-
由人工构造超表面所制成的电磁器件能够实现太赫兹频段的滤波、调控、传感、探测等功能, 对太赫兹波在通信、成像领域的应用至关重要. 基于纳米印刷技术设计制备了一种柔性透明双螺旋超表面, 并利用该超表面构建了一款太赫兹旋转可调滤波器, 通过旋转超表面实现太赫兹波透射率的有规律调谐. 在旋转90°后, 0.52 THz处的透射率由8%增至67%, 而0.92 THz处的透射率由68%降至3%, 实现调制深度大于88%的主动调控. 并且, 所提出的纳米印刷超表面具有超薄、柔性、可见光透明的优良性质, 有利于太赫兹可调器件的小型化、轻量化及大面积制备.Electromagnetic devices made of artificially constructed metasurfaces can achieve filtering, modulation, sensing, and detection functions in the terahertz frequency band, which is essential for the applications of terahertz waves in the fields of communication and imaging. We design and prepare a flexible and transparent double spiral metasurface based on nano-printing technology, and use the metasurface to construct a rotating tunable filter, which can achieve regular tuning of the terahertz wave transmittance by rotating the metasurface. After rotating 90°, the transmittance at 0.52 THz increases from 8% to 67%, and the transmittance at 0.92 THz decreases from 68% to 3%, thus realizing active tuning with modulation depth greater than 88%. Moreover, the proposed nano-printing metasurfaces have excellent properties of ultra-thinness, flexibility, and visible light transparency, which are conducive to the miniaturization, light-weight and large-area preparation of terahertz tunable devices.
-
Keywords:
- nano-printing /
- metasurfaces /
- terahertz /
- rotary tuning /
- visible light transparency
[1] 张振伟, 崔伟丽, 张岩, 张存林 2006 红外与毫米波学报 25 217Google Scholar
Zhang Z W, Cui W L, Zhang Y, Zhang C L 2006 J. Infrared Millim. Waves 25 217Google Scholar
[2] Song H J, Ajito K, Muramoto Y, Wakatsuki A, Nagatsuma T, Kukutsu N 2012 Electron. Lett. 48 953Google Scholar
[3] Harter T, Fullner C, Kwmal J N, Ummethala S, Steinmann J L, Brosi M, Hesler J L, Brundermann E, Muller A S, Freude W 2020 Nat. Photonics 14 601Google Scholar
[4] Nagatsuma T, Ducournau G, Renaud C C 2016 Nat. Photonics 10 371Google Scholar
[5] Lu M H, Shen J L, Li N, Zhang Y, Zhang C L, Liang L S, Xu X Y 2006 J. Appl. Phys. 100 103
[6] Li Q, Zhou Y, Yang Y F, Chen G H 2016 J. Opt. Soc. Am. A 33 637
[7] Pickwell E, Wallace V P 2006 J. Phys. D: Appl. Phys. 39 418Google Scholar
[8] Yan B, Wang Z G, Zhan X, Lin L, Wang X L, Gong C, Liu W W 2020 Sci. Rep. 10 20876Google Scholar
[9] Yu T, Zuo X, Liu W W, Gong C 2020 Opt. Commun. 459 124896Google Scholar
[10] 李帅, 张岩, 高翔, 占涛, 赵得龙, 龚诚, 刘伟伟 2019 红外与毫米波学报 38 68Google Scholar
Li S, Zhang Y, Gao X, Zhan T, Zhao D L, Gong C, Liu W W 2019 J. Infrared Millim. Waves 38 68Google Scholar
[11] Gong C, Zhan M Z, Yang J, Wang Z G, Liu H T, Zhao Y J, Liu W W 2016 Sci. Rep. 6 32466Google Scholar
[12] Wang H, Yan B, Jin H Z, Wang Z G, Guo L J, Li B Y, Yu B, Gong C 2021 J. Phys. D: Appl. Phys. 54 225105Google Scholar
[13] Arbabi A, Horie Y, Ball A J, Bagheri M B, Faraon A 2015 Nat. Commun. 6 7069Google Scholar
[14] Xing T L, Bai T R, Tang Y, Lu Z Y, Huang Y L, Balmakou A, Wang J C 2020 Opt. Express 28 20334Google Scholar
[15] Wang Z G, Jin H Z, Sun X F, Li X, Xu Y, Liu G, Gong C 2020 Opt. Commun. 474 126172Google Scholar
[16] Yan B, Yu B, Xu J F, Li Y K, Wang Z G, Wang Z X, Yu B, Ma H Y, Gong C 2021 J. Phys. D: Appl. Phys. 54 465102Google Scholar
[17] Yachin V, Ivzhenko L, Polevoy S, Tarapov S 2016 Appl. Phys. Lett. 109 221905Google Scholar
[18] Kumar P P, Sreelakshmi K, Sangeetha B, Narayan S 2017 International Conference on Communication and Signal Processing Melmaruvathur, Inida, February 8–10, 2017 p2081
[19] Chen H, Lu W B, Liu Z G, Zhang J, Huang B H 2017 IEEE Trans. Antennas Propag. 65 7383Google Scholar
[20] Sun H Y, Li Z, Gu C Q, Xu Q, Chen X L, Sun Y H, Lu S C, Martin F 2018 Sci. Rep. 8 076401
[21] Guo X X, Goussev V, Tournat V, Paulson J A 2019 Phys. Rev. E 99 052209Google Scholar
[22] 程进, 周顺, 孙雪平, 蒲欣欣, 孙其梁, 徐英舜, 刘卫国 2020 光子学报 49 0724001Google Scholar
Cheng J, Zhou S, Sun X P, Pu X X, Sun Q L, Xu Y S, Liu W G 2020 ACTA Photonica Sin. 49 0724001Google Scholar
[23] 于洋, 肿帆, 江西, 褚琼琼, 祝世宁, 刘辉 2021 中国光学 14 927Google Scholar
Yu Y, Zhong F, Jiang X, Chu Q Q Zhu S N, Liu H 2021 Chin. Opt. Lett. 14 927Google Scholar
[24] 夏雨, 王毅, 曹群生 2021 微波学报 37 68
Xia Y, Wang Y, Cao Q S. 2021 J. Microwaves 37 68
[25] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[26] Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 1
[27] Dai Z J, Su Q, Wang Y F, Qi P F, Wang X L, Liu W W 2019 Laser Phys. 29 065301Google Scholar
[28] 孟磊, 徐娜 2014 吉林化工学院学报 31 75Google Scholar
Meng L, Xu N 2014 J. Jilin Ins. Chem. Technol. 31 75Google Scholar
[29] 柏林, 张信歌, 蒋卫祥, 崔铁军 2021 雷达学报 10 240Google Scholar
Bai L, Zhang X G, Jiang W X, Cui T J 2021 J. Radars 10 240Google Scholar
[30] Wang J, Wang X C, Gao X, Ning R X 2021 J. Measure. Sci. Instru. 12 362
[31] Sautter J, Staude I, Decker M, Rusak E, Neshev D N, Brener I, Kivshar Y S 2015 ACS Nano 9 4308Google Scholar
[32] 李国华 2010 博士学位论文 (长沙: 国防科技大学)
Li G H 2010 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[33] 李宇涵, 邓联文, 罗衡, 贺龙辉, 贺君, 徐运超, 黄生祥 2019 68 095201Google Scholar
Li Y H, Deng L W, Luo H, He L H, He J, Xu Y C, Huang S X 2019 Acta Phys. Sin. 68 095201Google Scholar
[34] Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 0036617Google Scholar
-
-
[1] 张振伟, 崔伟丽, 张岩, 张存林 2006 红外与毫米波学报 25 217Google Scholar
Zhang Z W, Cui W L, Zhang Y, Zhang C L 2006 J. Infrared Millim. Waves 25 217Google Scholar
[2] Song H J, Ajito K, Muramoto Y, Wakatsuki A, Nagatsuma T, Kukutsu N 2012 Electron. Lett. 48 953Google Scholar
[3] Harter T, Fullner C, Kwmal J N, Ummethala S, Steinmann J L, Brosi M, Hesler J L, Brundermann E, Muller A S, Freude W 2020 Nat. Photonics 14 601Google Scholar
[4] Nagatsuma T, Ducournau G, Renaud C C 2016 Nat. Photonics 10 371Google Scholar
[5] Lu M H, Shen J L, Li N, Zhang Y, Zhang C L, Liang L S, Xu X Y 2006 J. Appl. Phys. 100 103
[6] Li Q, Zhou Y, Yang Y F, Chen G H 2016 J. Opt. Soc. Am. A 33 637
[7] Pickwell E, Wallace V P 2006 J. Phys. D: Appl. Phys. 39 418Google Scholar
[8] Yan B, Wang Z G, Zhan X, Lin L, Wang X L, Gong C, Liu W W 2020 Sci. Rep. 10 20876Google Scholar
[9] Yu T, Zuo X, Liu W W, Gong C 2020 Opt. Commun. 459 124896Google Scholar
[10] 李帅, 张岩, 高翔, 占涛, 赵得龙, 龚诚, 刘伟伟 2019 红外与毫米波学报 38 68Google Scholar
Li S, Zhang Y, Gao X, Zhan T, Zhao D L, Gong C, Liu W W 2019 J. Infrared Millim. Waves 38 68Google Scholar
[11] Gong C, Zhan M Z, Yang J, Wang Z G, Liu H T, Zhao Y J, Liu W W 2016 Sci. Rep. 6 32466Google Scholar
[12] Wang H, Yan B, Jin H Z, Wang Z G, Guo L J, Li B Y, Yu B, Gong C 2021 J. Phys. D: Appl. Phys. 54 225105Google Scholar
[13] Arbabi A, Horie Y, Ball A J, Bagheri M B, Faraon A 2015 Nat. Commun. 6 7069Google Scholar
[14] Xing T L, Bai T R, Tang Y, Lu Z Y, Huang Y L, Balmakou A, Wang J C 2020 Opt. Express 28 20334Google Scholar
[15] Wang Z G, Jin H Z, Sun X F, Li X, Xu Y, Liu G, Gong C 2020 Opt. Commun. 474 126172Google Scholar
[16] Yan B, Yu B, Xu J F, Li Y K, Wang Z G, Wang Z X, Yu B, Ma H Y, Gong C 2021 J. Phys. D: Appl. Phys. 54 465102Google Scholar
[17] Yachin V, Ivzhenko L, Polevoy S, Tarapov S 2016 Appl. Phys. Lett. 109 221905Google Scholar
[18] Kumar P P, Sreelakshmi K, Sangeetha B, Narayan S 2017 International Conference on Communication and Signal Processing Melmaruvathur, Inida, February 8–10, 2017 p2081
[19] Chen H, Lu W B, Liu Z G, Zhang J, Huang B H 2017 IEEE Trans. Antennas Propag. 65 7383Google Scholar
[20] Sun H Y, Li Z, Gu C Q, Xu Q, Chen X L, Sun Y H, Lu S C, Martin F 2018 Sci. Rep. 8 076401
[21] Guo X X, Goussev V, Tournat V, Paulson J A 2019 Phys. Rev. E 99 052209Google Scholar
[22] 程进, 周顺, 孙雪平, 蒲欣欣, 孙其梁, 徐英舜, 刘卫国 2020 光子学报 49 0724001Google Scholar
Cheng J, Zhou S, Sun X P, Pu X X, Sun Q L, Xu Y S, Liu W G 2020 ACTA Photonica Sin. 49 0724001Google Scholar
[23] 于洋, 肿帆, 江西, 褚琼琼, 祝世宁, 刘辉 2021 中国光学 14 927Google Scholar
Yu Y, Zhong F, Jiang X, Chu Q Q Zhu S N, Liu H 2021 Chin. Opt. Lett. 14 927Google Scholar
[24] 夏雨, 王毅, 曹群生 2021 微波学报 37 68
Xia Y, Wang Y, Cao Q S. 2021 J. Microwaves 37 68
[25] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[26] Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 1
[27] Dai Z J, Su Q, Wang Y F, Qi P F, Wang X L, Liu W W 2019 Laser Phys. 29 065301Google Scholar
[28] 孟磊, 徐娜 2014 吉林化工学院学报 31 75Google Scholar
Meng L, Xu N 2014 J. Jilin Ins. Chem. Technol. 31 75Google Scholar
[29] 柏林, 张信歌, 蒋卫祥, 崔铁军 2021 雷达学报 10 240Google Scholar
Bai L, Zhang X G, Jiang W X, Cui T J 2021 J. Radars 10 240Google Scholar
[30] Wang J, Wang X C, Gao X, Ning R X 2021 J. Measure. Sci. Instru. 12 362
[31] Sautter J, Staude I, Decker M, Rusak E, Neshev D N, Brener I, Kivshar Y S 2015 ACS Nano 9 4308Google Scholar
[32] 李国华 2010 博士学位论文 (长沙: 国防科技大学)
Li G H 2010 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[33] 李宇涵, 邓联文, 罗衡, 贺龙辉, 贺君, 徐运超, 黄生祥 2019 68 095201Google Scholar
Li Y H, Deng L W, Luo H, He L H, He J, Xu Y C, Huang S X 2019 Acta Phys. Sin. 68 095201Google Scholar
[34] Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 0036617Google Scholar
计量
- 文章访问数: 4975
- PDF下载量: 104
- 被引次数: 0