, Wang Yuan-Bo, Zhao Xiao-Peng. A kind of tunable acoustic metamaterial for low frequency absorption. Acta Physica Sinica, 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [10] Zhou Lu, Zhao Guo-Zhong, Li Xiao-Nan. Broadband terahertz vortex beam generation based on metasurface of double-split resonant rings. Acta Physica Sinica, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [11] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [12] Tao Ze-Hua, Dong Hai-Ming, Duan Yi-Feng. Photon-excited carriers and emission of graphene in terahertz radiation fields. Acta Physica Sinica, 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [13] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [14] Li Xiao-Bing, Lu Wei-Bing, Liu Zhen-Guo, Chen Hao. Dynamic beam-steering in wide angle range based on tunable graphene metasurface. Acta Physica Sinica, 2018, 67(18): 184101. doi: 10.7498/aps.67.20180592
    [15] Li Dan, Liu Yong, Wang Huai-Xing, Xiao Long-Sheng, Ling Fu-Ri, Yao Jian-Quan. Gain characteristics of grapheme plasmain terahertz range. Acta Physica Sinica, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [16] Zhang Hui-Yun, Huang Xiao-Yan, Chen Qi, Ding Chun-Feng, Li Tong-Tong, Lü Huan-Huan, Xu Shi-Lin, Zhang Xiao, Zhang Yu-Ping, Yao Jian-Quan. Tunable terahertz absorber based on complementary graphene meta-surface. Acta Physica Sinica, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [17] Feng Wei, Zhang Rong, Cao Jun-Cheng. Progress of terahertz devices based on graphene. Acta Physica Sinica, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501
    [18] Deng Xin-Hua, Yuan Ji-Ren, Liu Jiang-Tao, Wang Tong-Biao. Tunable terahertz photonic crystal structures containing graphene. Acta Physica Sinica, 2015, 64(7): 074101. doi: 10.7498/aps.64.074101
    [19] Liu Ya-Qing, Zhang Yu-Ping, Zhang Hui-Yun, Lü Huan-Huan, Li Tong-Tong, Ren Guang-Jun. Study on the gain characteristics of terahertz surface plasma in optically pumped graphene multi-layer structures. Acta Physica Sinica, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [20] Dong Hai-Ming. Electrically-controlled nonlinear terahertz optical properties of graphene. Acta Physica Sinica, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
Metrics
  • Abstract views:  8698
  • PDF Downloads:  604
  • Cited By: 0
Publishing process
  • Received Date:  02 May 2017
  • Accepted Date:  16 June 2017
  • Published Online:  05 October 2017

/

返回文章
返回
Baidu
map