Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Floating gate effect in amorphous InGaZnO thin-film transistor

Qin Ting Huang Sheng-Xiang Liao Cong-Wei Yu Tian-Bao Luo Heng Liu Sheng Deng Lian-Wen

Citation:

Floating gate effect in amorphous InGaZnO thin-film transistor

Qin Ting, Huang Sheng-Xiang, Liao Cong-Wei, Yu Tian-Bao, Luo Heng, Liu Sheng, Deng Lian-Wen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years, considerable attention has been paid to amorphous indium gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs) for high performance flat panel display, such as liquid-crystal displays (LCDs), active-matrix organic light-emitting diode (AMOLED) display and flexible display. This is because IGZO TFTs are more suitable for pixels and circuit integrations on display panel than the conventional silicon-based devices. The merits of IGZO TFT technology include high mobility, decent reliability, low manufacturing cost, and excellent uniformity over large fabrication area. However, it was reported that the electrical characteristics of IGZO TFT are susceptible to shift after electrical aging measurement under illumination, which is caused by the activation of trapped electrons from sub-gap states to conducting states. Therefore, it is necessary to introduce light shielding layer to suppress the electrical characteristic shift under illumination aging measurements. Lim et al. demonstrated the characteristics of IGZO TFT with additional light shielding metal layer, and proved that the threshold voltage of TFT can be tuned linearly by adjusting the biasing voltage of the light shielding metal. Taking advantage of this tunable threshold voltage, AMOLED pixel circuit with a threshold voltage shift compensation function can be implemented. However, drawback of this method lies in the adding of additional biasing line, which increases the circuit area and restricts the integration of high-resolution pixel circuits. Thus, Zan et al. proposed adopting floating (unbiased) light shielding metal layer to improve the characteristics of device. However, Zeng et al. demonstrated the abnormal output characteristics of the IGZO TFT, as it cannot be saturated due to the introduction of floating light shielding metal layer. It seems that the IGZO TFT with floating metal is different from the conventional double-gate or single gate structure. To date, the current conducting mechanism of IGZO TFT with floating metal has not been discussed yet. In this paper, the distribution of electrical potential in the IGZO TFT with a cross sectional view is thoroughly analyzed. It is confirmed that the abnormal output characteristic of IGZO TFT is caused by the capacitive coupling between the floating gate and the drain electrode of the transistor. On the basis of the voltage distribution relationship between the equivalent capacitances, a threshold-voltage-dependent current-voltage model is proposed. The simulated results by technology computer-aided design tool and those by the proposed model are in good agreement with each other. Therefore, the mechanism of floating gate effect for IGZO TFT is comprehensively demonstrated. The illustrated conducting mechanism and the proposed current-voltage model are helpful in developing the device and process of IGZO TFT with novel structure.
      Corresponding author: Liao Cong-Wei, 289114489@qq.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0204600), the National Natural Science Foundation of China (Grant No. 61404002), and the Fundamental Research Funds for the Central Universities of Central South University, China (Grant No. 2017zzts704).
    [1]

    Arai T 2012 J. Soc. Inf. Display 20 156

    [2]

    Li X F, Xin E L, Shi J F, Chen L L, Li C Y, Zhang J H 2013 Acta Phys. Sin. 62 108503 (in Chinese)[李喜峰, 信恩龙, 石继锋, 陈龙龙, 李亚春, 张建华 2013 62 108503]

    [3]

    Xu P R, Qiang L, Yao R H 2015 Acta Phys. Sin. 64 137101 (in Chinese)[徐飘荣, 强蕾, 姚若河 2015 64 137101]

    [4]

    Kim Y, Kim Y, Lee H 2014 J. Display Technol. 10 80

    [5]

    Qian C, Sun J, Zhang L, Huang H, Yang J, Gao Y 2015 J. Phys. Chem. C 119 14965

    [6]

    Zhang C, Luo Q, Wu H, Li H, Lai J, Ji G, Yan L, Wang X, Zhang D, Lin J, Chen L, Yang J, Ma C 2017 Organic Electron. 45 190

    [7]

    Zheng Z, Jiang J, Guo J, Sun J, Yang J 2016 Organic Electron. 33 311

    [8]

    Liu F, Qian C, Sun J, Liu P, Huang Y, Gao Y, Yang J 2016 Appl. Phys. A:Mater. Sci. Process. 122 311

    [9]

    Chen T C, Chang T C, Hsieh T Y, Tsai C T, Chen S C, Lin C S, Hung M C, Tu C H, Chang J J, Chen P L 2010 Appl. Phys. Lett. 97 192103

    [10]

    Oh H, Yoon S M, Ryu M K, Hwang C S, Yang S, Park S H K 2010 Appl. Phys. Lett. 97 183502

    [11]

    Oh H, Yoon S M, Ryu M K, Hwang C S, Yang S, Park S H K 2011 Appl. Phys. Lett. 98 033504

    [12]

    Chen W T, Hsueh H W, Zan H W, Tsai C C 2011 Electrochem. Solid-State Lett. 14 H297

    [13]

    Zeng M, Chen S, Liu X D, Zeng L M, Li W Y, Shi L Q, Li S, Chou Y F, Liu X, Lee C 2017 Sid Symposium Digest of Technical Papers 48 1234

    [14]

    Lim H, Yin H, Park J S, Song I, Kim C, Park J, Kim S, Kim S W, Lee C B, Kim Y C, Park Y S, Kang D 2008 Appl. Phys. Lett. 93 063505

    [15]

    Takechi K, Nakata M, Azuma K, Yamaguchi H, Kaneko S 2009 IEEE Trans. Electron Dev. 56 2027

    [16]

    Park J S, Jeong J K, Mo Y G, Kim H D, Kim C J 2008 Appl. Phys. Lett. 93 033513

    [17]

    Seok M J, Choi M H, Mativenga M, Geng D, Kim D Y, Jang J 2011 IEEE Electron Dev. Lett. 32 1089

    [18]

    Abe K, Takahashi K, Sato A 2012 IEEE Trans. Electron Devi. 59 1928

    [19]

    Baek G, Kanicki J 2012 J. Soc. Inf. Disp. 20 237

    [20]

    Seok M J, Mativenga M, Geng D, Jang J 2013 IEEE Electron Dev. Lett. 60 3787

    [21]

    Zan H W, Chen W T, Yeh C C, Hsueh H W, Tsai C C, Meng H F 2011 Appl. Phys. Lett. 98 153506

    [22]

    Qin T, Huang S X, Liao C W, Yu T B, Deng L W 2017 Acta Phys. Sin. 66 097101

    [23]

    Ning H L, Hu S B, Zhu F, Yao R H, Xu M, Zou J H, Tao H, Xu R X, Xu H, Wang L, Lan L F, Peng J B 2015 Acta Phys. Sin. 64 126103 (in Chinese)[宁洪龙, 胡诗犇, 朱峰, 姚日晖, 徐苗, 邹建华, 陶洪, 徐瑞霞, 徐华, 王磊, 兰林锋, 彭俊虎 2015 64 126103]

    [24]

    Zhao J Q, Yu P F, Qiu S, Zhao Q H, Feng L R, Ogier S, Tang W, Fan J L, Liu W J, Liu Y P, Guo X J 2017 IEEE Electron Dev. Lett. 64 2030

  • [1]

    Arai T 2012 J. Soc. Inf. Display 20 156

    [2]

    Li X F, Xin E L, Shi J F, Chen L L, Li C Y, Zhang J H 2013 Acta Phys. Sin. 62 108503 (in Chinese)[李喜峰, 信恩龙, 石继锋, 陈龙龙, 李亚春, 张建华 2013 62 108503]

    [3]

    Xu P R, Qiang L, Yao R H 2015 Acta Phys. Sin. 64 137101 (in Chinese)[徐飘荣, 强蕾, 姚若河 2015 64 137101]

    [4]

    Kim Y, Kim Y, Lee H 2014 J. Display Technol. 10 80

    [5]

    Qian C, Sun J, Zhang L, Huang H, Yang J, Gao Y 2015 J. Phys. Chem. C 119 14965

    [6]

    Zhang C, Luo Q, Wu H, Li H, Lai J, Ji G, Yan L, Wang X, Zhang D, Lin J, Chen L, Yang J, Ma C 2017 Organic Electron. 45 190

    [7]

    Zheng Z, Jiang J, Guo J, Sun J, Yang J 2016 Organic Electron. 33 311

    [8]

    Liu F, Qian C, Sun J, Liu P, Huang Y, Gao Y, Yang J 2016 Appl. Phys. A:Mater. Sci. Process. 122 311

    [9]

    Chen T C, Chang T C, Hsieh T Y, Tsai C T, Chen S C, Lin C S, Hung M C, Tu C H, Chang J J, Chen P L 2010 Appl. Phys. Lett. 97 192103

    [10]

    Oh H, Yoon S M, Ryu M K, Hwang C S, Yang S, Park S H K 2010 Appl. Phys. Lett. 97 183502

    [11]

    Oh H, Yoon S M, Ryu M K, Hwang C S, Yang S, Park S H K 2011 Appl. Phys. Lett. 98 033504

    [12]

    Chen W T, Hsueh H W, Zan H W, Tsai C C 2011 Electrochem. Solid-State Lett. 14 H297

    [13]

    Zeng M, Chen S, Liu X D, Zeng L M, Li W Y, Shi L Q, Li S, Chou Y F, Liu X, Lee C 2017 Sid Symposium Digest of Technical Papers 48 1234

    [14]

    Lim H, Yin H, Park J S, Song I, Kim C, Park J, Kim S, Kim S W, Lee C B, Kim Y C, Park Y S, Kang D 2008 Appl. Phys. Lett. 93 063505

    [15]

    Takechi K, Nakata M, Azuma K, Yamaguchi H, Kaneko S 2009 IEEE Trans. Electron Dev. 56 2027

    [16]

    Park J S, Jeong J K, Mo Y G, Kim H D, Kim C J 2008 Appl. Phys. Lett. 93 033513

    [17]

    Seok M J, Choi M H, Mativenga M, Geng D, Kim D Y, Jang J 2011 IEEE Electron Dev. Lett. 32 1089

    [18]

    Abe K, Takahashi K, Sato A 2012 IEEE Trans. Electron Devi. 59 1928

    [19]

    Baek G, Kanicki J 2012 J. Soc. Inf. Disp. 20 237

    [20]

    Seok M J, Mativenga M, Geng D, Jang J 2013 IEEE Electron Dev. Lett. 60 3787

    [21]

    Zan H W, Chen W T, Yeh C C, Hsueh H W, Tsai C C, Meng H F 2011 Appl. Phys. Lett. 98 153506

    [22]

    Qin T, Huang S X, Liao C W, Yu T B, Deng L W 2017 Acta Phys. Sin. 66 097101

    [23]

    Ning H L, Hu S B, Zhu F, Yao R H, Xu M, Zou J H, Tao H, Xu R X, Xu H, Wang L, Lan L F, Peng J B 2015 Acta Phys. Sin. 64 126103 (in Chinese)[宁洪龙, 胡诗犇, 朱峰, 姚日晖, 徐苗, 邹建华, 陶洪, 徐瑞霞, 徐华, 王磊, 兰林锋, 彭俊虎 2015 64 126103]

    [24]

    Zhao J Q, Yu P F, Qiu S, Zhao Q H, Feng L R, Ogier S, Tang W, Fan J L, Liu W J, Liu Y P, Guo X J 2017 IEEE Electron Dev. Lett. 64 2030

  • [1] Zhao Ze-Xian, Xu Meng, Peng Cong, Zhang Han, Chen Long-Long, Zhang Jian-Hua, Li Xi-Feng. Inkjet printing high mobility indium-zinc-tin oxide thin film transistor. Acta Physica Sinica, 2024, 73(12): 128501. doi: 10.7498/aps.73.20240361
    [2] Liu Xian-Zhe, Zhang Xu, Tao Hong, Huang Jian-Lang, Huang Jiang-Xia, Chen Yi-Tao, Yuan Wei-Jian, Yao Ri-Hui, Ning Hong-Long, Peng Jun-Biao. Research progress of tin oxide-based thin films and thin-film transistors prepared by sol-gel method. Acta Physica Sinica, 2020, 69(22): 228102. doi: 10.7498/aps.69.20200653
    [3] Deng Xiao-Qing, Deng Lian-Wen, He Yi-Ni, Liao Cong-Wei, Huang Sheng-Xiang, Luo Heng. Leakage current model of InGaZnO thin film transistor. Acta Physica Sinica, 2019, 68(5): 057302. doi: 10.7498/aps.68.20182088
    [4] Shao Yan, Ding Shi-Jin. Effects of hydrogen impurities on performances and electrical reliabilities of indium-gallium-zinc oxide thin film transistors. Acta Physica Sinica, 2018, 67(9): 098502. doi: 10.7498/aps.67.20180074
    [5] Liang Ding-Kang,  Chen Yi-Hao,  Xu Wei,  Ji Xin-Cun,  Tong Yi,  Wu Guo-Dong. Ultralow-voltage albumen-gated electric-double-layer thin film transistors. Acta Physica Sinica, 2018, 67(23): 237302. doi: 10.7498/aps.67.20181539
    [6] Liu Yuan, He Hong-Yu, Chen Rong-Sheng, Li Bin, En Yun-Fei, Chen Yi-Qiang. Low-frequency noise in hydrogenated amorphous silicon thin film transistor. Acta Physica Sinica, 2017, 66(23): 237101. doi: 10.7498/aps.66.237101
    [7] Qin Ting, Huang Sheng-Xiang, Liao Cong-Wei, Yu Tian-Bao, Deng Lian-Wen. Analytical channel potential model of amorphous InGaZnO thin-film transistors with synchronized symmetric dual-gate. Acta Physica Sinica, 2017, 66(9): 097101. doi: 10.7498/aps.66.097101
    [8] Lan Lin-Feng, Zhang Peng, Peng Jun-Biao. Research progress on oxide-based thin film transisitors. Acta Physica Sinica, 2016, 65(12): 128504. doi: 10.7498/aps.65.128504
    [9] Wang Jing, Liu Yuan, Liu Yu-Rong, Wu Wei-Jing, Luo Xin-Yue, Liu Kai, Li Bin, En Yun-Fei. Extraction of density of localized states in indium zinc oxide thin film transistor. Acta Physica Sinica, 2016, 65(12): 128501. doi: 10.7498/aps.65.128501
    [10] Zhang Shi-Yu, Yu Zhi-Nong, Cheng Jin, Wu De-Long, Li Xu-Yang, Xue Wei. Effects of annealing temperature and Ga content on properties of solution-processed InGaZnO thin film. Acta Physica Sinica, 2016, 65(12): 128502. doi: 10.7498/aps.65.128502
    [11] Xu Piao-Rong, Qiang Lei, Yao Ruo-He. A technique for extracting the density of states of the linear region in an amorphous InGaZnO thin film transistor. Acta Physica Sinica, 2015, 64(13): 137101. doi: 10.7498/aps.64.137101
    [12] Xu Hua, Lan Lin-Feng, Li Min, Luo Dong-Xiang, Xiao Peng, Lin Zhen-Guo, Ning Hong-Long, Peng Jun-Biao. Effect of source/drain preparation on the performance of oxide thin-film transistors. Acta Physica Sinica, 2014, 63(3): 038501. doi: 10.7498/aps.63.038501
    [13] Zhang Geng-Ming, Guo Li-Qiang, Zhao Kong-Sheng, Yan Zhong-Hui. Effect of oxygen on stability performance of the IZO junctionless thin film transistors. Acta Physica Sinica, 2013, 62(13): 137201. doi: 10.7498/aps.62.137201
    [14] Li Xi-Feng, Xin En-Long, Shi Ji-Feng, Chen Long-Long, Li Chun-Ya, Zhang Jian-Hua. Stability of low temperature and transparent amorphous InGaZnO thin film transistor under illumination. Acta Physica Sinica, 2013, 62(10): 108503. doi: 10.7498/aps.62.108503
    [15] Wu Ping, Zhang Jie, Li Xi-Feng, Chen Ling-Xiang, Wang Lei, Lü Jian-Guo. Ultraviolet photoresponse of ZnO thin-film transistor fabricated at room temperature. Acta Physica Sinica, 2013, 62(1): 018101. doi: 10.7498/aps.62.018101
    [16] Chen Xiao-Xue, Yao Ruo-He. DC characteristic research based on surface potential for a-Si:H thin-film transistor. Acta Physica Sinica, 2012, 61(23): 237104. doi: 10.7498/aps.61.237104
    [17] Zhao Kong-Sheng, Xuan Rui-Jie, Han Xiao, Zhang Geng-Ming. Junctionless low-voltage thin-film transistors based on indium-tin-oxide. Acta Physica Sinica, 2012, 61(19): 197201. doi: 10.7498/aps.61.197201
    [18] Qiang Lei, Yao Ruo-He. Distributions of the threshold voltage and the temperature in the channel of amorphous silicon thin film transistors. Acta Physica Sinica, 2012, 61(8): 087303. doi: 10.7498/aps.61.087303
    [19] Wang Xiong, Cai Xi-Kun, Yuan Zi-Jian, Zhu Xia-Ming, Qiu Dong-Jiang, Wu Hui-Zhen. Study of zinc tin oxide thin-film transistor. Acta Physica Sinica, 2011, 60(3): 037305. doi: 10.7498/aps.60.037305
    [20] Xu Tian-Ning, Wu Hui-Zhen, Zhang Ying-Ying, Wang Xiong, Zhu Xia-Ming, Yuan Zi-Jian. Fabrication and performance of indium oxide based transparent thin film transistors. Acta Physica Sinica, 2010, 59(7): 5018-5022. doi: 10.7498/aps.59.5018
Metrics
  • Abstract views:  7611
  • PDF Downloads:  400
  • Cited By: 0
Publishing process
  • Received Date:  27 October 2017
  • Accepted Date:  01 December 2017
  • Published Online:  20 February 2019

/

返回文章
返回
Baidu
map