-
Indium oxide (In2O3) thin films and thin-film transistors (TFTs) based on the solution process are prepared by pulsed UV-assisted thermal annealing at a low temperature (200 ℃) for 5 min. The effects of pulsed UV-assisted thermal annealing on the surface morphology, chemical structure, and electrical properties of the In2O3 thin films are investigated, and they are compared with those of conventional thermal annealing (300 ℃, 30 min). The experimental results show that the pulsed UV-assisted thermal annealing method can improve the quality of In2O3 thin film and the performance of TFT in a short period. The results of atomic force microscopy and field emission scanning electron microscopy show that the surface of the In2O3 film is denser and flatter than that of the conventional thermally annealed film, and X-ray photoelectron spectroscopy tests show that the pulsed UV-assisted thermal annealing process generates oxygen vacancies, which increases the carrier concentration and improves the electrical conductivity of the In2O3 film. In addition, the effect of pulsed UV-assisted thermal annealing on the electrical characteristics of In2O3 TFTs is investigated in a comparative way. The results show that the electrical characteristics of the device are significantly improved: the subthreshold swing decreases to 0.12 mV/dec, the threshold voltage is 7.4 V, the current switching ratio is as high as 1.29×107, and the field effect mobility is enhanced to 1.27 cm2·V–1·s–1. Therefore, pulsed UV-assisted thermal annealing is a simple and fast annealing method, which can rapidly improve the performances of In2O3 thin film and TFTs, even under low-temperature conditions.
-
Keywords:
- pulsed UV-assisted thermal annealing /
- indium oxide /
- solution process /
- thin film transistor
[1] He Y L, Wang X Y, Gao Y, Hou Y H, Wan Q 2018 J. Semicond. 39 011005Google Scholar
[2] Zhou Y, Roy V A L, Xu Z X, Kwong H Y, Wang H B, Lee C S 2011 Appl. Phys. Lett. 98 092904Google Scholar
[3] Liang K, Wang Y, Shao S S, Luo M M, Pecunia V, Shao L, Zhao J W, Chen Z, Mo L X, Cui Z 2019 J. Mater. Chem. C 7 6169Google Scholar
[4] Kim S J, Yoon S H, Kim H J 2014 J. Appl. Phys. 53 02BA02Google Scholar
[5] Choi C H, Han S Y, Su Y W, Fang Z, Lin L Y, Cheng C C, Chang C H 2015 J. Mater. Chem. C 3 854Google Scholar
[6] Kim M G, Kanatzidis M G, Facchetti A, Marks T J 2011 Nat. Mater. 10 382Google Scholar
[7] Hwang Y H, Seo J S, Yun J M, Park H J, Yang S H, Park S H K, Bae B S 2013 NPG Asia Mater. 5 e45Google Scholar
[8] Lee H J, Jyothi C, Baang S K , Kwon J H, Bae J H 2016 J. Korean. Phys. Soc. 69 1688Google Scholar
[9] Zhang X, Lee H J, Kwon J H, Kim E J, Park J H 2017 Materials 10 880Google Scholar
[10] Park J H, Park W, Na J H, Lee J U, Eun J S, Feng J H, Kim D K, Bae J H 2023 Nanomaterials 13 2568Google Scholar
[11] 谢应涛, 蔡坤林, 陈鹏龙, 刘愈, 王东平 2022 中国激光 49 0703001Google Scholar
Xie Y T, Cai K L, Chen P L, Liu Y, Wang D P 2022 Chin. J. Lasers 49 0703001Google Scholar
[12] Kim W G, Tak Y J, Ahn B D, Jung T S, Chung K B, Kim H J 2016 Sci. Rep. 6 23039Google Scholar
[13] Rahman M K, Lu Z, Kwon K S 2018 AIP Adv. 8 095008Google Scholar
[14] Lee H W, Choi H S, Cho W J 2019 J. Nanosci. Nanotechno. 19 6164Google Scholar
[15] Huang H Y, Wang S J, Wu C H, Lu C Y 2014 Electron. Mater. Lett. 10 899Google Scholar
[16] Kim D W, Park J H, Hwang J U, Kim H D, Ryu J H, Lee K B, Baek K H, Do L M, Choi J S 2015 Electron. Mater. Lett. 11 82Google Scholar
[17] Park S C, Kim D W, Shin H J, Lee D K, Zhang X, Park J H, Choi J S 2016 J. Inf. Disp. 17 179Google Scholar
[18] Huet K, Aubin J, Raynal P E, Curvers B, Verstraete A, Lespinasse B, Mazzamuto F, Sciuto A, Lombardo S F, Magna A L, Acosta-Alba P, Dagault L, Licitra C, Hartmann J M, Kerdilès S 2020 Appl. Surf. Sci. 505 144470Google Scholar
[19] Lee H J, Zhang X, Kim J W, Kim E J, Park J H 2018 Materials 11 2103Google Scholar
[20] Azianty S, Saadah A R, Boon T G 2018 Mater. Today 5 S186Google Scholar
[21] Xing R Q, Xu L, Song J, Zhou C Y, Li Q L, Liu D L, Song H W 2015 Sci. Rep. 5 10717Google Scholar
[22] Tetzner K, Isakov I, Regoutz A, Payne D J, Anthopoulos T D 2017 J. Mater. Chem. C 5 59Google Scholar
[23] Shinde D, Ahn D Y, Jadhav V, Lee D Y, Shrestha N K, Lee J K, Lee H, Mane R S, Han S H 2014 J. Mater. Chem. A 2 5490Google Scholar
[24] Lin Y H, Liu Y S, Lin Y C, Wei Y S, Liao K S, Lee K R, Lai J Y, Chen H M, Jean Y C, Liu C Y 2013 J. Appl. Phys. 113 033706Google Scholar
[25] Ide K, Nomura K, Hosono H, Kamiya T 2019 Phys. Status Solidi A 216 1800372Google Scholar
[26] Biswas P, Ainabayev A, Zhussupbekova A, Jose F, O’Connor R, Kaisha A, Walls B, Shvets I V 2020 Sci. Rep. 10 7463Google Scholar
[27] Tsay C Y, Liang S C 2017 Mat. Sci. Semicon. Proc. 71 441Google Scholar
-
表 1 不同热退火方式制备In2O3 TFTs的电学特性参数
Table 1. Electrical parameters of In2O3 TFTs prepared by different thermal annealing methods.
样品 亚阈值摆幅 电流比 阈值电压 迁移率 S.S./(mV·dec–1) Ion/Ioff VTH/V μsat/(cm2·V–1·s–1) 样品1 (T.A.) 0.17 1.88×106 7.6 0.22 样品2 (Pulsed UV +T.A.-5 min) 0.12 1.29×107 7.4 1.27 样品3 (Pulsed UV +T.A.-10 min) — -2.52 2.43 -
[1] He Y L, Wang X Y, Gao Y, Hou Y H, Wan Q 2018 J. Semicond. 39 011005Google Scholar
[2] Zhou Y, Roy V A L, Xu Z X, Kwong H Y, Wang H B, Lee C S 2011 Appl. Phys. Lett. 98 092904Google Scholar
[3] Liang K, Wang Y, Shao S S, Luo M M, Pecunia V, Shao L, Zhao J W, Chen Z, Mo L X, Cui Z 2019 J. Mater. Chem. C 7 6169Google Scholar
[4] Kim S J, Yoon S H, Kim H J 2014 J. Appl. Phys. 53 02BA02Google Scholar
[5] Choi C H, Han S Y, Su Y W, Fang Z, Lin L Y, Cheng C C, Chang C H 2015 J. Mater. Chem. C 3 854Google Scholar
[6] Kim M G, Kanatzidis M G, Facchetti A, Marks T J 2011 Nat. Mater. 10 382Google Scholar
[7] Hwang Y H, Seo J S, Yun J M, Park H J, Yang S H, Park S H K, Bae B S 2013 NPG Asia Mater. 5 e45Google Scholar
[8] Lee H J, Jyothi C, Baang S K , Kwon J H, Bae J H 2016 J. Korean. Phys. Soc. 69 1688Google Scholar
[9] Zhang X, Lee H J, Kwon J H, Kim E J, Park J H 2017 Materials 10 880Google Scholar
[10] Park J H, Park W, Na J H, Lee J U, Eun J S, Feng J H, Kim D K, Bae J H 2023 Nanomaterials 13 2568Google Scholar
[11] 谢应涛, 蔡坤林, 陈鹏龙, 刘愈, 王东平 2022 中国激光 49 0703001Google Scholar
Xie Y T, Cai K L, Chen P L, Liu Y, Wang D P 2022 Chin. J. Lasers 49 0703001Google Scholar
[12] Kim W G, Tak Y J, Ahn B D, Jung T S, Chung K B, Kim H J 2016 Sci. Rep. 6 23039Google Scholar
[13] Rahman M K, Lu Z, Kwon K S 2018 AIP Adv. 8 095008Google Scholar
[14] Lee H W, Choi H S, Cho W J 2019 J. Nanosci. Nanotechno. 19 6164Google Scholar
[15] Huang H Y, Wang S J, Wu C H, Lu C Y 2014 Electron. Mater. Lett. 10 899Google Scholar
[16] Kim D W, Park J H, Hwang J U, Kim H D, Ryu J H, Lee K B, Baek K H, Do L M, Choi J S 2015 Electron. Mater. Lett. 11 82Google Scholar
[17] Park S C, Kim D W, Shin H J, Lee D K, Zhang X, Park J H, Choi J S 2016 J. Inf. Disp. 17 179Google Scholar
[18] Huet K, Aubin J, Raynal P E, Curvers B, Verstraete A, Lespinasse B, Mazzamuto F, Sciuto A, Lombardo S F, Magna A L, Acosta-Alba P, Dagault L, Licitra C, Hartmann J M, Kerdilès S 2020 Appl. Surf. Sci. 505 144470Google Scholar
[19] Lee H J, Zhang X, Kim J W, Kim E J, Park J H 2018 Materials 11 2103Google Scholar
[20] Azianty S, Saadah A R, Boon T G 2018 Mater. Today 5 S186Google Scholar
[21] Xing R Q, Xu L, Song J, Zhou C Y, Li Q L, Liu D L, Song H W 2015 Sci. Rep. 5 10717Google Scholar
[22] Tetzner K, Isakov I, Regoutz A, Payne D J, Anthopoulos T D 2017 J. Mater. Chem. C 5 59Google Scholar
[23] Shinde D, Ahn D Y, Jadhav V, Lee D Y, Shrestha N K, Lee J K, Lee H, Mane R S, Han S H 2014 J. Mater. Chem. A 2 5490Google Scholar
[24] Lin Y H, Liu Y S, Lin Y C, Wei Y S, Liao K S, Lee K R, Lai J Y, Chen H M, Jean Y C, Liu C Y 2013 J. Appl. Phys. 113 033706Google Scholar
[25] Ide K, Nomura K, Hosono H, Kamiya T 2019 Phys. Status Solidi A 216 1800372Google Scholar
[26] Biswas P, Ainabayev A, Zhussupbekova A, Jose F, O’Connor R, Kaisha A, Walls B, Shvets I V 2020 Sci. Rep. 10 7463Google Scholar
[27] Tsay C Y, Liang S C 2017 Mat. Sci. Semicon. Proc. 71 441Google Scholar
Catalog
Metrics
- Abstract views: 2175
- PDF Downloads: 43
- Cited By: 0