搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于准连续体束缚态的近红外高Q全介质超表面生物传感器

王军辉 李德琼 聂国政 詹杰 甘龙飞 陈智全 兰林锋

引用本文:
Citation:

基于准连续体束缚态的近红外高Q全介质超表面生物传感器

王军辉, 李德琼, 聂国政, 詹杰, 甘龙飞, 陈智全, 兰林锋

Near-infrared high-Q all-dielectric metasurface biosensor based on quasi-bound state in the continuum

WANG JunHui, LI Deqiong, NIE GuoZheng, ZhAN Jie, GAN LongFei, CHEN ZhiQuan, LAN LinFeng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 近年来连续体中的束缚态(bound states in the continuum,BICs)成为当下研究的热点,因为其具有极强的促进光与物质相互作用的能力,是实现具有超高品质因子(quality factors,Q)的光学共振的理想平台。在这项工作中,设计了一个单元胞由硅圆盘构成的全介质超表面,在此超表面上观察到一个对称保护的BIC(symmetry-protected BIC,SP-BIC),当面内对称性被破坏时,它可以转化为具有高质量品质因子的准BIC(quasi-BIC,QBIC)。随着背景折射率的改变,共振峰的位置随之变化,通过这一原理实现了一种生物折射率传感器。由于品质因子和不对称参数成二次反比关系,通过调节不对称参数,品质因子也会发生改变,从而实现传感性能的提升和调节。经过调节,该超表面的折射率传感灵敏度和优值分别达到162.55nm/RIU和1711.05RIU-1,高于许多现有研究。这种高Q因子的全介质超表面设计为高灵敏度和高精度的生物检测提供了新的途径。
    In recent years, bound states in the continuum (BICs) have become a hot research topic because of their strong ability to facilitate light-matter interactions, an ideal platform for realizing optical resonances with ultra-high quality factors (Q). Nowadays, BICs have been found in various photonic micro- and nanostructures such as waveguides, gratings, and metasurfaces, among which metasurfaces have attracted much attention due to their easy tunability and considerable robustness. Conventional precious metal-based metasurfaces inevitably have low Q-factors due to the inherent defect of high ohmic losses. In contrast, all-dielectric metasurfaces can be an excellent alternative to metallic metasurface structures due to lower ohmic losses. In this work, an all-dielectric metasurface whose unit cell consists of a silicon disc is designed, and a symmetry-protected BIC (SP-BIC) is observed on this metasurface, which can be transformed into a quasi-BIC whose radiation is dominated by magnetic dipoles and has a high-quality Q-factor when eccentric holes are introduced to break the symmetry in the structural plane (QBIC). For QBICs formed on the metasurface, the resonance wavelength is usually strongly dependent on the refractive index of the surroundings due to the strong localization of the electric field within the cell. As the refractive index of the background changes, the position of the resonance peaks changes accordingly, and identification sensing of some biological components is achieved by this principle. This metasurface-based bio-refractive index sensor is less invasive in free space and is expected to overcome the drawbacks of the traditional electrochemical-based biosensing techniques with cumbersome detection steps and high time and material costs. In terms of sensing parameters, since the quality factor is quadratically inversely related to the asymmetry parameter, by adjusting the asymmetry parameter, the quality factor will also be changed, thus achieving the enhancement and adjustment of sensing performance. After tuning, the refractive index sensing sensitivity and figure of merit of this metasurface reach 162.55 nm/RIU and 1711.05 RIU-1, respectively, which are higher than many existing studies. This all-dielectric metasurface design with a high Q-factor provides a new avenue for high sensitivity and high-precision bio-detection.
  • [1]

    Sadreev A F 2021Rep. Prog. Phys. 84 055901

    [2]

    Koshelev K, Bogdanov A, Kivshar Y 2019Science Bulletin 64 836

    [3]

    Huang L, Li G, Gurarslan A, Yu Y, Kirste R, Guo W, Zhao J, Collazo R, Sitar Z, Parsons G N, Kudenov M, Cao L 2016ACS Nano 10 7493

    [4]

    Neumann J V, Wigner E P 1929Phys. Z 30 465

    [5]

    Tong H, Liu S, Zhao M, Fang K 2020Nat Commun 11 5216

    [6]

    Linton C M, McIver P 2007Wave Motion 45 16

    [7]

    Marinica D C, Borisov A G, Shabanov S V 2008Phys. Rev. Lett. 100 183902

    [8]

    Plotnik Y, Peleg O, Dreisow F, Heinrich M, Nolte S, Szameit A, Segev M 2011Phys. Rev. Lett. 107 183901

    [9]

    Hsu C W, Zhen B, Lee J, Chua S-L, Johnson S G, Joannopoulos J D, Soljačić M 2013Nature 499 188

    [10]

    Monticone F, Alù A 2014Phys. Rev. Lett. 112 213903

    [11]

    Gomis-Bresco J, Artigas D, Torner L 2017Nature Photon 11 232

    [12]

    Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kanté B 2017Nature 541 196

    [13]

    Doeleman H M, Monticone F, den Hollander W, Alù A, Koenderink A F 2018Nature Photon 12 397

    [14]

    Li Z, Chang H, Lai J M, Song F, Yao Q, Liu H, Ni H, Niu Z, Zhang J 2023 J. Semicond. 44082901

    [15]

    Salmanogli A 2023 J. Semicond. 44052901

    [16]

    Bulgakov E N, Sadreev A F 2008Phys. Rev. B 78 075105

    [17]

    Romano S, Zito G, Lara Yépez S N, Cabrini S, Penzo E, Coppola G, Rendina I, Mocellaark V 2019Opt. Express 27 18776

    [18]

    Liu H G, Zhang X Y, Nan X Y, Zhao E G, Liu H T 2024Acta Physica Sinica 73 047802(in Chinese)[刘会刚,张翔宇,南雪莹,赵二刚,刘海涛2024 73 047802]

    [19]

    Srivastava Y K, Ako R T, Gupta M, Bhaskaran M, Sriram S, Singh R 2019Applied Physics Letters 115 151105

    [20]

    Liu D, Wu F, Yang R, Chen L, He X, Liu F 2021Opt. Lett., OL 46 4370

    [21]

    Koshelev K, Favraud G, Bogdanov A, Kivshar Y, Fratalocchi A 2019Nanophotonics 8 725

    [22]

    Lee J, Zhen B, Chua S-L, Qiu W, Joannopoulos J D, Soljačić M, Shapira O 2012Phys. Rev. Lett. 109 067401

    [23]

    Hsu C W, Zhen B, Stone A D, Joannopoulos J D, Soljačić M 2016Nat Rev Mater 1 1

    [24]

    Xu L, Zangeneh Kamali K, Huang L, Rahmani M, Smirnov A, Camacho-Morales R, Ma Y, Zhang G, Woolley M, Neshev D, Miroshnichenko A E 2019Advanced Science 6 1802119

    [25]

    Paddon P, Young J F 2000Phys. Rev. B 61 2090

    [26]

    Bulgakov E N, Sadreev A F 2014Opt. Lett., OL 39 5212

    [27]

    Barrow M, Phillips J 2020Opt. Lett., OL 45 4348

    [28]

    Zong X, Li L, Liu Y 2021Opt. Lett., OL 46 6095

    [29]

    Jain A, Moitra P, Koschny T, Valentine J, Soukoulis C M 2015Advanced Optical Materials 3 1431

    [30]

    Wang Y, Fan Y, Zhang X, Tang H, Song Q, Han J, Xiao S 2021ACS Nano 15 7386

    [31]

    Chen Y, Zhao C, Zhang Y, Qiu C 2020Nano Lett. 20 8696

    [32]

    Koshelev K, Lepeshov S, Liu M, Bogdanov A, Kivshar Y 2018Phys. Rev. Lett. 121 193903

    [33]

    Alipour A, Farmani A, Mir A 2018IEEE Sensors Journal 18 7047

    [34]

    Kong Y, Cao J, Qian W, Liu C, Wang S 2018IEEE Photonics J. 10 1

    [35]

    Bezus E A, Bykov D A, Doskolovich L L 2018Photon. Res. 6 1084

    [36]

    Zeng T-Y, Liu G-D, Wang L-L, Lin Q 2021Opt. Express 29 40177

    [37]

    Al-Ani I A M, As'Ham K, Huang L, Miroshnichenko A E, Hattori H T 2021Laser& Photonics Reviews 15 2100240

    [38]

    Xiang J, Chen J, Lan S, Miroshnichenko A E 2020Advanced Optical Materials 8 2000489

    [39]

    Li Z, Panmai M, Zhou L, Li S, Liu S, Zeng J, Lan S 2023Applied Surface Science 620 156779

    [40]

    Chen C, Wang J 2020Analyst 145 1605

    [41]

    Sharma S, Kumari R, Varshney S K, Lahiri B 2020Reviews in Physics 5 100044

    [42]

    Wang Z, Tan C, Peng M, Yu Y, Zhong F, Wang P, He T, Wang Y, Zhang Z, Xie R, Wang F, He S, Zhou P, Hu W 2024 Light Sci Appl 13277

    [43]

    Roingeard P, Raynal P-I, Eymieux S, Blanchard E 2019Reviews in Medical Virology 29 e2019

    [44]

    Caucheteur C, Villatoro J, Liu F, Loyez M, Guo T, Albert J 2022Adv. Opt. Photon. 14 1

    [45]

    Polz L, Dutz F J, Maier R R J, Bartelt H, Roths J 2021Optics& Laser Technology 134 106650

    [46]

    Valušis G, Lisauskas A, Yuan H, Knap W, Roskos H G 2021Sensors 21 4092

    [47]

    Toropov N, Cabello G, Serrano M P, Gutha R R, Rafti M, Vollmer F 2021Light Sci Appl 10 42

    [48]

    Azzouz A, Hejji L, Kim K-H, Kukkar D, Souhail B, Bhardwaj N, Brown R J C, Zhang W 2022Biosensors and Bioelectronics 197 113767

    [49]

    Li Q, Meng J, Li Z 2022J. Mater. Chem. A 10 8107

    [50]

    Wang J, Kühne J, Karamanos T, Rockstuhl C, Maier S A, Tittl A 2021Advanced Functional Materials 31 2104652

    [51]

    Guo L, Zhang Z, Xie Q, Li W, Xia F, Wang M, Feng H, You C, Yun M 2023Applied Surface Science 615 156408

    [52]

    See https://www.lumerical.com/tcad-products/fdtd/for FDTD method.

    [53]

    Johnson S G, Joannopoulos J D 2001Opt. Express, OE 8 173

    [54]

    Xu T, Wheeler M S, Nair S V, Ruda H E, Mojahedi M, Aitchison J S 2008Applied Physics Letters 93 241105

    [55]

    Zhen B, Hsu C W, Lu L, Stone A D, Soljačić M 2014Phys. Rev. Lett. 113 257401

    [56]

    Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S 2017Nature Photon 11 543

    [57]

    Miroshnichenko A E, Flach S, Kivshar Y S 2010Rev. Mod. Phys. 82 2257

    [58]

    Yang Z-J, Hao Z-H, Lin H-Q, Wang Q-Q 2014Nanoscale 6 4985

    [59]

    Hinamoto T, Fujii M 2021OSA Continuum, OSAC 4 1640

    [60]

    Alaee R, Rockstuhl C, Fernandez-Corbaton I 2018Optics Communications 407 17

    [61]

    Wang X, Duan J, Chen W, Zhou C, Liu T, Xiao S 2020Phys. Rev. B 102 155432

    [62]

    Li Z, Xie M, Nie G, Wang J, Huang L 2023J. Phys. Chem. Lett. 14 10762

    [63]

    Hu H, Lu W, Antonov A, Berté R, Maier S A, Tittl A 2024 Nat Commun 157050

    [64]

    Zhou C, Liu G, Ban G, Li S, Huang Q, Xia J, Wang Y, Zhan M 2018Applied Physics Letters 112 101904

    [65]

    Maji P S, Shukla M K, Das R 2018Sensors and Actuators B:Chemical 255 729

    [66]

    Bankapur A, Zachariah E, Chidangil S, Valiathan M, Mathur D 2010PLOS ONE 5 e10427

    [67]

    Tuchin V V, Zhestkov D M, Bashkatov A N, Genina E A 2004Opt. Express, OE 12 2966

    [68]

    Chen J, Yuan J, Zhang Q, Ge H, Tang C, Liu Y, Guo B 2018Opt. Mater. Express, OME 8 342

    [69]

    Gao B, Wang Y, Zhang T, Xu Y, He A, Dai L, Zhang J 2019ACS Nano 13 9131

    [70]

    Sun F, Yang W, Du C, Chen Y, FU T, Shi D 2020 Plasmonics 15949

    [71]

    Li H, Yu S, Yang L, Zhao T 2021Optics& Laser Technology 140 107072

    [72]

    Song S, Yu S, Li H, Zhao T 2022Laser Phys. 32 025403

    [73]

    Zito G, Sanità G, Alulema B G, Yépez S N L, Lanzio V, Riminucci F, Cabrini S, Moccia M, Avitabile C, Lamberti A, Mocella V, Rendina I, Romano S 2021 Nanophotonics 104279

    [74]

    Liu H, Zheng L, Ma P, Zhong Y, Liu B, Chen X, Liu H 2019Opt. Express 27 13252

  • [1] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态.  , doi: 10.7498/aps.73.20231556
    [2] 孟祥裕, 李涛, 余彬彬, 邰永航. 探究四聚体超表面中多极准连续域束缚态的调控机制.  , doi: 10.7498/aps.73.20240272
    [3] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性.  , doi: 10.7498/aps.73.20231357
    [4] 刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛. 基于准连续域束缚态的全介质超构表面双参数传感器.  , doi: 10.7498/aps.73.20231514
    [5] 周晓霞, 陈英, 蔡力. 基于零折射率介质的超窄带光学滤波器.  , doi: 10.7498/aps.72.20230394
    [6] 祁云平, 贾迎君, 张婷, 丁京徽, 尉净雯, 王向贤. 基于Fano共振的金属-绝缘体-金属-石墨烯纳米管混合结构动态可调折射率传感器.  , doi: 10.7498/aps.71.20220652
    [7] 张伟, 万静, 蒙列, 罗曜伟, 郭明瑞. D型光纤与微管耦合的微流控折射率传感器.  , doi: 10.7498/aps.71.20221137
    [8] 张翔宇, 刘会刚, 康明, 刘波, 刘海涛. 金属-介质-金属多层结构可调谐Fabry-Perot共振及高灵敏折射率传感.  , doi: 10.7498/aps.70.20202058
    [9] 王鑫, 王俊林. 太赫兹波段电磁超材料吸波器折射率传感特性.  , doi: 10.7498/aps.70.20201054
    [10] 祁云平, 张婷, 郭嘉, 张宝和, 王向贤. 基于乙醇密封共振腔金属-介质-金属波导的高性能温度和折射率两用传感器.  , doi: 10.7498/aps.69.20200405
    [11] 孟令俊, 王梦宇, 沈远, 杨煜, 徐文斌, 张磊, 王克逸. 具有内参考热补偿功能的三层膜结构微球腔折射率传感器.  , doi: 10.7498/aps.69.20191265
    [12] 祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤. 基于十字连通形环形谐振腔金属-介质-金属波导的折射率传感器和滤波器.  , doi: 10.7498/aps.67.20180758
    [13] 李杰, 李蒙蒙, 孙立朋, 范鹏程, 冉洋, 金龙, 关柏鸥. 保偏微纳光纤倏逝场传感器.  , doi: 10.7498/aps.66.074209
    [14] 施伟华, 尤承杰, 吴静. 基于表面等离子体共振和定向耦合的D形光子晶体光纤折射率和温度传感器.  , doi: 10.7498/aps.64.224221
    [15] 陈颖, 范卉青, 卢波. 带多孔硅表面缺陷腔的半无限光子晶体Tamm态及其折射率传感机理.  , doi: 10.7498/aps.63.244207
    [16] 李辉栋, 傅海威, 邵敏, 赵娜, 乔学光, 刘颖刚, 李岩, 闫旭. 基于光纤气泡和纤芯失配的Mach-Zehnder干涉液体折射率传感器.  , doi: 10.7498/aps.62.214209
    [17] 刘颖刚, 车伏龙, 贾振安, 傅海威, 王宏亮, 邵敏. 微纳光纤布拉格光栅折射率传感特性研究.  , doi: 10.7498/aps.62.104218
    [18] 曾志文, 刘海涛, 张斯文. 基于Fabry-Perot模型设计亚波长金属狭缝阵列光学异常透射折射率传感器.  , doi: 10.7498/aps.61.200701
    [19] 梁瑞冰, 孙琪真, 沃江海, 刘德明. 微纳尺度光纤布拉格光栅折射率传感的理论研究.  , doi: 10.7498/aps.60.104221
    [20] 刘 靖, 孙军强, 黄德修, 黄重庆, 吴 铭. 渐变折射率光量子阱对束缚态能级的调整.  , doi: 10.7498/aps.56.2281
计量
  • 文章访问数:  49
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-18

/

返回文章
返回
Baidu
map