-
近年来连续体中的束缚态(bound states in the continuum,BICs)成为当下研究的热点,因为其具有极强的促进光与物质相互作用的能力,是实现具有超高品质因子(quality factors,Q)的光学共振的理想平台。在这项工作中,设计了一个单元胞由硅圆盘构成的全介质超表面,在此超表面上观察到一个对称保护的BIC(symmetry-protected BIC,SP-BIC),当面内对称性被破坏时,它可以转化为具有高质量品质因子的准BIC(quasi-BIC,QBIC)。随着背景折射率的改变,共振峰的位置随之变化,通过这一原理实现了一种生物折射率传感器。由于品质因子和不对称参数成二次反比关系,通过调节不对称参数,品质因子也会发生改变,从而实现传感性能的提升和调节。经过调节,该超表面的折射率传感灵敏度和优值分别达到162.55nm/RIU和1711.05RIU-1,高于许多现有研究。这种高Q因子的全介质超表面设计为高灵敏度和高精度的生物检测提供了新的途径。In recent years, bound states in the continuum (BICs) have become a hot research topic because of their strong ability to facilitate light-matter interactions, an ideal platform for realizing optical resonances with ultra-high quality factors (Q). Nowadays, BICs have been found in various photonic micro- and nanostructures such as waveguides, gratings, and metasurfaces, among which metasurfaces have attracted much attention due to their easy tunability and considerable robustness. Conventional precious metal-based metasurfaces inevitably have low Q-factors due to the inherent defect of high ohmic losses. In contrast, all-dielectric metasurfaces can be an excellent alternative to metallic metasurface structures due to lower ohmic losses. In this work, an all-dielectric metasurface whose unit cell consists of a silicon disc is designed, and a symmetry-protected BIC (SP-BIC) is observed on this metasurface, which can be transformed into a quasi-BIC whose radiation is dominated by magnetic dipoles and has a high-quality Q-factor when eccentric holes are introduced to break the symmetry in the structural plane (QBIC). For QBICs formed on the metasurface, the resonance wavelength is usually strongly dependent on the refractive index of the surroundings due to the strong localization of the electric field within the cell. As the refractive index of the background changes, the position of the resonance peaks changes accordingly, and identification sensing of some biological components is achieved by this principle. This metasurface-based bio-refractive index sensor is less invasive in free space and is expected to overcome the drawbacks of the traditional electrochemical-based biosensing techniques with cumbersome detection steps and high time and material costs. In terms of sensing parameters, since the quality factor is quadratically inversely related to the asymmetry parameter, by adjusting the asymmetry parameter, the quality factor will also be changed, thus achieving the enhancement and adjustment of sensing performance. After tuning, the refractive index sensing sensitivity and figure of merit of this metasurface reach 162.55 nm/RIU and 1711.05 RIU-1, respectively, which are higher than many existing studies. This all-dielectric metasurface design with a high Q-factor provides a new avenue for high sensitivity and high-precision bio-detection.
-
Keywords:
- all-dielectric metasurface /
- bound states in the continuum /
- refractive index sensing /
- optical biosensing
-
[1] Sadreev A F 2021Rep. Prog. Phys. 84 055901
[2] Koshelev K, Bogdanov A, Kivshar Y 2019Science Bulletin 64 836
[3] Huang L, Li G, Gurarslan A, Yu Y, Kirste R, Guo W, Zhao J, Collazo R, Sitar Z, Parsons G N, Kudenov M, Cao L 2016ACS Nano 10 7493
[4] Neumann J V, Wigner E P 1929Phys. Z 30 465
[5] Tong H, Liu S, Zhao M, Fang K 2020Nat Commun 11 5216
[6] Linton C M, McIver P 2007Wave Motion 45 16
[7] Marinica D C, Borisov A G, Shabanov S V 2008Phys. Rev. Lett. 100 183902
[8] Plotnik Y, Peleg O, Dreisow F, Heinrich M, Nolte S, Szameit A, Segev M 2011Phys. Rev. Lett. 107 183901
[9] Hsu C W, Zhen B, Lee J, Chua S-L, Johnson S G, Joannopoulos J D, Soljačić M 2013Nature 499 188
[10] Monticone F, Alù A 2014Phys. Rev. Lett. 112 213903
[11] Gomis-Bresco J, Artigas D, Torner L 2017Nature Photon 11 232
[12] Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kanté B 2017Nature 541 196
[13] Doeleman H M, Monticone F, den Hollander W, Alù A, Koenderink A F 2018Nature Photon 12 397
[14] Li Z, Chang H, Lai J M, Song F, Yao Q, Liu H, Ni H, Niu Z, Zhang J 2023 J. Semicond. 44082901
[15] Salmanogli A 2023 J. Semicond. 44052901
[16] Bulgakov E N, Sadreev A F 2008Phys. Rev. B 78 075105
[17] Romano S, Zito G, Lara Yépez S N, Cabrini S, Penzo E, Coppola G, Rendina I, Mocellaark V 2019Opt. Express 27 18776
[18] Liu H G, Zhang X Y, Nan X Y, Zhao E G, Liu H T 2024Acta Physica Sinica 73 047802(in Chinese)[刘会刚,张翔宇,南雪莹,赵二刚,刘海涛2024 73 047802]
[19] Srivastava Y K, Ako R T, Gupta M, Bhaskaran M, Sriram S, Singh R 2019Applied Physics Letters 115 151105
[20] Liu D, Wu F, Yang R, Chen L, He X, Liu F 2021Opt. Lett., OL 46 4370
[21] Koshelev K, Favraud G, Bogdanov A, Kivshar Y, Fratalocchi A 2019Nanophotonics 8 725
[22] Lee J, Zhen B, Chua S-L, Qiu W, Joannopoulos J D, Soljačić M, Shapira O 2012Phys. Rev. Lett. 109 067401
[23] Hsu C W, Zhen B, Stone A D, Joannopoulos J D, Soljačić M 2016Nat Rev Mater 1 1
[24] Xu L, Zangeneh Kamali K, Huang L, Rahmani M, Smirnov A, Camacho-Morales R, Ma Y, Zhang G, Woolley M, Neshev D, Miroshnichenko A E 2019Advanced Science 6 1802119
[25] Paddon P, Young J F 2000Phys. Rev. B 61 2090
[26] Bulgakov E N, Sadreev A F 2014Opt. Lett., OL 39 5212
[27] Barrow M, Phillips J 2020Opt. Lett., OL 45 4348
[28] Zong X, Li L, Liu Y 2021Opt. Lett., OL 46 6095
[29] Jain A, Moitra P, Koschny T, Valentine J, Soukoulis C M 2015Advanced Optical Materials 3 1431
[30] Wang Y, Fan Y, Zhang X, Tang H, Song Q, Han J, Xiao S 2021ACS Nano 15 7386
[31] Chen Y, Zhao C, Zhang Y, Qiu C 2020Nano Lett. 20 8696
[32] Koshelev K, Lepeshov S, Liu M, Bogdanov A, Kivshar Y 2018Phys. Rev. Lett. 121 193903
[33] Alipour A, Farmani A, Mir A 2018IEEE Sensors Journal 18 7047
[34] Kong Y, Cao J, Qian W, Liu C, Wang S 2018IEEE Photonics J. 10 1
[35] Bezus E A, Bykov D A, Doskolovich L L 2018Photon. Res. 6 1084
[36] Zeng T-Y, Liu G-D, Wang L-L, Lin Q 2021Opt. Express 29 40177
[37] Al-Ani I A M, As'Ham K, Huang L, Miroshnichenko A E, Hattori H T 2021Laser& Photonics Reviews 15 2100240
[38] Xiang J, Chen J, Lan S, Miroshnichenko A E 2020Advanced Optical Materials 8 2000489
[39] Li Z, Panmai M, Zhou L, Li S, Liu S, Zeng J, Lan S 2023Applied Surface Science 620 156779
[40] Chen C, Wang J 2020Analyst 145 1605
[41] Sharma S, Kumari R, Varshney S K, Lahiri B 2020Reviews in Physics 5 100044
[42] Wang Z, Tan C, Peng M, Yu Y, Zhong F, Wang P, He T, Wang Y, Zhang Z, Xie R, Wang F, He S, Zhou P, Hu W 2024 Light Sci Appl 13277
[43] Roingeard P, Raynal P-I, Eymieux S, Blanchard E 2019Reviews in Medical Virology 29 e2019
[44] Caucheteur C, Villatoro J, Liu F, Loyez M, Guo T, Albert J 2022Adv. Opt. Photon. 14 1
[45] Polz L, Dutz F J, Maier R R J, Bartelt H, Roths J 2021Optics& Laser Technology 134 106650
[46] Valušis G, Lisauskas A, Yuan H, Knap W, Roskos H G 2021Sensors 21 4092
[47] Toropov N, Cabello G, Serrano M P, Gutha R R, Rafti M, Vollmer F 2021Light Sci Appl 10 42
[48] Azzouz A, Hejji L, Kim K-H, Kukkar D, Souhail B, Bhardwaj N, Brown R J C, Zhang W 2022Biosensors and Bioelectronics 197 113767
[49] Li Q, Meng J, Li Z 2022J. Mater. Chem. A 10 8107
[50] Wang J, Kühne J, Karamanos T, Rockstuhl C, Maier S A, Tittl A 2021Advanced Functional Materials 31 2104652
[51] Guo L, Zhang Z, Xie Q, Li W, Xia F, Wang M, Feng H, You C, Yun M 2023Applied Surface Science 615 156408
[52] See https://www.lumerical.com/tcad-products/fdtd/for FDTD method.
[53] Johnson S G, Joannopoulos J D 2001Opt. Express, OE 8 173
[54] Xu T, Wheeler M S, Nair S V, Ruda H E, Mojahedi M, Aitchison J S 2008Applied Physics Letters 93 241105
[55] Zhen B, Hsu C W, Lu L, Stone A D, Soljačić M 2014Phys. Rev. Lett. 113 257401
[56] Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S 2017Nature Photon 11 543
[57] Miroshnichenko A E, Flach S, Kivshar Y S 2010Rev. Mod. Phys. 82 2257
[58] Yang Z-J, Hao Z-H, Lin H-Q, Wang Q-Q 2014Nanoscale 6 4985
[59] Hinamoto T, Fujii M 2021OSA Continuum, OSAC 4 1640
[60] Alaee R, Rockstuhl C, Fernandez-Corbaton I 2018Optics Communications 407 17
[61] Wang X, Duan J, Chen W, Zhou C, Liu T, Xiao S 2020Phys. Rev. B 102 155432
[62] Li Z, Xie M, Nie G, Wang J, Huang L 2023J. Phys. Chem. Lett. 14 10762
[63] Hu H, Lu W, Antonov A, Berté R, Maier S A, Tittl A 2024 Nat Commun 157050
[64] Zhou C, Liu G, Ban G, Li S, Huang Q, Xia J, Wang Y, Zhan M 2018Applied Physics Letters 112 101904
[65] Maji P S, Shukla M K, Das R 2018Sensors and Actuators B:Chemical 255 729
[66] Bankapur A, Zachariah E, Chidangil S, Valiathan M, Mathur D 2010PLOS ONE 5 e10427
[67] Tuchin V V, Zhestkov D M, Bashkatov A N, Genina E A 2004Opt. Express, OE 12 2966
[68] Chen J, Yuan J, Zhang Q, Ge H, Tang C, Liu Y, Guo B 2018Opt. Mater. Express, OME 8 342
[69] Gao B, Wang Y, Zhang T, Xu Y, He A, Dai L, Zhang J 2019ACS Nano 13 9131
[70] Sun F, Yang W, Du C, Chen Y, FU T, Shi D 2020 Plasmonics 15949
[71] Li H, Yu S, Yang L, Zhao T 2021Optics& Laser Technology 140 107072
[72] Song S, Yu S, Li H, Zhao T 2022Laser Phys. 32 025403
[73] Zito G, Sanità G, Alulema B G, Yépez S N L, Lanzio V, Riminucci F, Cabrini S, Moccia M, Avitabile C, Lamberti A, Mocella V, Rendina I, Romano S 2021 Nanophotonics 104279
[74] Liu H, Zheng L, Ma P, Zhong Y, Liu B, Chen X, Liu H 2019Opt. Express 27 13252
计量
- 文章访问数: 49
- PDF下载量: 0
- 被引次数: 0