Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Terahertz phase shifter based on phase change material-metasurface composite structure

Long Jie Li Jiu-Sheng

Citation:

Terahertz phase shifter based on phase change material-metasurface composite structure

Long Jie, Li Jiu-Sheng
PDF
HTML
Get Citation
  • With its rapid development, the terahertz technology is widely used in radar, imaging, remote sensing and data communication. As one of terahertz wave devices, the terahertz phase shifter has become a research hotspot. The existing phase shifters have the disadvantages of large volume, high power consumption and small phase shifting. In the present work, a tunable terahertz phase shifter with liquid crystal and vanadium dioxide is proposed. It is composed of an upper vanadium dioxide embedded metal layer, a liquid crystal, a lower vanadium dioxide embedded metal layer, and a silicon dioxide substrate in sequence from top to bottom. The liquid crystal is sandwiched between the upper and lower vanadium dioxide embedded metal layer. The phase of the device can be controlled by both the phase transition characteristics of vanadium dioxide and the birefringence of liquid crystal. By changing the external applied temperature, the conductivity of vanadium dioxide is changed, and the phase of the device shifts accordingly. Likewise the refractive index of the liquid crystal changes under different externally applied voltages. Finally, the phase of the proposed device can be effectively controlled in a terahertz range by both externally applied temperature and voltage. The phase shift characteristics of the device are analyzed by using software CST studio. The results verify that the terahertz phase shifter can achieve a maximum phase shift of 355.37° at f = 0.736 THz and a phase shift is larger than 350° in a range of 0.731–0.752 THz (bandwidth 22 GHz). Therefore, compared with the traditional phase shifter, this kind of phase change material-metasurface composite structure provides a new idea for flexibly manipulating the terahertz beam. And it is expected to be widely used in terahertz imaging, terahertz wireless and other fields.
      Corresponding author: Li Jiu-Sheng, jshli@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.61871355, 61831012)
    [1]

    Vieweg N, Fischer B M, Reuter M, Kula P, Dabrowsk R, Celik M, Frenking G, Koch M, Jepsen P U 2012 Opt. Express 20 28249Google Scholar

    [2]

    Kohler R, Tredicucci A, Beltram F, Beere E, Linfield H, Davies G, Ritchie D, Lotti R, Rossi F 2002 Nature 417 156Google Scholar

    [3]

    Jansen C, Wietzke S, Peters O, Scheller M, Vieweg N, Salhi M, Krumbholz N, Jördens C, Hochrein T, Koch M 2010 Appl. Opt. 49 E48Google Scholar

    [4]

    Xiang F, Huang W, Li D, Zhou L, Guo Z, Li J 2020 Opt. Lett. 45 1978Google Scholar

    [5]

    Spada L, Vegni L 2016 Opt. Express 24 5763Google Scholar

    [6]

    李晓楠, 周璐, 赵国忠 2019 68 238101Google Scholar

    Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [7]

    Li P, Liu J, Sun B, Huang N 2015 IEEE Photonics Technol. Lett. 27 752Google Scholar

    [8]

    Lai W, Yuan H, Fang H 2019 J. Phys. D 53 125109

    [9]

    Xie J, Zhu W, Rukhlenko D, Xiao F, He C, Geng J, Liang X, Jin R, Premaratne M 2018 Opt. Express 26 5052Google Scholar

    [10]

    Wang B, Wang G, Sang T, Wang L 2017 Sci. Rep 7 41373Google Scholar

    [11]

    Chen C, Pan C, Hsieh C, Pan R 2004 14th International Conference on Ultrafast Phenomena, Technical Digest (CD) WB6

    [12]

    Grigoryeva Y, Sultanov A, Kalinikos A 2011 Electron. Lett. 47 35Google Scholar

    [13]

    Han Z, Ohno S, Tokizane Y, Nawata K, Notake T, Takida Y, Minamide H 2017 Opt. Express 25 31186Google Scholar

    [14]

    Chodorow U, Parka J, Strzezysz O, Mazur R, Morawiak P, Pałka N 2017 Mol. Cryst. Liq. Cryst. 657 51Google Scholar

    [15]

    Ibrahim A, Shaman N, Sarabandi K 2018 IEEE Tran. Terahertz Sci. Technol. 8 666Google Scholar

    [16]

    Inoue Y, Kubo H, Shikada T, Moritake H 2019 Macromol. Mater. and Eng. 304 563

    [17]

    Ji Y, Fan F, Xu S, Yu P, Chang J 2019 Nanoscale 11 4933Google Scholar

    [18]

    Han J, Cao X, Gao J, Li J, Yang H, Zhang C, Li T 2019 Opt. Express 27 34141Google Scholar

    [19]

    Zhang J, Yang B, Han X, He X, Zhang J, Huang J, Chen B, Xu Y, Xie L 2020 Appl. Phys. A 126 199Google Scholar

    [20]

    Fan F, Hou Y, Jiang W, Wang H, Chang J 2012 Appl. Optics 51 4589Google Scholar

    [21]

    Wang L, Lin W, Liang X, Wu B, Hu W, Zheng G, Jin B, Qin Q, Lu Q 2012 Opt. Mater. Express 2 1314Google Scholar

  • 图 1  (a)相变材料(二氧化钒)嵌入超表面组成复合结构太赫兹移相器示意图; (b) 太赫兹移相器单元三维结构; (c)二氧化钒嵌入超表面复合结构(上金属层); (d) 二氧化钒嵌入超表面复合结构(下金属层)

    Figure 1.  (a) Schematic diagram of the proposed terahertz phase shifter based on vanadium dioxide embedded metasurface composite structure; (b) three-dimensional structure diagram of unit cell; (c) vanadium dioxide embedded metasurface composite structure (i.e. top layer); (d) vanadium dioxide embedded metasurface composite structure (i.e. bottom layer)

    图 2  初始条件为上层VO2高导态, 下层VO2高阻态, 随着外部温度改变最终条件为上层VO2高导态, 下层VO2高导态时太赫兹移相器的相移曲线、太赫兹波透射系数: (a)相移曲线; (b)太赫兹波透射系数

    Figure 2.  Phase shift and transmission coefficient of terahertz phase shifter. The initial conditions are high conductivity state of upper VO2 layer and high resistance state of lower VO2 layer. With the change of external temperature, the final conditions are high conductivity state of upper VO2 layer and high conductivity state of lower VO2 layer: (a) Phase shift; (b) transmission coefficient of terahertz phase shifter.

    图 3  初始条件为上层VO2高阻态(电导率σ = 200 S/m), 下层VO2高导态(电导率σ = 2 × 105 S/m), 随着外部温度改变最终条件为上层VO2高导态, 下层VO2高导态时太赫兹移相器的相移曲线、太赫兹波透射系数: (a)相移曲线; (b)太赫兹波透射系数

    Figure 3.  Phase shift and transmission coefficient of terahertz phase shifter. The initial conditions are high resistance state of upper VO2 layer and high conductivity state of lower VO2 layer. With the change of external temperature, the final conditions are high conductivity state of both upper and lower VO2 layers: (a) Phase shift; (b) transmission coefficient of terahertz phase shifter.

    图 4  初始条件为上层VO2高阻态(电导率σ = 200 S/m), 下层VO2高阻态, 随着外部温度改变最终条件为上层VO2高导态(电导率σ = 2 × 105 S/m), 下层VO2高导态时太赫兹移相器相移曲线、太赫兹波透射系数: (a)相移曲线; (b)太赫兹波透射系数

    Figure 4.  Phase shift and transmission coefficient of terahertz phase shifter. The initial conditions are high resistance state of both upper and lower VO2 layers. With the change of external temperature, the final conditions are high conductivity state of both upper and lower VO2 layers: (a) Phase shift; (b) transmission coefficient of terahertz phase shifter.

    图 5  初始条件为上层VO2高导态(电导率σ = 2 × 105 S/m), 下层VO2高导态, 随着外部温度改变最终条件为上层VO2高阻态(电导率σ = 200 S/m), 下层VO2高阻态时太赫兹移相器相移曲线、太赫兹波透射系数: (a)相移曲线; (b)太赫兹波透射系数

    Figure 5.  Phase shift curve and transmission coefficient of terahertz phase shifter. The initial conditions are high conductivity state of both upper and lower VO2 layers. With the change of external temperature, the final conditions are high resistance state of both upper and lower VO2 layers: (a) Phase shift curve; (b) transmission coefficient of terahertz phase shifter.

    图 6  上下层超表面嵌入二氧化钒均呈高导态时, 移相器结构上层超表面、下层超表面电场能量分布图: (a)上层超表面电场能量分布图; (b)下层超表面电场能量分布图

    Figure 6.  Electric field energy distribution at top layer and bottom layer, when vanadium dioxide in top and bottom metal layers are metallic state: (a) Top layer; (b) bottom layer

    图 7  随二氧化钒电导率变化相移曲线

    Figure 7.  Phase shift curve with the change of vanadium dioxide conductivity

    图 8  当入射角为60°时, 原有最大移相频率范围0.72—0.76 THz内的相移变化

    Figure 8.  Phase shift variation in the original maximum phase shift frequency range of 0.72 THz to 0.76 THz when the incident angle of terahertz wave is 60°.

    图 9  当太赫兹波入射角θ = 60°时, 太赫兹移相器的最大移相频率点相移曲线、太赫兹波透射系数: (a)相移曲线; (b)太赫兹波透射系数

    Figure 9.  Phase shift curve and terahertz wave transmission coefficient of the proposed terahertz phase shifter when the incident angle of terahertz wave is 60°: (a) Phase shift curve; (b) terahertz wave transmission coefficient.

    图 10  当入射角为80°时, 原有最大移相频率范围0.72—0.76 THz内相移变化

    Figure 10.  Phase shift variation in the original maximum phase shift frequency range of 0.72 THz to 0.76 THz when the incident angle of terahertz wave is 80°.

    图 11  当太赫兹波入射角θ = 80°时, 太赫兹移相器的最大移相频率点相移曲线、太赫兹波透射系数: (a)相移曲线; (b)太赫兹波透射系数

    Figure 11.  Phase shift curve and terahertz wave transmission coefficient of the proposed terahertz phase shifter when the incident angle of terahertz wave is 80°: (a) Phase shift curve; (b) terahertz wave transmission coefficient.

    Baidu
  • [1]

    Vieweg N, Fischer B M, Reuter M, Kula P, Dabrowsk R, Celik M, Frenking G, Koch M, Jepsen P U 2012 Opt. Express 20 28249Google Scholar

    [2]

    Kohler R, Tredicucci A, Beltram F, Beere E, Linfield H, Davies G, Ritchie D, Lotti R, Rossi F 2002 Nature 417 156Google Scholar

    [3]

    Jansen C, Wietzke S, Peters O, Scheller M, Vieweg N, Salhi M, Krumbholz N, Jördens C, Hochrein T, Koch M 2010 Appl. Opt. 49 E48Google Scholar

    [4]

    Xiang F, Huang W, Li D, Zhou L, Guo Z, Li J 2020 Opt. Lett. 45 1978Google Scholar

    [5]

    Spada L, Vegni L 2016 Opt. Express 24 5763Google Scholar

    [6]

    李晓楠, 周璐, 赵国忠 2019 68 238101Google Scholar

    Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [7]

    Li P, Liu J, Sun B, Huang N 2015 IEEE Photonics Technol. Lett. 27 752Google Scholar

    [8]

    Lai W, Yuan H, Fang H 2019 J. Phys. D 53 125109

    [9]

    Xie J, Zhu W, Rukhlenko D, Xiao F, He C, Geng J, Liang X, Jin R, Premaratne M 2018 Opt. Express 26 5052Google Scholar

    [10]

    Wang B, Wang G, Sang T, Wang L 2017 Sci. Rep 7 41373Google Scholar

    [11]

    Chen C, Pan C, Hsieh C, Pan R 2004 14th International Conference on Ultrafast Phenomena, Technical Digest (CD) WB6

    [12]

    Grigoryeva Y, Sultanov A, Kalinikos A 2011 Electron. Lett. 47 35Google Scholar

    [13]

    Han Z, Ohno S, Tokizane Y, Nawata K, Notake T, Takida Y, Minamide H 2017 Opt. Express 25 31186Google Scholar

    [14]

    Chodorow U, Parka J, Strzezysz O, Mazur R, Morawiak P, Pałka N 2017 Mol. Cryst. Liq. Cryst. 657 51Google Scholar

    [15]

    Ibrahim A, Shaman N, Sarabandi K 2018 IEEE Tran. Terahertz Sci. Technol. 8 666Google Scholar

    [16]

    Inoue Y, Kubo H, Shikada T, Moritake H 2019 Macromol. Mater. and Eng. 304 563

    [17]

    Ji Y, Fan F, Xu S, Yu P, Chang J 2019 Nanoscale 11 4933Google Scholar

    [18]

    Han J, Cao X, Gao J, Li J, Yang H, Zhang C, Li T 2019 Opt. Express 27 34141Google Scholar

    [19]

    Zhang J, Yang B, Han X, He X, Zhang J, Huang J, Chen B, Xu Y, Xie L 2020 Appl. Phys. A 126 199Google Scholar

    [20]

    Fan F, Hou Y, Jiang W, Wang H, Chang J 2012 Appl. Optics 51 4589Google Scholar

    [21]

    Wang L, Lin W, Liang X, Wu B, Hu W, Zheng G, Jin B, Qin Q, Lu Q 2012 Opt. Mater. Express 2 1314Google Scholar

  • [1] Wang Yue, Wang Hao-Jie, Cui Zi-Jian, Zhang Da-Chi. Bound states in continuum domain of double resonant ring metal metasurfaces. Acta Physica Sinica, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [2] Wang Dan, Li Jiu-Sheng, Guo Feng-Lei. Switchable ultra-broadband absorption and polarization conversion terahertz metasurface. Acta Physica Sinica, 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [3] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [4] Xiang Xing-Cheng, Ma Hai-Bei, Wang Lei, Tian Da, Zhang Wei, Zhang Cai-Hong, Wu Jing-Bo, Fan Ke-Bin, Jin Biao-Bing, Chen Jian, Wu Pei-Heng. Ultramicro-sensing of terahertz metamaterials implemented by using sample traps. Acta Physica Sinica, 2023, 72(12): 128701. doi: 10.7498/aps.72.20230080
    [5] Zhu Xiang-Ning, Feng Dai-Li, Feng Yan-Hui, Lin Lin, Zhang Xin-Xin. Enhanced heat storage and heat transfer performance of wood-based biomass carbonized skeleton loaded with polyethylene glycol phase change material by surface modification. Acta Physica Sinica, 2023, 72(8): 088801. doi: 10.7498/aps.72.20222466
    [6] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [7] Yang Dong-Ru, Cheng Yong-Zhi, Luo Hui, Chen Fu, Li Xiang-Cheng. Double-split-ring structure based ultra-broadband and ultra-thin dual-polarization terahertz metasurface with half-reflection and half-transmission. Acta Physica Sinica, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [8] Jin Jia-Sheng, Ma Cheng-Ju, Zhang Yao, Zhang Yue-Bin, Bao Shi-Qian, Li Mi, Li Dong-Ming, Liu Ming, Liu Qian-Zhen, Zhang Yi-Xin. Switchable multifunctional terahertz metamaterial with slow-light and absorption functions based on phase change materials. Acta Physica Sinica, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [9] Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi. Double-opening metal ring based terahertz metamaterial absorber sensor. Acta Physica Sinica, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [10] Yu Bo, Zhuang Shu-Lei, Wang Zheng-Xin, Wang Man-Shi, Guo Lan-Jun, Li Xin-Yu, Guo Wen-Rui, Su Wen-Ming, Gong Cheng, Liu Wei-Wei. Nano-printing technology based double-spiral terahertz tunable metasurface. Acta Physica Sinica, 2022, 71(11): 117801. doi: 10.7498/aps.71.20212408
    [11] Chen Wen-Bo, Chen He-Ming. Terahertz liquid crystal phase shifter based on metamaterial composite structure. Acta Physica Sinica, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [12] Pang Hui-Zhong, Wang Xin, Wang Jun-Lin, Wang Zong-Li, Liu Su-Yalatu, Tian Hu-Qiang. Sensing characteristics of dual band terahertz metamaterial absorber sensor. Acta Physica Sinica, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [13] Yan Wei, Wang Ji-Yong, Qu Yu-Rui, Li Qiang, Qiu Min. Tunable metasurfaces based on phase-change materials. Acta Physica Sinica, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [14] Zhou Lu, Zhao Guo-Zhong, Li Xiao-Nan. Broadband terahertz vortex beam generation based on metasurface of double-split resonant rings. Acta Physica Sinica, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [15] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [16] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [17] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [18] Wang Chang, Cao Jun-Cheng. Nonlinear electron transport in superlattice driven by a terahertz field and a tilted magnetic field. Acta Physica Sinica, 2015, 64(9): 090502. doi: 10.7498/aps.64.090502
    [19] Zhang Yu-Ping, Li Tong-Tong, Lü Huan-Huan, Huang Xiao-Yan, Zhang Hui-Yun. Study on sensing characteristics of I-shaped terahertz metamaterial absorber. Acta Physica Sinica, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [20] Hu Hai-Feng, Cai Li-Kang, Bai Wen-Li, Zhang Jing, Wang Li-Na, Song Guo-Feng. Simulation research on the control of terahertz beam direction by surface plasmon. Acta Physica Sinica, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
Metrics
  • Abstract views:  7645
  • PDF Downloads:  220
  • Cited By: 0
Publishing process
  • Received Date:  08 September 2020
  • Accepted Date:  02 December 2020
  • Available Online:  24 March 2021
  • Published Online:  05 April 2021

/

返回文章
返回
Baidu
map