-
在铜(Cu)和非晶铟镓锌氧化物(a-IGZO)之间插入30 nm厚的钼(Mo)接触层, 制备了具有Cu-Mo源漏电极的a-IGZO薄膜晶体管(TFT). Mo接触层不仅能够抑制Cu与a-IGZO有源层之间的扩散, 而且提高了Cu电极与玻璃基底以及栅极绝缘层的结合强度. 制备的Cu-Mo结构TFT与纯Cu 结构TFT相比, 具有较高的迁移率(~9.26 cm2·V-1·s-1)、更短的电流传输长度(~0.2 μm)、更低的接触电阻(~1072 Ω)和有效接触电阻率(~1×10-4Ω·cm2), 能够满足TFT 阵列高导互联的要求.Copper is an alternative material for aluminum electrode to meet the stringent requirement for high mobility and low resistance-capacitance (RC) delay of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistor (TFT) for next generation of display technology due to its intrinsic high conductivity. However, low bonding strength between copper layer and insulator/glass and easy diffusion into active layer restrict its application in the field of TFT. In this work, a 30 nm thin film of molybdenum is introduced into copper electrode to form a copper-molybdenum source/drain electrode of a-IGZO TFT, which not only inhibits the diffusion of copper, but also enhances the interfacial adhesion between electrode and substrate. The obtained Cu-Mo TFT possesses a high mobility of ~9.26 cm2·V-1·s-1 and a low subthreshold swing of 0.11 V/Decade. Moreover, it has shorter current transfer length(~0.2 μm), lower contact resistance (~1072 Ω), and effective contact resistance (~1×10-4Ω·cm2) than the pure copper electrode. Cu-Mo electrode with low contact resistance and high adhesion to substrates paves the way to the application of copper in high conductivity interconnection of a-IGZO TFT.
-
Keywords:
- high conductivity interconnection /
- amorphous indium-gallium-zinc oxide /
- thin film transistor /
- Cu-Mo source/drain electrode
[1] Liao Y, Shao X, Du Y, Song Y, Hu W, Zhang Z, Chen Y, Wang Y, Ma Q, Yoon D, Wang D, Yuan J, Wu H, Guo Z, Hao Z, Zhang J, L J 2014 J. Inf. Display 15 77
[2] Arai T, Sasaoka T 2011 SID Symposium Digest of Technical Papers 42 710
[3] Yun P S, Koike J 2011 J. Electrochem. Soc. 158 H1034
[4] Li S S, Liang C X, Wang X X, Li Y H, Song S M, Xin Y Q, Yang T L 2013 Acta Phys. Sin. 62 077302 (in Chinese) [李帅帅, 梁朝旭, 王雪霞, 李延辉, 宋淑梅, 辛艳青, 杨田林 2013 62 077302]
[5] Li X F, Xin E L, Shi J F, Chen L L, Li C Y, Zhang J H 2013 Acta Phys. Sin. 62 108503 (in Chinese) [李喜峰, 信恩龙, 石继锋, 陈龙龙, 李春亚, 张建华 2013 62 108503]
[6] Yu Z, Ren R, Xue J, Yao Q, Li Z, Hui G, Xue W 2015 Appl. Surf. Sci. 328 374
[7] Lee Y W, Kim S, Lee S, Lee W, Yoon K, Park J, Kwon J, Han M 2012 Electrochem. Solid-State Lett. 15 H126
[8] Gong N, Park C, Lee J, Jeong I, Han H, Hwang J, Park J, Park K, Jeong H, Ha Y, Hwang Y 2012 SID Symposium Digest of Technical Papers 43 784
[9] Zhao M, Xu M, Ning H, Xu R, Zou J, Tao H, Wang L, Peng J 2015 IEEE Electron Device Lett. 36 342
[10] Tai Y, Chiu H, Chou L 2012 J. Electrochem. Soc. 159 J200
[11] Yim J R, Jung S Y, Yeon H W, Kwon J Y, Lee Y J, Lee J H, Joo Y C 2012 Jpn. J. Appl. Phys. 51 011401
[12] Wu C W, Yoo S Y, Ning C, Yang W, Shang G L, Wang K, Liu C H, Liu X, Yuan G C, Chen J, Xu Y, Lee W, Yu J W, Lee D H 2014 IEEE Trans. Electron Dev. 61 4299
[13] Nagao K, Neaton J B, Ashcroft N W 2003 Phys. Rev. B 68 125403
[14] Hino A, Okuno H, Kugimiya T 2013 J. Appl. Phys. 113 174902
[15] Kriese M D, Moody N R, Gerberich W W 1998 Acta Mater. 46 6623
[16] Xu H, Lan L F, Li M, Luo D X, Xiao P, Lin Z G, Ning H L, Peng J B 2014 Acta Phys. Sin. 63 038501 (in Chinese) [徐华, 兰林锋, 李民, 罗东向, 肖鹏, 林振国, 宁洪龙, 彭俊彪 2014 63 038501]
[17] Hu W, Peterson R L 2014 Appl. Phys. Lett. 104 192105
[18] Chiang C S, Martin S, Kanicki J, Ugai Y, Yukawa T, Takeuchi S 1998 Jpn. J. Appl. Phys. 37 5914
[19] Miki A, Kugimiya T, Terao Y 2013 US Patent 13 810949
[20] Lan L, Peng J 2011 IEEE Trans. Electron Dev. 58 1452
[21] Kim S I, Park J, Kim C J, Park J C, Song I, Park Y S 2009 J. Electrochem. Soc. 156 H184
[22] Jianke Y, Ningsheng X, Shaozhi D, Jun C, Juncong S, Shieh H D, Po-Tsun L, Yi-Pai H 2011 IEEE Trans. Electron Dev. 58 1121
-
[1] Liao Y, Shao X, Du Y, Song Y, Hu W, Zhang Z, Chen Y, Wang Y, Ma Q, Yoon D, Wang D, Yuan J, Wu H, Guo Z, Hao Z, Zhang J, L J 2014 J. Inf. Display 15 77
[2] Arai T, Sasaoka T 2011 SID Symposium Digest of Technical Papers 42 710
[3] Yun P S, Koike J 2011 J. Electrochem. Soc. 158 H1034
[4] Li S S, Liang C X, Wang X X, Li Y H, Song S M, Xin Y Q, Yang T L 2013 Acta Phys. Sin. 62 077302 (in Chinese) [李帅帅, 梁朝旭, 王雪霞, 李延辉, 宋淑梅, 辛艳青, 杨田林 2013 62 077302]
[5] Li X F, Xin E L, Shi J F, Chen L L, Li C Y, Zhang J H 2013 Acta Phys. Sin. 62 108503 (in Chinese) [李喜峰, 信恩龙, 石继锋, 陈龙龙, 李春亚, 张建华 2013 62 108503]
[6] Yu Z, Ren R, Xue J, Yao Q, Li Z, Hui G, Xue W 2015 Appl. Surf. Sci. 328 374
[7] Lee Y W, Kim S, Lee S, Lee W, Yoon K, Park J, Kwon J, Han M 2012 Electrochem. Solid-State Lett. 15 H126
[8] Gong N, Park C, Lee J, Jeong I, Han H, Hwang J, Park J, Park K, Jeong H, Ha Y, Hwang Y 2012 SID Symposium Digest of Technical Papers 43 784
[9] Zhao M, Xu M, Ning H, Xu R, Zou J, Tao H, Wang L, Peng J 2015 IEEE Electron Device Lett. 36 342
[10] Tai Y, Chiu H, Chou L 2012 J. Electrochem. Soc. 159 J200
[11] Yim J R, Jung S Y, Yeon H W, Kwon J Y, Lee Y J, Lee J H, Joo Y C 2012 Jpn. J. Appl. Phys. 51 011401
[12] Wu C W, Yoo S Y, Ning C, Yang W, Shang G L, Wang K, Liu C H, Liu X, Yuan G C, Chen J, Xu Y, Lee W, Yu J W, Lee D H 2014 IEEE Trans. Electron Dev. 61 4299
[13] Nagao K, Neaton J B, Ashcroft N W 2003 Phys. Rev. B 68 125403
[14] Hino A, Okuno H, Kugimiya T 2013 J. Appl. Phys. 113 174902
[15] Kriese M D, Moody N R, Gerberich W W 1998 Acta Mater. 46 6623
[16] Xu H, Lan L F, Li M, Luo D X, Xiao P, Lin Z G, Ning H L, Peng J B 2014 Acta Phys. Sin. 63 038501 (in Chinese) [徐华, 兰林锋, 李民, 罗东向, 肖鹏, 林振国, 宁洪龙, 彭俊彪 2014 63 038501]
[17] Hu W, Peterson R L 2014 Appl. Phys. Lett. 104 192105
[18] Chiang C S, Martin S, Kanicki J, Ugai Y, Yukawa T, Takeuchi S 1998 Jpn. J. Appl. Phys. 37 5914
[19] Miki A, Kugimiya T, Terao Y 2013 US Patent 13 810949
[20] Lan L, Peng J 2011 IEEE Trans. Electron Dev. 58 1452
[21] Kim S I, Park J, Kim C J, Park J C, Song I, Park Y S 2009 J. Electrochem. Soc. 156 H184
[22] Jianke Y, Ningsheng X, Shaozhi D, Jun C, Juncong S, Shieh H D, Po-Tsun L, Yi-Pai H 2011 IEEE Trans. Electron Dev. 58 1121
计量
- 文章访问数: 7507
- PDF下载量: 329
- 被引次数: 0