Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of hydrogen impurities on performances and electrical reliabilities of indium-gallium-zinc oxide thin film transistors

Shao Yan Ding Shi-Jin

Citation:

Effects of hydrogen impurities on performances and electrical reliabilities of indium-gallium-zinc oxide thin film transistors

Shao Yan, Ding Shi-Jin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The influences of hydrogen impurities on the performances of indium-gallium-zinc oxide (IGZO) thin film transistors (TFT) are summarized in this article. Firstly, the sources of hydrogen impurities in the IGZO channels of the TFTs are proposed, which could originate from the residual gas in the deposition chamber, the molecules absorbed on the sputtering target surface, the neighbor films that contain abundant hydrogen elements, doping during annealing processes, etc. The hydrogen impurities in the IGZO films can exist in the forms of hydroxyl groups and metal hydride bonds, respectively. The former originates from the reaction between H atoms and the O2- ions. This reaction releases free electrons, leading to a rise of the Fermi level of IGZO, and thus enhancing the mobilities of IGZO TFTs. The latter incurs negative charges on H atoms, and thus changing the distribution of the subgap density of states, hence improving the negative bias (or illumination) stabilities of IGZO TFTs. Subsequently, various methods are also proposed to characterize hydrogen elements in IGZO, such as secondary ion mass spectroscopy, thermal desorption spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Finally, the effects of hydrogen impurities on the electrical characteristics of the IGZO TFTs, such as the field effect mobilities, subthreshold swings, threshold voltages, on/off current ratios as well as the positive and negative bias stress stabilities, are discussed. The results indicate that hydrogen element concentration and process temperature are two key factors for the device performances. With the increase of hydrogen element concentration in the IGZO channels, the TFTs exhibit higher electron mobilities, lower subthreshold swings and better reliabilities. However, annealing at too high or low temperatures cannot improve the device performance, and the most effective annealing temperature is 200-300℃. It is anticipated that this review could be helpful to the IGZO TFT researchers in improving the device performances and understanding the underlying mechanism.
      Corresponding author: Ding Shi-Jin, sjding@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61474027).
    [1]

    van de Walle C G 2000 Phys. Rev. Lett. 85 1012

    [2]

    Hofmann D M, Hofstaetter A, Leiter F, Zhou H, Henecker F, Meyer B K, Orlinskii S B, Schmidt J, Baranov P G 2002 Phys. Rev. Lett. 88 45504

    [3]

    van de Walle C G, Neugebauer J 2003 Nature 423 626

    [4]

    Du M H, M H, Biswas K 2011 Phys. Rev. Lett. 106 115502

    [5]

    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488

    [6]

    Tsao S W, Chang T C, Huang S Y, Chen M C, Chen S C, Tsai C T, Kuo Y J, Chen Y C, Wu W C 2010 Solid State Electron. 54 1497

    [7]

    Miyase T, Watanabe K, Sakaguchi I, Ohashi N, Domen K, Nomura K, Hiramatsu H, Kumomi H, Hosono H, Kamiya T 2014 ECS J. Solid State SC. 3 Q3085

    [8]

    Tang H, Ishikawa K, Ide K, Hiramatsu H, Ueda S, Ohashi N, Kumomi H, Hosono H, Kamiya T 2015 J. Appl. Phys. 118 205703

    [9]

    Kim T, Nam Y, Hur J, Park S H, Jeon S 2016 IEEE Electr. Dev. Lett. 37 1131

    [10]

    Hino A, Morita S, Yasuno S, Kishi T, Hayashi K, Kugimiya T 2012 J. Appl. Phys. 2 114515

    [11]

    Tari A, Lee C H, Wong W S 2015 Appl. Phys. Lett. 107 023501

    [12]

    Nam Y, Kim H O, Cho S H, Hwang C S, Kim T, Jeon S, Park S H 2016 J. Inform. Display 17 65

    [13]

    Zheng L L, Ma Q, Wang Y H, Liu W J, Ding S J, Zhang D W 2016 IEEE Electr. Dev. Lett. 37 743

    [14]

    Kim E, Kim C K, Lee M K, Bang T, Choi Y K, Park S H, Choi K C 2016 Appl. Phys. Lett. 108 182104

    [15]

    Kulchaisit C, Ishikawa Y, Fujii M N, Yamazki H, Bermundo J P S, Ishikawa S, Miyasako T, Katsui H, Tanaka K, Hamada K, Horita M, Uraoka Y 2016 J. Display Technol. 12 263

    [16]

    Jung C H, Kim D J, Kang Y K, Yoon D H 2009 Thin Solid Films 517 4078

    [17]

    Abliz A, Wang J L, Xu L, Wan D, Liao L, Ye C, Liu C S Jiang C Z, Chen H P, Guo T L 2016 Appl. Phys. Lett. 108 213501

    [18]

    Jeong S K, Kim M H, Lee S Y, Seo H, Choi D K 2014 Nanoscale Res. Lett. 9 619

    [19]

    Kim H J, Park S Y, Jung H Y, Son B G, Lee C K, Lee C K, Jeong J H, Mo Y G, Son K S, Ryu M K, Lee S, Jeong J K 2013 J. Phys. D: Appl. Phys. 46 055104

    [20]

    Oh S I, Choi G, Hwang H, Lu W, Jang J H 2013 IEEE Trans. Electron Dev. 60 2537

    [21]

    Oh S I, Woo J M, Jang J H 2016 IEEE Trans. Electron Dev. 63 1910

    [22]

    Fujii M N, Ishikawa Y, Horita M, Uraoka Y 2014 ECS J. Solid State SC. 3 Q3050

    [23]

    Bermundo J P S, Ishikawa Y, Fujii M N, Ikenoue H, Uraoka Y 2017 Appl. Phys. Lett. 110 133503

    [24]

    Kim J, Bang S, Lee S, Shin S, Park J 2012 J. Mater. Res. 27 2318

    [25]

    Ahn B D, Shin H S, Kim H J, Park J S 2008 Appl. Phys. Lett. 93 203506

    [26]

    Kim M H, Choi M J, Kimura K, Kobayashi H, Choi D K 2016 Solid State Electron. 126 87

    [27]

    Abliz A, Gao Q, Wan D, Liu X Q, Xu L, Liu C S, Jiang C Z, Li X F, Chen H P, Guo T L, Li J C, Liao L 2017 ACS Appl. Mater. Inter. 9 10798

    [28]

    Ahn B D, Park J S, Chung K B 2014 Appl. Phys. Lett. 105 163505

    [29]

    Bang J, Matsuishi S, Hosono H 2017 Appl. Phys. Lett. 110 232105

    [30]

    Chen G F, Chang T C, Chen H M, Chen B W, Chen H C, Li C Y, Tai Y H, Hung Y J, Cheng K C, Huang C S, Chen K K, Lu H H, Lin Y H 2017 IEEE Electr. Dev. Lett. 38 334

    [31]

    Chen C, Cheng K C, Chagarov E, Kanicki J 2011 Jpn. J. Appl. Phys. 50 091102

    [32]

    Hwang E S, Kim J S, Jeon S M, Lee S J, Jang Y J, Cho D Y, Hwang C S 2018 Nanotechnology 29 155203

    [33]

    Nakashima M, Oota M, Ishihara N, Nonaka Y, Hirohashi T, Takahashi M, Yamazaki S, Obonai T, Hosaka Y, Koezuka J 2014 J. Appl. Phys. 116 213703

    [34]

    Li Y J, Liu Z L, Jiang K, Hu X F 2013 J. Non-Cryst. Solids 378 50

    [35]

    Sallis S, Butler B T, Quackenbush N F, Williams D S, Junda M, Fischer D A, Woicik J C, Podraza N J, White B E, Walsh A, Piper L F J 2014 Appl. Phys. Lett. 104 232108

    [36]

    Nguyen T T T, Aventurier B, Renault O, Terlier T, Barnes J P, Templier F 2014 21st International Workshop on Active-Matrix Flatpanel Displays and DevicesTFT Technologies and FPD Materials (AM-FPD) Ryukoku Univ. Kyoto, Japan, July 2-4, 2014 p149

    [37]

    Hina A, Takanashi Y, Tao H, Morita S, Ochi M, Goto H, Hayashi K, Kugimiya T 2014 J. Vac. Sci. Technol. B 32 031210

    [38]

    Nguyen T T T, Aventurier B, Terlier T, Barnes J P, Templier F 2017 J. Display Technol. 11 554

    [39]

    Chang Y H, Yu M J, Lin R P, Hsu C P, Hou T H 2016 Appl. Phys. Lett. 108 033502

    [40]

    Nomura K, Kamiya T, Hosono H 2013 ECS J. Solid State SC. 2 P5

    [41]

    Ide K, Kikuchi Y, Nomura K, Kimura M, Kamiya T, Hosono H 2011 Appl. Phys. Lett. 99 093507

    [42]

    Hanyu Y, Abe K, Domen K, Nomura K, Hiramatsu H, Kumomi H, Hosono H, Kamiya T 2014 J. Display Technol. 10 979

    [43]

    Domen K, Miyase T, Abe K, Hosono H, Kamiya T 2014 J. Display Technol. 10 975

    [44]

    Nomura K, Kamiya T, Ohta H, Hirano M, Hosono H 2008 Appl. Phys. Lett. 93 192107

    [45]

    Ochi M, Hino A, Goto H, Hayashi K, Kugimiya T 2017 ECS J. Solid State SC. 6 247

    [46]

    Jeon J K, Um J G, Lee S, Jang J 2017 AIP Adv. 7 125110

    [47]

    Lu Y F, Ni H Q, Mai Z H, Ren Z M 2000 J. Appl. Phys. 88 498

    [48]

    Lavrov E V 2003 Physica B 340-342 195

    [49]

    Aldridge S, Downs A J 2001 Chem. Rev. 101 3305

    [50]

    Hanyu Y, Domen K, Nomura K, Hiramatsu H, Kumomi H, Hosono H, Kamiya T 2013 Appl. Phys. Lett. 103 202114

    [51]

    Noh H K, Park J S, Chang K J 2013 J. Appl. Phys. 113 063712

  • [1]

    van de Walle C G 2000 Phys. Rev. Lett. 85 1012

    [2]

    Hofmann D M, Hofstaetter A, Leiter F, Zhou H, Henecker F, Meyer B K, Orlinskii S B, Schmidt J, Baranov P G 2002 Phys. Rev. Lett. 88 45504

    [3]

    van de Walle C G, Neugebauer J 2003 Nature 423 626

    [4]

    Du M H, M H, Biswas K 2011 Phys. Rev. Lett. 106 115502

    [5]

    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488

    [6]

    Tsao S W, Chang T C, Huang S Y, Chen M C, Chen S C, Tsai C T, Kuo Y J, Chen Y C, Wu W C 2010 Solid State Electron. 54 1497

    [7]

    Miyase T, Watanabe K, Sakaguchi I, Ohashi N, Domen K, Nomura K, Hiramatsu H, Kumomi H, Hosono H, Kamiya T 2014 ECS J. Solid State SC. 3 Q3085

    [8]

    Tang H, Ishikawa K, Ide K, Hiramatsu H, Ueda S, Ohashi N, Kumomi H, Hosono H, Kamiya T 2015 J. Appl. Phys. 118 205703

    [9]

    Kim T, Nam Y, Hur J, Park S H, Jeon S 2016 IEEE Electr. Dev. Lett. 37 1131

    [10]

    Hino A, Morita S, Yasuno S, Kishi T, Hayashi K, Kugimiya T 2012 J. Appl. Phys. 2 114515

    [11]

    Tari A, Lee C H, Wong W S 2015 Appl. Phys. Lett. 107 023501

    [12]

    Nam Y, Kim H O, Cho S H, Hwang C S, Kim T, Jeon S, Park S H 2016 J. Inform. Display 17 65

    [13]

    Zheng L L, Ma Q, Wang Y H, Liu W J, Ding S J, Zhang D W 2016 IEEE Electr. Dev. Lett. 37 743

    [14]

    Kim E, Kim C K, Lee M K, Bang T, Choi Y K, Park S H, Choi K C 2016 Appl. Phys. Lett. 108 182104

    [15]

    Kulchaisit C, Ishikawa Y, Fujii M N, Yamazki H, Bermundo J P S, Ishikawa S, Miyasako T, Katsui H, Tanaka K, Hamada K, Horita M, Uraoka Y 2016 J. Display Technol. 12 263

    [16]

    Jung C H, Kim D J, Kang Y K, Yoon D H 2009 Thin Solid Films 517 4078

    [17]

    Abliz A, Wang J L, Xu L, Wan D, Liao L, Ye C, Liu C S Jiang C Z, Chen H P, Guo T L 2016 Appl. Phys. Lett. 108 213501

    [18]

    Jeong S K, Kim M H, Lee S Y, Seo H, Choi D K 2014 Nanoscale Res. Lett. 9 619

    [19]

    Kim H J, Park S Y, Jung H Y, Son B G, Lee C K, Lee C K, Jeong J H, Mo Y G, Son K S, Ryu M K, Lee S, Jeong J K 2013 J. Phys. D: Appl. Phys. 46 055104

    [20]

    Oh S I, Choi G, Hwang H, Lu W, Jang J H 2013 IEEE Trans. Electron Dev. 60 2537

    [21]

    Oh S I, Woo J M, Jang J H 2016 IEEE Trans. Electron Dev. 63 1910

    [22]

    Fujii M N, Ishikawa Y, Horita M, Uraoka Y 2014 ECS J. Solid State SC. 3 Q3050

    [23]

    Bermundo J P S, Ishikawa Y, Fujii M N, Ikenoue H, Uraoka Y 2017 Appl. Phys. Lett. 110 133503

    [24]

    Kim J, Bang S, Lee S, Shin S, Park J 2012 J. Mater. Res. 27 2318

    [25]

    Ahn B D, Shin H S, Kim H J, Park J S 2008 Appl. Phys. Lett. 93 203506

    [26]

    Kim M H, Choi M J, Kimura K, Kobayashi H, Choi D K 2016 Solid State Electron. 126 87

    [27]

    Abliz A, Gao Q, Wan D, Liu X Q, Xu L, Liu C S, Jiang C Z, Li X F, Chen H P, Guo T L, Li J C, Liao L 2017 ACS Appl. Mater. Inter. 9 10798

    [28]

    Ahn B D, Park J S, Chung K B 2014 Appl. Phys. Lett. 105 163505

    [29]

    Bang J, Matsuishi S, Hosono H 2017 Appl. Phys. Lett. 110 232105

    [30]

    Chen G F, Chang T C, Chen H M, Chen B W, Chen H C, Li C Y, Tai Y H, Hung Y J, Cheng K C, Huang C S, Chen K K, Lu H H, Lin Y H 2017 IEEE Electr. Dev. Lett. 38 334

    [31]

    Chen C, Cheng K C, Chagarov E, Kanicki J 2011 Jpn. J. Appl. Phys. 50 091102

    [32]

    Hwang E S, Kim J S, Jeon S M, Lee S J, Jang Y J, Cho D Y, Hwang C S 2018 Nanotechnology 29 155203

    [33]

    Nakashima M, Oota M, Ishihara N, Nonaka Y, Hirohashi T, Takahashi M, Yamazaki S, Obonai T, Hosaka Y, Koezuka J 2014 J. Appl. Phys. 116 213703

    [34]

    Li Y J, Liu Z L, Jiang K, Hu X F 2013 J. Non-Cryst. Solids 378 50

    [35]

    Sallis S, Butler B T, Quackenbush N F, Williams D S, Junda M, Fischer D A, Woicik J C, Podraza N J, White B E, Walsh A, Piper L F J 2014 Appl. Phys. Lett. 104 232108

    [36]

    Nguyen T T T, Aventurier B, Renault O, Terlier T, Barnes J P, Templier F 2014 21st International Workshop on Active-Matrix Flatpanel Displays and DevicesTFT Technologies and FPD Materials (AM-FPD) Ryukoku Univ. Kyoto, Japan, July 2-4, 2014 p149

    [37]

    Hina A, Takanashi Y, Tao H, Morita S, Ochi M, Goto H, Hayashi K, Kugimiya T 2014 J. Vac. Sci. Technol. B 32 031210

    [38]

    Nguyen T T T, Aventurier B, Terlier T, Barnes J P, Templier F 2017 J. Display Technol. 11 554

    [39]

    Chang Y H, Yu M J, Lin R P, Hsu C P, Hou T H 2016 Appl. Phys. Lett. 108 033502

    [40]

    Nomura K, Kamiya T, Hosono H 2013 ECS J. Solid State SC. 2 P5

    [41]

    Ide K, Kikuchi Y, Nomura K, Kimura M, Kamiya T, Hosono H 2011 Appl. Phys. Lett. 99 093507

    [42]

    Hanyu Y, Abe K, Domen K, Nomura K, Hiramatsu H, Kumomi H, Hosono H, Kamiya T 2014 J. Display Technol. 10 979

    [43]

    Domen K, Miyase T, Abe K, Hosono H, Kamiya T 2014 J. Display Technol. 10 975

    [44]

    Nomura K, Kamiya T, Ohta H, Hirano M, Hosono H 2008 Appl. Phys. Lett. 93 192107

    [45]

    Ochi M, Hino A, Goto H, Hayashi K, Kugimiya T 2017 ECS J. Solid State SC. 6 247

    [46]

    Jeon J K, Um J G, Lee S, Jang J 2017 AIP Adv. 7 125110

    [47]

    Lu Y F, Ni H Q, Mai Z H, Ren Z M 2000 J. Appl. Phys. 88 498

    [48]

    Lavrov E V 2003 Physica B 340-342 195

    [49]

    Aldridge S, Downs A J 2001 Chem. Rev. 101 3305

    [50]

    Hanyu Y, Domen K, Nomura K, Hiramatsu H, Kumomi H, Hosono H, Kamiya T 2013 Appl. Phys. Lett. 103 202114

    [51]

    Noh H K, Park J S, Chang K J 2013 J. Appl. Phys. 113 063712

  • [1] Zhang Xue, Kim Bokyung, Lee Hyeonju, Park Jaehoon. Low-temperature rapid preparation of high-performance indium oxide thin films and transistors based on solution technology. Acta Physica Sinica, 2024, 73(9): 096802. doi: 10.7498/aps.73.20240082
    [2] Zhao Ze-Xian, Xu Meng, Peng Cong, Zhang Han, Chen Long-Long, Zhang Jian-Hua, Li Xi-Feng. Inkjet printing high mobility indium-zinc-tin oxide thin film transistor. Acta Physica Sinica, 2024, 73(12): 128501. doi: 10.7498/aps.73.20240361
    [3] Xu Hua, Liu Jing-Dong, Cai Wei, Li Min, Xu Miao, Tao Hong, Zou Jian-Hua, Peng Jun-Biao. Effect of N 2O treatment on performance of back channel etched metal oxide thin film transistors. Acta Physica Sinica, 2022, 71(5): 058503. doi: 10.7498/aps.71.20211350
    [4] Zhu Yu-Bo, Xu Hua, Li Min, Xu Miao, Peng Jun-Biao. Analysis of low frequency noise characteristics of praseodymium doped indium gallium oxide thin film transistor. Acta Physica Sinica, 2021, 70(16): 168501. doi: 10.7498/aps.70.20210368
    [5] Liu Xian-Zhe, Zhang Xu, Tao Hong, Huang Jian-Lang, Huang Jiang-Xia, Chen Yi-Tao, Yuan Wei-Jian, Yao Ri-Hui, Ning Hong-Long, Peng Jun-Biao. Research progress of tin oxide-based thin films and thin-film transistors prepared by sol-gel method. Acta Physica Sinica, 2020, 69(22): 228102. doi: 10.7498/aps.69.20200653
    [6] Qin Ting, Huang Sheng-Xiang, Liao Cong-Wei, Yu Tian-Bao, Luo Heng, Liu Sheng, Deng Lian-Wen. Floating gate effect in amorphous InGaZnO thin-film transistor. Acta Physica Sinica, 2018, 67(4): 047302. doi: 10.7498/aps.67.20172325
    [7] Lan Lin-Feng, Zhang Peng, Peng Jun-Biao. Research progress on oxide-based thin film transisitors. Acta Physica Sinica, 2016, 65(12): 128504. doi: 10.7498/aps.65.128504
    [8] Wang Jing, Liu Yuan, Liu Yu-Rong, Wu Wei-Jing, Luo Xin-Yue, Liu Kai, Li Bin, En Yun-Fei. Extraction of density of localized states in indium zinc oxide thin film transistor. Acta Physica Sinica, 2016, 65(12): 128501. doi: 10.7498/aps.65.128501
    [9] Ning Hong-Long, Hu Shi-Ben, Zhu Feng, Yao Ri-Hui, Xu Miao, Zou Jian-Hua, Tao Hong, Xu Rui-Xia, Xu Hua, Wang Lei, Lan Lin-Feng, Peng Jun-Biao. Improved performance of the amorphous indium-gallium-zinc oxide thin film transistor with Cu-Mo source/drain electrode. Acta Physica Sinica, 2015, 64(12): 126103. doi: 10.7498/aps.64.126103
    [10] Gao Ya-Na, Li Xi-Feng, Zhang Jian-Hua. Solution-processed high performance HIZO thin film transistor with AZO gate dielectric. Acta Physica Sinica, 2014, 63(11): 118502. doi: 10.7498/aps.63.118502
    [11] Liu Yuan, Wu Wei-Jing, Li Bin, En Yun-Fei, Wang Lei, Liu Yu-Rong. Analysis of low-frequency noise in the amorphous indium zinc oxide thin film transistors. Acta Physica Sinica, 2014, 63(9): 098503. doi: 10.7498/aps.63.098503
    [12] Xu Hua, Lan Lin-Feng, Li Min, Luo Dong-Xiang, Xiao Peng, Lin Zhen-Guo, Ning Hong-Long, Peng Jun-Biao. Effect of source/drain preparation on the performance of oxide thin-film transistors. Acta Physica Sinica, 2014, 63(3): 038501. doi: 10.7498/aps.63.038501
    [13] Li Xi-Feng, Xin En-Long, Shi Ji-Feng, Chen Long-Long, Li Chun-Ya, Zhang Jian-Hua. Stability of low temperature and transparent amorphous InGaZnO thin film transistor under illumination. Acta Physica Sinica, 2013, 62(10): 108503. doi: 10.7498/aps.62.108503
    [14] Wu Ping, Zhang Jie, Li Xi-Feng, Chen Ling-Xiang, Wang Lei, Lü Jian-Guo. Ultraviolet photoresponse of ZnO thin-film transistor fabricated at room temperature. Acta Physica Sinica, 2013, 62(1): 018101. doi: 10.7498/aps.62.018101
    [15] Li Shuai-Shuai, Liang Chao-Xu, Wang Xue-Xia, Li Yan-Hui, Song Shu-Mei, Xin Yan-Qing, Yang Tian-Lin. The preparation and characteristics research of high mobility amorphous indium gallium zinc oxide thin-film transistors. Acta Physica Sinica, 2013, 62(7): 077302. doi: 10.7498/aps.62.077302
    [16] Chen Xiao-Xue, Yao Ruo-He. DC characteristic research based on surface potential for a-Si:H thin-film transistor. Acta Physica Sinica, 2012, 61(23): 237104. doi: 10.7498/aps.61.237104
    [17] Qiang Lei, Yao Ruo-He. Distributions of the threshold voltage and the temperature in the channel of amorphous silicon thin film transistors. Acta Physica Sinica, 2012, 61(8): 087303. doi: 10.7498/aps.61.087303
    [18] Zhao Kong-Sheng, Xuan Rui-Jie, Han Xiao, Zhang Geng-Ming. Junctionless low-voltage thin-film transistors based on indium-tin-oxide. Acta Physica Sinica, 2012, 61(19): 197201. doi: 10.7498/aps.61.197201
    [19] Wang Xiong, Cai Xi-Kun, Yuan Zi-Jian, Zhu Xia-Ming, Qiu Dong-Jiang, Wu Hui-Zhen. Study of zinc tin oxide thin-film transistor. Acta Physica Sinica, 2011, 60(3): 037305. doi: 10.7498/aps.60.037305
    [20] Xu Tian-Ning, Wu Hui-Zhen, Zhang Ying-Ying, Wang Xiong, Zhu Xia-Ming, Yuan Zi-Jian. Fabrication and performance of indium oxide based transparent thin film transistors. Acta Physica Sinica, 2010, 59(7): 5018-5022. doi: 10.7498/aps.59.5018
Metrics
  • Abstract views:  7957
  • PDF Downloads:  423
  • Cited By: 0
Publishing process
  • Received Date:  10 January 2018
  • Accepted Date:  23 February 2018
  • Published Online:  05 May 2018

/

返回文章
返回
Baidu
map