搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铟锌氧化物薄膜晶体管局域态分布的提取方法

王静 刘远 刘玉荣 吴为敬 罗心月 刘凯 李斌 恩云飞

引用本文:
Citation:

铟锌氧化物薄膜晶体管局域态分布的提取方法

王静, 刘远, 刘玉荣, 吴为敬, 罗心月, 刘凯, 李斌, 恩云飞

Extraction of density of localized states in indium zinc oxide thin film transistor

Wang Jing, Liu Yuan, Liu Yu-Rong, Wu Wei-Jing, Luo Xin-Yue, Liu Kai, Li Bin, En Yun-Fei
PDF
导出引用
  • 本文针对铟锌氧化物薄膜晶体管(IZO TFT)的低频噪声特性与变频电容-电压特性展开试验研究, 基于上述特性对有源层内局域态密度及其在禁带中的分布进行参数提取. 首先, 基于IZO TFT 的亚阈区I-V特性提取器件表面势随栅源电压的变化关系. 基于载流子数随机涨落模型, 在考虑有源层内缺陷态俘获/释放载流子效应基础上, 通过因子提取深能态陷阱的特征温度; 基于沟道电流噪声功率谱密度及平带电压噪声功率谱密度的测量, 提取IZO TFT有源层内局域态密度及其分布. 试验结果表明, 带尾态缺陷在禁带内随能量呈e指数变化趋势, 其导带底密度NTA约为3.421020 cm-3eV-1, 特征温度TTA约为135 K. 随后, 将C-V特性与线性区I-V特性相结合, 对栅端寄生电阻、漏端寄生电阻、源端寄生电阻进行提取与分离. 在考虑有源层内局域态所俘获电荷与自由载流子的情况下, 基于变频C-V特性对IZO TFT有源层内局域态分布进行参数提取. 试验结果表明, 深能态与带尾态在禁带内随能量均呈e指数变化趋势, 深能态在导带底密度NDA约为5.41015 cm-3eV-1, 特征温度TDA约为711 K, 而带尾态在导带底密度NTA约为1.991020 cm-3eV-1, 特征温度TTA约为183 K. 最后, 对以上两种局域态提取方法进行对比与分析.
    Density of localized states (DOS) over the band-gap determines the electrical and instability characteristics in the indium zinc oxide thin film transistor (IZO TFT). In order to propose an accurate extraction method for DOS in the bulk region, low frequency noise and multi-frequency capacitance voltage characteristics are measured and analyzed in this paper. Firstly, the relationship between surface potential and gate voltage is extracted based on subthreshold I-V characteristics. The extraction results show that the surface potential increases with the increase of gate voltage in the sub-threshold region. When the Fermi level is close to the bottom of conduction band, the increase of surface potential should be saturated. Secondly, drain current noise power spectral densities in the IZO TFTs under different operation modes are measured. Based on carrier number fluctuation mechanism, the flat-band voltage noise power spectral density is extracted and localized state near IZO/SiO2 interface is then calculated. By considering the emission and trapping processes of carriers between localized states, the distribution of bulk trap density in the band-gap is extracted based on low frequency noise measurement results. The experimental results show an exponential tail state distribution in the band-gap while NTA is about 3.421020 cm-3eV-1 and TTA is about 135 K. Subsequently, contact resistances are then extracted by combining capacitance-voltage characteristics with I-V characteristics in the linear region. The extrinsic parasitic resistances at gate, source, drain are separated. By considering charges trapped in the localized states and free carriers, the distributions of deep states and tail states in the active layer of IZO TFT are extracted through multi-frequency capacitance-voltage characteristics. The experimental results also show an exponential deep state and tail state distribution in the band-gap while NDA is about 5.41015 cm-3eV-1, TDA is about 711 K, NTA is about 1.991020 cm-3eV-1, and TTA is about 183 K. The above two proposed extraction methods are compared and analyzed. The deviation between two extraction results may relate to the existence of neutral trap in the gate dielectric which is also an important source of low frequency noise in the IZO TFT.
      通信作者: 刘远, liuyuan@ceprei.com
    • 基金项目: 国家自然科学基金(批准号: 61574048, 61574062, 61204112) 和广东省自然科学基金(批准号: 2014A030313656, 2015A030306002)资助的课题.
      Corresponding author: Liu Yuan, liuyuan@ceprei.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61574048, 61574062, 61204112) and the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2014A030313656, 2015A030306002).
    [1]

    Lan L, Xiong N, Xiao P, Li M, Xu H, Yao R, Wen S, Peng J 2013 Appl. Phys Lett. 102 242102

    [2]

    Li X F, Xin E L, Shi J F, Chen L L, Li C Y, Zhang J H 2013 Acta Phys. Sin. 62 108503 (in Chinese) [李喜峰, 信恩龙, 石继锋, 陈龙龙, 李春亚, 张建华 2013 62 108503]

    [3]

    Yu G, Wu C F, Lu H, Ren F F, Zhang R, Zheng Y D, Huang X M 2015 Chin. Phys. Lett. 32 047302

    [4]

    Kimura M, Nakanishi T, Nomura K, Kamiya T, Hosono H 2008 Appl. Phys. Lett. 92 133512

    [5]

    Hsieh H H, Kamiya T, Nomura K, Hosono H, Wu C C 2008 Appl. Phys. Lett. 92 133503

    [6]

    Tang L F, Yu G, Lu H, Wu C F, Qian H M, Zhou D, Zhang R, Zheng Y D, Huang X M 2015 Chin. Phys. B 24 088504

    [7]

    Liu Y R, Su J, Lai P T, Yao R H 2014 Chin. Phys. B 23 068501

    [8]

    Bae H, Choi H, Oh S, Kim D H, Bae J, Kim J, Kim Y H, Kim D M 2013 IEEE Electron Device Lett. 34 57

    [9]

    Park J H, Jeon K, Lee S, Kim S, Kim S, Song I, Kim C J, Park J, Park Y, Kim D M, Kim D H 2008 IEEE Electron Device Lett. 29 1292

    [10]

    Lee S, Park S, Kim S, Jeon Y, Jeon K, Park J H, Park J, Song I, Kim C J, Park Y, Kim D M, Kim D H 2010 IEEE Electron Device Lett. 31 231

    [11]

    Bae H, Jun S, Jo C H, Choi H, Lee J, Kim Y H, Hwang S, Jeong H K, Hur I, Kim W, Yun D, Hong E, Seo H, Kim D H, Kim D M 2012 IEEE Electron Device Lett. 33 1138

    [12]

    Kim Y, Bae M, Kim W, Kong D, Jeong H K, Kim H, Choi S, Kim D M, Kim D H 2012 IEEE Trans. Electron Devices 59 2689

    [13]

    Xu P R, Qiang L, Yao R H 2015 Acta Phys. Sin. 64 137101 (in Chinese) [徐飘荣, 强蕾, 姚若河 2015 64 137101]

    [14]

    Liu Y, Wu W J, Li B, En Y F, Wang L, Liu Y R 2014 Acta Phys. Sin. 63 098503 (in Chinese) [刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣 2014 63 098503]

    [15]

    Kim S, Jeon Y, Lee J H, Ahn B D, Park S Y, Park J H, Kim J H, Park J, Kim D M, Kim D H 2010 IEEE Electron Device Lett. 31 1236

    [16]

    Liu Y, Wu W J, Qiang L, Wang L, En Y F, Li B 2015 Chin. Phys. Lett. 32 088506

    [17]

    Jun S, Bae H, Kim H, Lee J, Choi S J, Kim D H, Kim D M 2015 IEEE Electron Device Lett. 36 144

    [18]

    Lee S, Park H, Paine D C 2011 J. Appl. Phys. 109 063702

    [19]

    Bae H, Hur I, Shin J S, Yun D, Hong E, Jung K D, Park M S, Choi S, Lee W H, Uhm M, Kim D H, Kim D M 2012 IEEE Electron Device Lett. 33 534

    [20]

    Shin S J, Bae H, Hong E, Jang J, Yun D, Lee J, Kim D H 2012 Solid-State Electron. 72 78

    [21]

    Luo D, Zhao M, Xu M, Li M, Chen Z, Wang L, Peng J 2014 ACS Appl. Mater. Interfaces 6 11318

    [22]

    Huang C Y, Zhang L R, Zhou L, Wu W J, Yao R H, Peng J B 2015 Displays 38 93

    [23]

    Lee J, Jun S, Jang J, Bae H, Kim H, Chung J W, Choi S J, Kim D H, Lee J, Kim D M 2013 IEEE Electron Device Lett. 34 1521

    [24]

    Servati P, Nathan A 2002 IEEE Trans. Electron Devices 49 812

    [25]

    Jevtic M M 1995 Microelectron. Reliab. 35 455

    [26]

    Jayaraman R, Sodini C G 1989 IEEE Trans. Electron Devices 36 1773

    [27]

    Fung T C, Baek G, Kanicki J 2010 J. Appl. Phys. 108 074518

    [28]

    Dimitriadis C A, Brini J, Lee J I, Farmakis F V, Kamarinos 1999 J. Appl. Phys. 85 3934

    [29]

    Pichon L, Cretu B, Boukhenoufa A 2009 Thin Solid Films 517 6367

    [30]

    Bae H, Kim S, Bae M, Shin J S, Kong D, Jung H, Jang J, Lee J, Kim D H, Kim D M 2011 IEEE Electron Device Lett. 32 761

    [31]

    Vogel E M, Henson W K, Richter C A, Suehle J S 2000 IEEE Trans. Electron Devices 47 601

  • [1]

    Lan L, Xiong N, Xiao P, Li M, Xu H, Yao R, Wen S, Peng J 2013 Appl. Phys Lett. 102 242102

    [2]

    Li X F, Xin E L, Shi J F, Chen L L, Li C Y, Zhang J H 2013 Acta Phys. Sin. 62 108503 (in Chinese) [李喜峰, 信恩龙, 石继锋, 陈龙龙, 李春亚, 张建华 2013 62 108503]

    [3]

    Yu G, Wu C F, Lu H, Ren F F, Zhang R, Zheng Y D, Huang X M 2015 Chin. Phys. Lett. 32 047302

    [4]

    Kimura M, Nakanishi T, Nomura K, Kamiya T, Hosono H 2008 Appl. Phys. Lett. 92 133512

    [5]

    Hsieh H H, Kamiya T, Nomura K, Hosono H, Wu C C 2008 Appl. Phys. Lett. 92 133503

    [6]

    Tang L F, Yu G, Lu H, Wu C F, Qian H M, Zhou D, Zhang R, Zheng Y D, Huang X M 2015 Chin. Phys. B 24 088504

    [7]

    Liu Y R, Su J, Lai P T, Yao R H 2014 Chin. Phys. B 23 068501

    [8]

    Bae H, Choi H, Oh S, Kim D H, Bae J, Kim J, Kim Y H, Kim D M 2013 IEEE Electron Device Lett. 34 57

    [9]

    Park J H, Jeon K, Lee S, Kim S, Kim S, Song I, Kim C J, Park J, Park Y, Kim D M, Kim D H 2008 IEEE Electron Device Lett. 29 1292

    [10]

    Lee S, Park S, Kim S, Jeon Y, Jeon K, Park J H, Park J, Song I, Kim C J, Park Y, Kim D M, Kim D H 2010 IEEE Electron Device Lett. 31 231

    [11]

    Bae H, Jun S, Jo C H, Choi H, Lee J, Kim Y H, Hwang S, Jeong H K, Hur I, Kim W, Yun D, Hong E, Seo H, Kim D H, Kim D M 2012 IEEE Electron Device Lett. 33 1138

    [12]

    Kim Y, Bae M, Kim W, Kong D, Jeong H K, Kim H, Choi S, Kim D M, Kim D H 2012 IEEE Trans. Electron Devices 59 2689

    [13]

    Xu P R, Qiang L, Yao R H 2015 Acta Phys. Sin. 64 137101 (in Chinese) [徐飘荣, 强蕾, 姚若河 2015 64 137101]

    [14]

    Liu Y, Wu W J, Li B, En Y F, Wang L, Liu Y R 2014 Acta Phys. Sin. 63 098503 (in Chinese) [刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣 2014 63 098503]

    [15]

    Kim S, Jeon Y, Lee J H, Ahn B D, Park S Y, Park J H, Kim J H, Park J, Kim D M, Kim D H 2010 IEEE Electron Device Lett. 31 1236

    [16]

    Liu Y, Wu W J, Qiang L, Wang L, En Y F, Li B 2015 Chin. Phys. Lett. 32 088506

    [17]

    Jun S, Bae H, Kim H, Lee J, Choi S J, Kim D H, Kim D M 2015 IEEE Electron Device Lett. 36 144

    [18]

    Lee S, Park H, Paine D C 2011 J. Appl. Phys. 109 063702

    [19]

    Bae H, Hur I, Shin J S, Yun D, Hong E, Jung K D, Park M S, Choi S, Lee W H, Uhm M, Kim D H, Kim D M 2012 IEEE Electron Device Lett. 33 534

    [20]

    Shin S J, Bae H, Hong E, Jang J, Yun D, Lee J, Kim D H 2012 Solid-State Electron. 72 78

    [21]

    Luo D, Zhao M, Xu M, Li M, Chen Z, Wang L, Peng J 2014 ACS Appl. Mater. Interfaces 6 11318

    [22]

    Huang C Y, Zhang L R, Zhou L, Wu W J, Yao R H, Peng J B 2015 Displays 38 93

    [23]

    Lee J, Jun S, Jang J, Bae H, Kim H, Chung J W, Choi S J, Kim D H, Lee J, Kim D M 2013 IEEE Electron Device Lett. 34 1521

    [24]

    Servati P, Nathan A 2002 IEEE Trans. Electron Devices 49 812

    [25]

    Jevtic M M 1995 Microelectron. Reliab. 35 455

    [26]

    Jayaraman R, Sodini C G 1989 IEEE Trans. Electron Devices 36 1773

    [27]

    Fung T C, Baek G, Kanicki J 2010 J. Appl. Phys. 108 074518

    [28]

    Dimitriadis C A, Brini J, Lee J I, Farmakis F V, Kamarinos 1999 J. Appl. Phys. 85 3934

    [29]

    Pichon L, Cretu B, Boukhenoufa A 2009 Thin Solid Films 517 6367

    [30]

    Bae H, Kim S, Bae M, Shin J S, Kong D, Jung H, Jang J, Lee J, Kim D H, Kim D M 2011 IEEE Electron Device Lett. 32 761

    [31]

    Vogel E M, Henson W K, Richter C A, Suehle J S 2000 IEEE Trans. Electron Devices 47 601

  • [1] 吕玲, 邢木涵, 薛博瑞, 曹艳荣, 胡培培, 郑雪峰, 马晓华, 郝跃. 重离子辐射对AlGaN/GaN高电子迁移率晶体管低频噪声特性的影响.  , 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] 闫大为, 田葵葵, 闫晓红, 李伟然, 俞道欣, 李金晓, 曹艳荣, 顾晓峰. GaN肖特基二极管的正向电流输运和低频噪声行为.  , 2021, 70(8): 087201. doi: 10.7498/aps.70.20201467
    [3] 徐琦, 孙小伟, 宋婷, 温晓东, 刘禧萱, 王羿文, 刘子江. 不同缺陷态下具有高光力耦合率的新型一维光力晶体纳米梁.  , 2021, 70(22): 224210. doi: 10.7498/aps.70.20210925
    [4] 朱宇博, 徐华, 李民, 徐苗, 彭俊彪. 镨掺杂铟镓氧化物薄膜晶体管的低频噪声特性分析.  , 2021, 70(16): 168501. doi: 10.7498/aps.70.20210368
    [5] 王党会, 许天旱. 蓝紫光发光二极管中的低频产生-复合噪声行为研究.  , 2019, 68(12): 128104. doi: 10.7498/aps.68.20190189
    [6] 刘远, 何红宇, 陈荣盛, 李斌, 恩云飞, 陈义强. 氢化非晶硅薄膜晶体管的低频噪声特性.  , 2017, 66(23): 237101. doi: 10.7498/aps.66.237101
    [7] 徐飘荣, 强蕾, 姚若河. 一个非晶InGaZnO薄膜晶体管线性区陷阱态的提取方法.  , 2015, 64(13): 137101. doi: 10.7498/aps.64.137101
    [8] 王党会, 许天旱, 王荣, 雒设计, 姚婷珍. InGaN/GaN多量子阱结构发光二极管发光机理转变的低频电流噪声表征.  , 2015, 64(5): 050701. doi: 10.7498/aps.64.050701
    [9] 王凯, 刘远, 陈海波, 邓婉玲, 恩云飞, 张平. 部分耗尽结构绝缘体上硅器件的低频噪声特性.  , 2015, 64(10): 108501. doi: 10.7498/aps.64.108501
    [10] 刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣. 非晶铟锌氧化物薄膜晶体管的低频噪声特性与分析.  , 2014, 63(9): 098503. doi: 10.7498/aps.63.098503
    [11] 刘玉栋, 杜磊, 孙鹏, 陈文豪. 静电放电对功率肖特基二极管I-V及低频噪声特性的影响.  , 2012, 61(13): 137203. doi: 10.7498/aps.61.137203
    [12] 赵孔胜, 轩瑞杰, 韩笑, 张耕铭. 基于氧化铟锡的无结低电压薄膜晶体管.  , 2012, 61(19): 197201. doi: 10.7498/aps.61.197201
    [13] 强蕾, 姚若河. 非晶硅薄膜晶体管沟道中阈值电压及温度的分布.  , 2012, 61(8): 087303. doi: 10.7498/aps.61.087303
    [14] 王雄, 才玺坤, 原子健, 朱夏明, 邱东江, 吴惠桢. 氧化锌锡薄膜晶体管的研究.  , 2011, 60(3): 037305. doi: 10.7498/aps.60.037305
    [15] 王鑫华, 庞磊, 陈晓娟, 袁婷婷, 罗卫军, 郑英奎, 魏珂, 刘新宇. GaN HEMT栅边缘电容用于缺陷的研究.  , 2011, 60(9): 097101. doi: 10.7498/aps.60.097101
    [16] 岳蕾蕾, 陈雨, 樊光辉, 何娇, 赵德荀, 刘应开. 缺陷态对4340钢-环氧树脂二维声子晶体带隙的影响.  , 2011, 60(10): 106103. doi: 10.7498/aps.60.106103
    [17] 徐天宁, 吴惠桢, 张莹莹, 王雄, 朱夏明, 原子健. In2O3 透明薄膜晶体管的制备及其电学性能的研究.  , 2010, 59(7): 5018-5022. doi: 10.7498/aps.59.5018
    [18] 赵岩, 施伟华, 姜跃进. 中心外缺陷对带隙型光子晶体光纤色散特性的影响.  , 2010, 59(9): 6279-6283. doi: 10.7498/aps.59.6279
    [19] 董建文, 陈溢杭, 汪河洲. 含奇异材料的掺杂一维光子晶体色散关系和空间局域度理论.  , 2007, 56(1): 268-273. doi: 10.7498/aps.56.268
    [20] 赵 芳, 苑立波. 二维声子晶体同质位错结缺陷态特性.  , 2006, 55(2): 517-520. doi: 10.7498/aps.55.517
计量
  • 文章访问数:  6357
  • PDF下载量:  279
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-26
  • 修回日期:  2016-03-15
  • 刊出日期:  2016-06-05

/

返回文章
返回
Baidu
map