Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Low-temperature rapid preparation of high-performance indium oxide thin films and transistors based on solution technology

Zhang Xue Kim Bokyung Lee Hyeonju Park Jaehoon

Citation:

Low-temperature rapid preparation of high-performance indium oxide thin films and transistors based on solution technology

Zhang Xue, Kim Bokyung, Lee Hyeonju, Park Jaehoon
cstr: 32037.14.aps.73.20240082
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Indium oxide (In2O3) thin films and thin-film transistors (TFTs) based on the solution process are prepared by pulsed UV-assisted thermal annealing at a low temperature (200 ℃) for 5 min. The effects of pulsed UV-assisted thermal annealing on the surface morphology, chemical structure, and electrical properties of the In2O3 thin films are investigated, and they are compared with those of conventional thermal annealing (300 ℃, 30 min). The experimental results show that the pulsed UV-assisted thermal annealing method can improve the quality of In2O3 thin film and the performance of TFT in a short period. The results of atomic force microscopy and field emission scanning electron microscopy show that the surface of the In2O3 film is denser and flatter than that of the conventional thermally annealed film, and X-ray photoelectron spectroscopy tests show that the pulsed UV-assisted thermal annealing process generates oxygen vacancies, which increases the carrier concentration and improves the electrical conductivity of the In2O3 film. In addition, the effect of pulsed UV-assisted thermal annealing on the electrical characteristics of In2O3 TFTs is investigated in a comparative way. The results show that the electrical characteristics of the device are significantly improved: the subthreshold swing decreases to 0.12 mV/dec, the threshold voltage is 7.4 V, the current switching ratio is as high as 1.29×107, and the field effect mobility is enhanced to 1.27 cm2·V–1·s–1. Therefore, pulsed UV-assisted thermal annealing is a simple and fast annealing method, which can rapidly improve the performances of In2O3 thin film and TFTs, even under low-temperature conditions.
      Corresponding author: Zhang Xue, skd996027@sdust.edu.cn ; Park Jaehoon, jaypark@hallym.ac.kr
    • Funds: Project supported by the Young Scientist Exchange Program China-Korea (Grant No. [2021]5).
    [1]

    He Y L, Wang X Y, Gao Y, Hou Y H, Wan Q 2018 J. Semicond. 39 011005Google Scholar

    [2]

    Zhou Y, Roy V A L, Xu Z X, Kwong H Y, Wang H B, Lee C S 2011 Appl. Phys. Lett. 98 092904Google Scholar

    [3]

    Liang K, Wang Y, Shao S S, Luo M M, Pecunia V, Shao L, Zhao J W, Chen Z, Mo L X, Cui Z 2019 J. Mater. Chem. C 7 6169Google Scholar

    [4]

    Kim S J, Yoon S H, Kim H J 2014 J. Appl. Phys. 53 02BA02Google Scholar

    [5]

    Choi C H, Han S Y, Su Y W, Fang Z, Lin L Y, Cheng C C, Chang C H 2015 J. Mater. Chem. C 3 854Google Scholar

    [6]

    Kim M G, Kanatzidis M G, Facchetti A, Marks T J 2011 Nat. Mater. 10 382Google Scholar

    [7]

    Hwang Y H, Seo J S, Yun J M, Park H J, Yang S H, Park S H K, Bae B S 2013 NPG Asia Mater. 5 e45Google Scholar

    [8]

    Lee H J, Jyothi C, Baang S K , Kwon J H, Bae J H 2016 J. Korean. Phys. Soc. 69 1688Google Scholar

    [9]

    Zhang X, Lee H J, Kwon J H, Kim E J, Park J H 2017 Materials 10 880Google Scholar

    [10]

    Park J H, Park W, Na J H, Lee J U, Eun J S, Feng J H, Kim D K, Bae J H 2023 Nanomaterials 13 2568Google Scholar

    [11]

    谢应涛, 蔡坤林, 陈鹏龙, 刘愈, 王东平 2022 中国激光 49 0703001Google Scholar

    Xie Y T, Cai K L, Chen P L, Liu Y, Wang D P 2022 Chin. J. Lasers 49 0703001Google Scholar

    [12]

    Kim W G, Tak Y J, Ahn B D, Jung T S, Chung K B, Kim H J 2016 Sci. Rep. 6 23039Google Scholar

    [13]

    Rahman M K, Lu Z, Kwon K S 2018 AIP Adv. 8 095008Google Scholar

    [14]

    Lee H W, Choi H S, Cho W J 2019 J. Nanosci. Nanotechno. 19 6164Google Scholar

    [15]

    Huang H Y, Wang S J, Wu C H, Lu C Y 2014 Electron. Mater. Lett. 10 899Google Scholar

    [16]

    Kim D W, Park J H, Hwang J U, Kim H D, Ryu J H, Lee K B, Baek K H, Do L M, Choi J S 2015 Electron. Mater. Lett. 11 82Google Scholar

    [17]

    Park S C, Kim D W, Shin H J, Lee D K, Zhang X, Park J H, Choi J S 2016 J. Inf. Disp. 17 179Google Scholar

    [18]

    Huet K, Aubin J, Raynal P E, Curvers B, Verstraete A, Lespinasse B, Mazzamuto F, Sciuto A, Lombardo S F, Magna A L, Acosta-Alba P, Dagault L, Licitra C, Hartmann J M, Kerdilès S 2020 Appl. Surf. Sci. 505 144470Google Scholar

    [19]

    Lee H J, Zhang X, Kim J W, Kim E J, Park J H 2018 Materials 11 2103Google Scholar

    [20]

    Azianty S, Saadah A R, Boon T G 2018 Mater. Today 5 S186Google Scholar

    [21]

    Xing R Q, Xu L, Song J, Zhou C Y, Li Q L, Liu D L, Song H W 2015 Sci. Rep. 5 10717Google Scholar

    [22]

    Tetzner K, Isakov I, Regoutz A, Payne D J, Anthopoulos T D 2017 J. Mater. Chem. C 5 59Google Scholar

    [23]

    Shinde D, Ahn D Y, Jadhav V, Lee D Y, Shrestha N K, Lee J K, Lee H, Mane R S, Han S H 2014 J. Mater. Chem. A 2 5490Google Scholar

    [24]

    Lin Y H, Liu Y S, Lin Y C, Wei Y S, Liao K S, Lee K R, Lai J Y, Chen H M, Jean Y C, Liu C Y 2013 J. Appl. Phys. 113 033706Google Scholar

    [25]

    Ide K, Nomura K, Hosono H, Kamiya T 2019 Phys. Status Solidi A 216 1800372Google Scholar

    [26]

    Biswas P, Ainabayev A, Zhussupbekova A, Jose F, O’Connor R, Kaisha A, Walls B, Shvets I V 2020 Sci. Rep. 10 7463Google Scholar

    [27]

    Tsay C Y, Liang S C 2017 Mat. Sci. Semicon. Proc. 71 441Google Scholar

  • 图 1  (a) In2O3 TFT的结构示意图; (b) 脉冲紫外线辅助热退火工艺的原理示意图

    Figure 1.  Schematic diagram of (a) structure of the prepared In2O3 TFT and (b) principle of the pulsed UV-assisted T.A.

    图 2  In2O3前驱体溶液的TGA曲线

    Figure 2.  TGA of In2O3 precursor solution.

    图 3  硅板、样品1 (传统热退火方式)和样品2 (脉冲紫外线辅助热退火方式)的XRD图谱

    Figure 3.  XRD patterns of Si substrate, Sample 1 (T.A.) and Sample 2 (pulsed UV+T.A.).

    图 4  In2O3薄膜的AFM图像 (a) 样品1 (传统热退火方式); (b) 样品2 (脉冲紫外线辅助热退火方式)

    Figure 4.  AFM images of In2O3 thin films: (a) Sample 1 (T.A.); (b) Sample 2 (pulsed UV+T.A.).

    图 5  In2O3薄膜的FESEM图像 (a) 样品1 (传统热退火方式); (b) 样品2 (脉冲紫外线辅助热退火方式)

    Figure 5.  FESEM images of In2O3 thin films: (a) Sample 1 (T.A.); (b) Sample 2 (pulsed UV+T.A.).

    图 6  样品1 (传统热退火方式)和样品2 (脉冲紫外线辅助热退火方式)的In 3d XPS图谱

    Figure 6.  In 3d XPS spectra of Sample 1 (T.A.) and Sample 2 (pulsed UV+T.A.).

    图 7  In2O3薄膜O 1s的拟合XPS图谱 (a)样品1 (传统热退火方式); (b)样品2 (脉冲紫外线辅助热退火方式)

    Figure 7.  O 1s high resolution XPS spectra of In2O3 thin film: (a) Sample 1 (T.A.); (b) Sample 2 (pulsed UV+T.A.).

    图 8  脉冲紫外线辅助热退火促使In2O3薄膜内部氧空位生成机理

    Figure 8.  Pulsed UV-assisted thermal annealing promotes the mechanism of oxygen vacancy generation inside In2O3 thin films.

    图 9  不同退火方式所制备In2O3薄膜的电气特性变化

    Figure 9.  Variation of electrical properties of In2O3 thin films prepared by different annealing methods.

    图 10  不同退火方式所制备样品的(a)输出特性和(b)转移特性

    Figure 10.  (a) Output and (b) transfer characteristics of samples prepared by different annealing methods.

    表 1  不同热退火方式制备In2O3 TFTs的电学特性参数

    Table 1.  Electrical parameters of In2O3 TFTs prepared by different thermal annealing methods.

    样品 亚阈值摆幅 电流比 阈值电压 迁移率
    S.S./(mV·dec–1) Ion/Ioff VTH/V μsat/(cm2·V–1·s–1)
    样品1 (T.A.) 0.17 1.88×106 7.6 0.22
    样品2 (Pulsed UV +T.A.-5 min) 0.12 1.29×107 7.4 1.27
    样品3 (Pulsed UV +T.A.-10 min) -2.52 2.43
    DownLoad: CSV
    Baidu
  • [1]

    He Y L, Wang X Y, Gao Y, Hou Y H, Wan Q 2018 J. Semicond. 39 011005Google Scholar

    [2]

    Zhou Y, Roy V A L, Xu Z X, Kwong H Y, Wang H B, Lee C S 2011 Appl. Phys. Lett. 98 092904Google Scholar

    [3]

    Liang K, Wang Y, Shao S S, Luo M M, Pecunia V, Shao L, Zhao J W, Chen Z, Mo L X, Cui Z 2019 J. Mater. Chem. C 7 6169Google Scholar

    [4]

    Kim S J, Yoon S H, Kim H J 2014 J. Appl. Phys. 53 02BA02Google Scholar

    [5]

    Choi C H, Han S Y, Su Y W, Fang Z, Lin L Y, Cheng C C, Chang C H 2015 J. Mater. Chem. C 3 854Google Scholar

    [6]

    Kim M G, Kanatzidis M G, Facchetti A, Marks T J 2011 Nat. Mater. 10 382Google Scholar

    [7]

    Hwang Y H, Seo J S, Yun J M, Park H J, Yang S H, Park S H K, Bae B S 2013 NPG Asia Mater. 5 e45Google Scholar

    [8]

    Lee H J, Jyothi C, Baang S K , Kwon J H, Bae J H 2016 J. Korean. Phys. Soc. 69 1688Google Scholar

    [9]

    Zhang X, Lee H J, Kwon J H, Kim E J, Park J H 2017 Materials 10 880Google Scholar

    [10]

    Park J H, Park W, Na J H, Lee J U, Eun J S, Feng J H, Kim D K, Bae J H 2023 Nanomaterials 13 2568Google Scholar

    [11]

    谢应涛, 蔡坤林, 陈鹏龙, 刘愈, 王东平 2022 中国激光 49 0703001Google Scholar

    Xie Y T, Cai K L, Chen P L, Liu Y, Wang D P 2022 Chin. J. Lasers 49 0703001Google Scholar

    [12]

    Kim W G, Tak Y J, Ahn B D, Jung T S, Chung K B, Kim H J 2016 Sci. Rep. 6 23039Google Scholar

    [13]

    Rahman M K, Lu Z, Kwon K S 2018 AIP Adv. 8 095008Google Scholar

    [14]

    Lee H W, Choi H S, Cho W J 2019 J. Nanosci. Nanotechno. 19 6164Google Scholar

    [15]

    Huang H Y, Wang S J, Wu C H, Lu C Y 2014 Electron. Mater. Lett. 10 899Google Scholar

    [16]

    Kim D W, Park J H, Hwang J U, Kim H D, Ryu J H, Lee K B, Baek K H, Do L M, Choi J S 2015 Electron. Mater. Lett. 11 82Google Scholar

    [17]

    Park S C, Kim D W, Shin H J, Lee D K, Zhang X, Park J H, Choi J S 2016 J. Inf. Disp. 17 179Google Scholar

    [18]

    Huet K, Aubin J, Raynal P E, Curvers B, Verstraete A, Lespinasse B, Mazzamuto F, Sciuto A, Lombardo S F, Magna A L, Acosta-Alba P, Dagault L, Licitra C, Hartmann J M, Kerdilès S 2020 Appl. Surf. Sci. 505 144470Google Scholar

    [19]

    Lee H J, Zhang X, Kim J W, Kim E J, Park J H 2018 Materials 11 2103Google Scholar

    [20]

    Azianty S, Saadah A R, Boon T G 2018 Mater. Today 5 S186Google Scholar

    [21]

    Xing R Q, Xu L, Song J, Zhou C Y, Li Q L, Liu D L, Song H W 2015 Sci. Rep. 5 10717Google Scholar

    [22]

    Tetzner K, Isakov I, Regoutz A, Payne D J, Anthopoulos T D 2017 J. Mater. Chem. C 5 59Google Scholar

    [23]

    Shinde D, Ahn D Y, Jadhav V, Lee D Y, Shrestha N K, Lee J K, Lee H, Mane R S, Han S H 2014 J. Mater. Chem. A 2 5490Google Scholar

    [24]

    Lin Y H, Liu Y S, Lin Y C, Wei Y S, Liao K S, Lee K R, Lai J Y, Chen H M, Jean Y C, Liu C Y 2013 J. Appl. Phys. 113 033706Google Scholar

    [25]

    Ide K, Nomura K, Hosono H, Kamiya T 2019 Phys. Status Solidi A 216 1800372Google Scholar

    [26]

    Biswas P, Ainabayev A, Zhussupbekova A, Jose F, O’Connor R, Kaisha A, Walls B, Shvets I V 2020 Sci. Rep. 10 7463Google Scholar

    [27]

    Tsay C Y, Liang S C 2017 Mat. Sci. Semicon. Proc. 71 441Google Scholar

Metrics
  • Abstract views:  4640
  • PDF Downloads:  70
  • Cited By: 0
Publishing process
  • Received Date:  11 January 2024
  • Accepted Date:  27 February 2024
  • Available Online:  29 February 2024
  • Published Online:  05 May 2024
  • /

    返回文章
    返回
    Baidu
    map