-
Based on the double exponential distributions of trap states in the channel of the hydrogenated amorphous silicon thin film transistor, characteristic temperatures of tail state and deep state are distinguished. Besides, series resistances are used to be associated with characteristic lengths of the source and the drain with trap states. By taking advantage of the Poisson equation and Gauss theorem, the expression of the threshold voltage distribution is obtained. The results show that with the increase of the distance between the point and the source, the threshold voltage decreases. Moreover, under the degradation of the self-heating effect, the distribution of the temperature in the channel is non-uniform and its variation in the channel center is the biggest.
-
Keywords:
- amorphous silicon /
- thin film transistor /
- threshold voltage /
- temperature effect
[1] He Y, Hattori R, Kanicki J 2000 IEEE Electron Dev. Lett. 21 590
[2] Nathan A, Kumar A, Sakariya A, Servati P 2004 IEEE J. Solid-State Circuits 39 1477
[3] Stryahilev D, Sazonov A, Nathan A 2002 J. Vac. Sci. Technol. A 20 1087
[4] Zhu M F, Xu Z Y 1989 Acta Phys. Sin. 38 1988 (in Chinese) [朱美芳, 许政一 1989 38 1988]
[5] Colalongo L 2001 Solid-State Electron. 45 1525
[6] Liu Y, Yao R H, Li B, Deng W L 2008 J. Dis. Technol. 4 180
[7] Wie C R, Tang Z, Park M S 2008 J. Appl. Phys. 104 114509
[8] Karim K S, Nathan A, Hack M, Milne W I 2004 IEEE Electron Dev. Lett. 25 188
[9] Powell M J, van Berkel C, Franklin A R, Deane S C, Milne W I 1992 Phys. Rev. B 45 4160
[10] Shringarpure R, Venugopal S, Clark L T, Allee D R, Bawolek E 2008 IEEE Electron Dev. Lett. 29 93
[11] Sambandan S, Ng T, Endicott F 2008 J. Dis. Technol. 4 304
[12] Wie C R, Tang Z 2011 IEEE International Reliability Physics Symposium (Monterey: IEEE) pp347--353
[13] Wie C R 2010 IEEE Trans. Electron Dev. 57 846
[14] Powell M J, van Berkel C, Hughes J R 1989 J. Appl. Phys. Lett. 54 1323
[15] Busta H H, Pogemiller J E, Standley R W, Mackenzie K D 1989 IEEE Trans. Electron Dev. 36 2883
[16] Kao S C, Zan H W, Huang J J, Kung B C 2010 IEEE Trans. Electron Dev. 57 588
[17] Wang L, Fjeldly T A, Iniguez B, Slade H C, Shur M 2000 IEEE Trans. Electron Dev. 47 387
[18] Karami M A, Afzali-Kusha A 2006 International Conference on Microelectronics (Dhahran: IEEE) pp5--8
-
[1] He Y, Hattori R, Kanicki J 2000 IEEE Electron Dev. Lett. 21 590
[2] Nathan A, Kumar A, Sakariya A, Servati P 2004 IEEE J. Solid-State Circuits 39 1477
[3] Stryahilev D, Sazonov A, Nathan A 2002 J. Vac. Sci. Technol. A 20 1087
[4] Zhu M F, Xu Z Y 1989 Acta Phys. Sin. 38 1988 (in Chinese) [朱美芳, 许政一 1989 38 1988]
[5] Colalongo L 2001 Solid-State Electron. 45 1525
[6] Liu Y, Yao R H, Li B, Deng W L 2008 J. Dis. Technol. 4 180
[7] Wie C R, Tang Z, Park M S 2008 J. Appl. Phys. 104 114509
[8] Karim K S, Nathan A, Hack M, Milne W I 2004 IEEE Electron Dev. Lett. 25 188
[9] Powell M J, van Berkel C, Franklin A R, Deane S C, Milne W I 1992 Phys. Rev. B 45 4160
[10] Shringarpure R, Venugopal S, Clark L T, Allee D R, Bawolek E 2008 IEEE Electron Dev. Lett. 29 93
[11] Sambandan S, Ng T, Endicott F 2008 J. Dis. Technol. 4 304
[12] Wie C R, Tang Z 2011 IEEE International Reliability Physics Symposium (Monterey: IEEE) pp347--353
[13] Wie C R 2010 IEEE Trans. Electron Dev. 57 846
[14] Powell M J, van Berkel C, Hughes J R 1989 J. Appl. Phys. Lett. 54 1323
[15] Busta H H, Pogemiller J E, Standley R W, Mackenzie K D 1989 IEEE Trans. Electron Dev. 36 2883
[16] Kao S C, Zan H W, Huang J J, Kung B C 2010 IEEE Trans. Electron Dev. 57 588
[17] Wang L, Fjeldly T A, Iniguez B, Slade H C, Shur M 2000 IEEE Trans. Electron Dev. 47 387
[18] Karami M A, Afzali-Kusha A 2006 International Conference on Microelectronics (Dhahran: IEEE) pp5--8
Catalog
Metrics
- Abstract views: 9294
- PDF Downloads: 972
- Cited By: 0