-
The influences of hydrogen impurities on the performances of indium-gallium-zinc oxide (IGZO) thin film transistors (TFT) are summarized in this article. Firstly, the sources of hydrogen impurities in the IGZO channels of the TFTs are proposed, which could originate from the residual gas in the deposition chamber, the molecules absorbed on the sputtering target surface, the neighbor films that contain abundant hydrogen elements, doping during annealing processes, etc. The hydrogen impurities in the IGZO films can exist in the forms of hydroxyl groups and metal hydride bonds, respectively. The former originates from the reaction between H atoms and the O2- ions. This reaction releases free electrons, leading to a rise of the Fermi level of IGZO, and thus enhancing the mobilities of IGZO TFTs. The latter incurs negative charges on H atoms, and thus changing the distribution of the subgap density of states, hence improving the negative bias (or illumination) stabilities of IGZO TFTs. Subsequently, various methods are also proposed to characterize hydrogen elements in IGZO, such as secondary ion mass spectroscopy, thermal desorption spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Finally, the effects of hydrogen impurities on the electrical characteristics of the IGZO TFTs, such as the field effect mobilities, subthreshold swings, threshold voltages, on/off current ratios as well as the positive and negative bias stress stabilities, are discussed. The results indicate that hydrogen element concentration and process temperature are two key factors for the device performances. With the increase of hydrogen element concentration in the IGZO channels, the TFTs exhibit higher electron mobilities, lower subthreshold swings and better reliabilities. However, annealing at too high or low temperatures cannot improve the device performance, and the most effective annealing temperature is 200-300℃. It is anticipated that this review could be helpful to the IGZO TFT researchers in improving the device performances and understanding the underlying mechanism.
-
Keywords:
- indium-gallium-zinc oxide /
- thin film transistor /
- hydrogen impurity /
- electrical stability
[1] van de Walle C G 2000 Phys. Rev. Lett. 85 1012
[2] Hofmann D M, Hofstaetter A, Leiter F, Zhou H, Henecker F, Meyer B K, Orlinskii S B, Schmidt J, Baranov P G 2002 Phys. Rev. Lett. 88 45504
[3] van de Walle C G, Neugebauer J 2003 Nature 423 626
[4] Du M H, M H, Biswas K 2011 Phys. Rev. Lett. 106 115502
[5] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488
[6] Tsao S W, Chang T C, Huang S Y, Chen M C, Chen S C, Tsai C T, Kuo Y J, Chen Y C, Wu W C 2010 Solid State Electron. 54 1497
[7] Miyase T, Watanabe K, Sakaguchi I, Ohashi N, Domen K, Nomura K, Hiramatsu H, Kumomi H, Hosono H, Kamiya T 2014 ECS J. Solid State SC. 3 Q3085
[8] Tang H, Ishikawa K, Ide K, Hiramatsu H, Ueda S, Ohashi N, Kumomi H, Hosono H, Kamiya T 2015 J. Appl. Phys. 118 205703
[9] Kim T, Nam Y, Hur J, Park S H, Jeon S 2016 IEEE Electr. Dev. Lett. 37 1131
[10] Hino A, Morita S, Yasuno S, Kishi T, Hayashi K, Kugimiya T 2012 J. Appl. Phys. 2 114515
[11] Tari A, Lee C H, Wong W S 2015 Appl. Phys. Lett. 107 023501
[12] Nam Y, Kim H O, Cho S H, Hwang C S, Kim T, Jeon S, Park S H 2016 J. Inform. Display 17 65
[13] Zheng L L, Ma Q, Wang Y H, Liu W J, Ding S J, Zhang D W 2016 IEEE Electr. Dev. Lett. 37 743
[14] Kim E, Kim C K, Lee M K, Bang T, Choi Y K, Park S H, Choi K C 2016 Appl. Phys. Lett. 108 182104
[15] Kulchaisit C, Ishikawa Y, Fujii M N, Yamazki H, Bermundo J P S, Ishikawa S, Miyasako T, Katsui H, Tanaka K, Hamada K, Horita M, Uraoka Y 2016 J. Display Technol. 12 263
[16] Jung C H, Kim D J, Kang Y K, Yoon D H 2009 Thin Solid Films 517 4078
[17] Abliz A, Wang J L, Xu L, Wan D, Liao L, Ye C, Liu C S Jiang C Z, Chen H P, Guo T L 2016 Appl. Phys. Lett. 108 213501
[18] Jeong S K, Kim M H, Lee S Y, Seo H, Choi D K 2014 Nanoscale Res. Lett. 9 619
[19] Kim H J, Park S Y, Jung H Y, Son B G, Lee C K, Lee C K, Jeong J H, Mo Y G, Son K S, Ryu M K, Lee S, Jeong J K 2013 J. Phys. D: Appl. Phys. 46 055104
[20] Oh S I, Choi G, Hwang H, Lu W, Jang J H 2013 IEEE Trans. Electron Dev. 60 2537
[21] Oh S I, Woo J M, Jang J H 2016 IEEE Trans. Electron Dev. 63 1910
[22] Fujii M N, Ishikawa Y, Horita M, Uraoka Y 2014 ECS J. Solid State SC. 3 Q3050
[23] Bermundo J P S, Ishikawa Y, Fujii M N, Ikenoue H, Uraoka Y 2017 Appl. Phys. Lett. 110 133503
[24] Kim J, Bang S, Lee S, Shin S, Park J 2012 J. Mater. Res. 27 2318
[25] Ahn B D, Shin H S, Kim H J, Park J S 2008 Appl. Phys. Lett. 93 203506
[26] Kim M H, Choi M J, Kimura K, Kobayashi H, Choi D K 2016 Solid State Electron. 126 87
[27] Abliz A, Gao Q, Wan D, Liu X Q, Xu L, Liu C S, Jiang C Z, Li X F, Chen H P, Guo T L, Li J C, Liao L 2017 ACS Appl. Mater. Inter. 9 10798
[28] Ahn B D, Park J S, Chung K B 2014 Appl. Phys. Lett. 105 163505
[29] Bang J, Matsuishi S, Hosono H 2017 Appl. Phys. Lett. 110 232105
[30] Chen G F, Chang T C, Chen H M, Chen B W, Chen H C, Li C Y, Tai Y H, Hung Y J, Cheng K C, Huang C S, Chen K K, Lu H H, Lin Y H 2017 IEEE Electr. Dev. Lett. 38 334
[31] Chen C, Cheng K C, Chagarov E, Kanicki J 2011 Jpn. J. Appl. Phys. 50 091102
[32] Hwang E S, Kim J S, Jeon S M, Lee S J, Jang Y J, Cho D Y, Hwang C S 2018 Nanotechnology 29 155203
[33] Nakashima M, Oota M, Ishihara N, Nonaka Y, Hirohashi T, Takahashi M, Yamazaki S, Obonai T, Hosaka Y, Koezuka J 2014 J. Appl. Phys. 116 213703
[34] Li Y J, Liu Z L, Jiang K, Hu X F 2013 J. Non-Cryst. Solids 378 50
[35] Sallis S, Butler B T, Quackenbush N F, Williams D S, Junda M, Fischer D A, Woicik J C, Podraza N J, White B E, Walsh A, Piper L F J 2014 Appl. Phys. Lett. 104 232108
[36] Nguyen T T T, Aventurier B, Renault O, Terlier T, Barnes J P, Templier F 2014 21st International Workshop on Active-Matrix Flatpanel Displays and DevicesTFT Technologies and FPD Materials (AM-FPD) Ryukoku Univ. Kyoto, Japan, July 2-4, 2014 p149
[37] Hina A, Takanashi Y, Tao H, Morita S, Ochi M, Goto H, Hayashi K, Kugimiya T 2014 J. Vac. Sci. Technol. B 32 031210
[38] Nguyen T T T, Aventurier B, Terlier T, Barnes J P, Templier F 2017 J. Display Technol. 11 554
[39] Chang Y H, Yu M J, Lin R P, Hsu C P, Hou T H 2016 Appl. Phys. Lett. 108 033502
[40] Nomura K, Kamiya T, Hosono H 2013 ECS J. Solid State SC. 2 P5
[41] Ide K, Kikuchi Y, Nomura K, Kimura M, Kamiya T, Hosono H 2011 Appl. Phys. Lett. 99 093507
[42] Hanyu Y, Abe K, Domen K, Nomura K, Hiramatsu H, Kumomi H, Hosono H, Kamiya T 2014 J. Display Technol. 10 979
[43] Domen K, Miyase T, Abe K, Hosono H, Kamiya T 2014 J. Display Technol. 10 975
[44] Nomura K, Kamiya T, Ohta H, Hirano M, Hosono H 2008 Appl. Phys. Lett. 93 192107
[45] Ochi M, Hino A, Goto H, Hayashi K, Kugimiya T 2017 ECS J. Solid State SC. 6 247
[46] Jeon J K, Um J G, Lee S, Jang J 2017 AIP Adv. 7 125110
[47] Lu Y F, Ni H Q, Mai Z H, Ren Z M 2000 J. Appl. Phys. 88 498
[48] Lavrov E V 2003 Physica B 340-342 195
[49] Aldridge S, Downs A J 2001 Chem. Rev. 101 3305
[50] Hanyu Y, Domen K, Nomura K, Hiramatsu H, Kumomi H, Hosono H, Kamiya T 2013 Appl. Phys. Lett. 103 202114
[51] Noh H K, Park J S, Chang K J 2013 J. Appl. Phys. 113 063712
-
[1] van de Walle C G 2000 Phys. Rev. Lett. 85 1012
[2] Hofmann D M, Hofstaetter A, Leiter F, Zhou H, Henecker F, Meyer B K, Orlinskii S B, Schmidt J, Baranov P G 2002 Phys. Rev. Lett. 88 45504
[3] van de Walle C G, Neugebauer J 2003 Nature 423 626
[4] Du M H, M H, Biswas K 2011 Phys. Rev. Lett. 106 115502
[5] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488
[6] Tsao S W, Chang T C, Huang S Y, Chen M C, Chen S C, Tsai C T, Kuo Y J, Chen Y C, Wu W C 2010 Solid State Electron. 54 1497
[7] Miyase T, Watanabe K, Sakaguchi I, Ohashi N, Domen K, Nomura K, Hiramatsu H, Kumomi H, Hosono H, Kamiya T 2014 ECS J. Solid State SC. 3 Q3085
[8] Tang H, Ishikawa K, Ide K, Hiramatsu H, Ueda S, Ohashi N, Kumomi H, Hosono H, Kamiya T 2015 J. Appl. Phys. 118 205703
[9] Kim T, Nam Y, Hur J, Park S H, Jeon S 2016 IEEE Electr. Dev. Lett. 37 1131
[10] Hino A, Morita S, Yasuno S, Kishi T, Hayashi K, Kugimiya T 2012 J. Appl. Phys. 2 114515
[11] Tari A, Lee C H, Wong W S 2015 Appl. Phys. Lett. 107 023501
[12] Nam Y, Kim H O, Cho S H, Hwang C S, Kim T, Jeon S, Park S H 2016 J. Inform. Display 17 65
[13] Zheng L L, Ma Q, Wang Y H, Liu W J, Ding S J, Zhang D W 2016 IEEE Electr. Dev. Lett. 37 743
[14] Kim E, Kim C K, Lee M K, Bang T, Choi Y K, Park S H, Choi K C 2016 Appl. Phys. Lett. 108 182104
[15] Kulchaisit C, Ishikawa Y, Fujii M N, Yamazki H, Bermundo J P S, Ishikawa S, Miyasako T, Katsui H, Tanaka K, Hamada K, Horita M, Uraoka Y 2016 J. Display Technol. 12 263
[16] Jung C H, Kim D J, Kang Y K, Yoon D H 2009 Thin Solid Films 517 4078
[17] Abliz A, Wang J L, Xu L, Wan D, Liao L, Ye C, Liu C S Jiang C Z, Chen H P, Guo T L 2016 Appl. Phys. Lett. 108 213501
[18] Jeong S K, Kim M H, Lee S Y, Seo H, Choi D K 2014 Nanoscale Res. Lett. 9 619
[19] Kim H J, Park S Y, Jung H Y, Son B G, Lee C K, Lee C K, Jeong J H, Mo Y G, Son K S, Ryu M K, Lee S, Jeong J K 2013 J. Phys. D: Appl. Phys. 46 055104
[20] Oh S I, Choi G, Hwang H, Lu W, Jang J H 2013 IEEE Trans. Electron Dev. 60 2537
[21] Oh S I, Woo J M, Jang J H 2016 IEEE Trans. Electron Dev. 63 1910
[22] Fujii M N, Ishikawa Y, Horita M, Uraoka Y 2014 ECS J. Solid State SC. 3 Q3050
[23] Bermundo J P S, Ishikawa Y, Fujii M N, Ikenoue H, Uraoka Y 2017 Appl. Phys. Lett. 110 133503
[24] Kim J, Bang S, Lee S, Shin S, Park J 2012 J. Mater. Res. 27 2318
[25] Ahn B D, Shin H S, Kim H J, Park J S 2008 Appl. Phys. Lett. 93 203506
[26] Kim M H, Choi M J, Kimura K, Kobayashi H, Choi D K 2016 Solid State Electron. 126 87
[27] Abliz A, Gao Q, Wan D, Liu X Q, Xu L, Liu C S, Jiang C Z, Li X F, Chen H P, Guo T L, Li J C, Liao L 2017 ACS Appl. Mater. Inter. 9 10798
[28] Ahn B D, Park J S, Chung K B 2014 Appl. Phys. Lett. 105 163505
[29] Bang J, Matsuishi S, Hosono H 2017 Appl. Phys. Lett. 110 232105
[30] Chen G F, Chang T C, Chen H M, Chen B W, Chen H C, Li C Y, Tai Y H, Hung Y J, Cheng K C, Huang C S, Chen K K, Lu H H, Lin Y H 2017 IEEE Electr. Dev. Lett. 38 334
[31] Chen C, Cheng K C, Chagarov E, Kanicki J 2011 Jpn. J. Appl. Phys. 50 091102
[32] Hwang E S, Kim J S, Jeon S M, Lee S J, Jang Y J, Cho D Y, Hwang C S 2018 Nanotechnology 29 155203
[33] Nakashima M, Oota M, Ishihara N, Nonaka Y, Hirohashi T, Takahashi M, Yamazaki S, Obonai T, Hosaka Y, Koezuka J 2014 J. Appl. Phys. 116 213703
[34] Li Y J, Liu Z L, Jiang K, Hu X F 2013 J. Non-Cryst. Solids 378 50
[35] Sallis S, Butler B T, Quackenbush N F, Williams D S, Junda M, Fischer D A, Woicik J C, Podraza N J, White B E, Walsh A, Piper L F J 2014 Appl. Phys. Lett. 104 232108
[36] Nguyen T T T, Aventurier B, Renault O, Terlier T, Barnes J P, Templier F 2014 21st International Workshop on Active-Matrix Flatpanel Displays and DevicesTFT Technologies and FPD Materials (AM-FPD) Ryukoku Univ. Kyoto, Japan, July 2-4, 2014 p149
[37] Hina A, Takanashi Y, Tao H, Morita S, Ochi M, Goto H, Hayashi K, Kugimiya T 2014 J. Vac. Sci. Technol. B 32 031210
[38] Nguyen T T T, Aventurier B, Terlier T, Barnes J P, Templier F 2017 J. Display Technol. 11 554
[39] Chang Y H, Yu M J, Lin R P, Hsu C P, Hou T H 2016 Appl. Phys. Lett. 108 033502
[40] Nomura K, Kamiya T, Hosono H 2013 ECS J. Solid State SC. 2 P5
[41] Ide K, Kikuchi Y, Nomura K, Kimura M, Kamiya T, Hosono H 2011 Appl. Phys. Lett. 99 093507
[42] Hanyu Y, Abe K, Domen K, Nomura K, Hiramatsu H, Kumomi H, Hosono H, Kamiya T 2014 J. Display Technol. 10 979
[43] Domen K, Miyase T, Abe K, Hosono H, Kamiya T 2014 J. Display Technol. 10 975
[44] Nomura K, Kamiya T, Ohta H, Hirano M, Hosono H 2008 Appl. Phys. Lett. 93 192107
[45] Ochi M, Hino A, Goto H, Hayashi K, Kugimiya T 2017 ECS J. Solid State SC. 6 247
[46] Jeon J K, Um J G, Lee S, Jang J 2017 AIP Adv. 7 125110
[47] Lu Y F, Ni H Q, Mai Z H, Ren Z M 2000 J. Appl. Phys. 88 498
[48] Lavrov E V 2003 Physica B 340-342 195
[49] Aldridge S, Downs A J 2001 Chem. Rev. 101 3305
[50] Hanyu Y, Domen K, Nomura K, Hiramatsu H, Kumomi H, Hosono H, Kamiya T 2013 Appl. Phys. Lett. 103 202114
[51] Noh H K, Park J S, Chang K J 2013 J. Appl. Phys. 113 063712
Catalog
Metrics
- Abstract views: 7957
- PDF Downloads: 423
- Cited By: 0