-
For oblique incident electromagnetic waves, the generation of double reflection channels including retroreflection channel is of great significance in improving target recognition performance and navigation performance. In double channel reflection, controlling the ratio of retroreflection to specular reflection is the key to realizing reflection power distribution. In order to realize the control of the proportion of the reflected power in each channel, a topology optimization method for designing the reflective metasurface microstructure with dual channel is proposed in this paper. The implementation mechanism is investigated, physical model of metasurface with dual reflection channel including retroreflection channel is established, and the topology optimization model of metasurface microstructure with specific power ratio of the retroreflection to specular reflection is established. As a numerical example, a dual channel metasurface reflector with a 1∶1 ratio of retroreflection power to specular reflection power is designed for a 10 GHz plane wave in the TE mode with a pitch angle of –30°. The designed metasurface exhibits strong directionality in the retroreflective direction, and the reflection amplitudes in both directions are similar. The retroreflective metasurface with the maximum retroreflection ratio is designed. The retroreflection ratio of the designed metasurface is 0.093. There is no specular reflection or other singular reflection, and the strong reflection on the metasurface is concentrated at –30°. The ratio of the main beam power to the total reflection power is 0.900. The simulated and experimental results verify the feasibility of the proposed method.
-
Keywords:
- metasurface /
- dual channel /
- topology optimization
[1] Kuga Y, Ishimaru A 1984 J. Opt. Soc. Am. A 1 831Google Scholar
[2] 杨丹青, 王莉, 王新龙 2015 64 054301Google Scholar
Yang D Q, Wang L, Wang X L 2015 Acta Phys. Sin. 64 054301Google Scholar
[3] 盛泉, 耿婧旎, 王爱华, 王盟, 齐岳, 刘俊杰, 付士杰, 史伟, 姚建铨 2023 72 044203Google Scholar
Sheng Q, Geng J N, Wang A H, Wang M, Qi Y, Liu J J, Fu S J, Shi W, Yao J Q 2023 Acta Phys. Sin. 72 044203Google Scholar
[4] Yang R, Fan Y, Zhu W, Hu C, Chen S, Wei H, Chen W, Chang C T, Zhao Q, Zhou J, Zhang F, Qiu C W 2023 Laser Photonics Rev. 17 2200975Google Scholar
[5] Jin X, Holzman J F 2010 IEEE Sens. J. 10 1875Google Scholar
[6] Vitaz J A, Buerkle A M, Sarabandi K 2010 IEEE Trans. Antennas Propag. 58 3539Google Scholar
[7] Deroba J C, Sobczak K D, Good A, Larimore Z, Mirotznik M 2019 IEEE Aero. El. Sys. Mag. 34 20Google Scholar
[8] Kim H, Lee B 2007 Opt. Eng. 46 094002Google Scholar
[9] Kadera P, Jimenez-Saez A, Burmeister T, Lacik J, Jakoby R 2020 IEEE Access 8 212765Google Scholar
[10] Chang C C, Chen T Y, Tsai J C 2016 IEEE Photonics Technol. Lett. 28 554Google Scholar
[11] Pon C Y 1964 IEEE Trans. Antennas Propag. 12 176Google Scholar
[12] Yan L, Shen Z 2020 IEEE Antennas Wirel. Propag. Lett. 19 736Google Scholar
[13] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[14] Hessel A, Schmoys J, Tseng D Y 1975 J. Opt. Soc. Am. 65 380Google Scholar
[15] Jull E V, Heath J W, Ebbeson G R 1977 J. Opt. Soc. Am. 67 557Google Scholar
[16] Ra'Di Y, Sounas D L, Alu A 2017 Phys. Rev. Lett. 119 067404Google Scholar
[17] Hoang T V, Lee C H, Lee J H 2019 IEEE Trans. Antennas Propag. 68 2451Google Scholar
[18] Wong A M H, Eleftheriades G V 2017 Phys. Rev. X 8 011036Google Scholar
[19] Wong A M H, Christian P, Eleftheriades G V 2018 IEEE Trans. Antennas Propag. 66 2892Google Scholar
[20] Lee S G, Lee J H 2020 IEEE Trans. Antennas Propag. 69 3588Google Scholar
[21] Tao C, Itoh T U 2020 IEEE Trans. Antennas Propag. 68 6193Google Scholar
[22] Estakhri N M, Alù A 2016 Phys. Rev. X 6 041008Google Scholar
[23] Wang X C, Díaz-Rubio A, Li H, Tretyakov S A, Alù A 2020 Phys. Rev. Appl. 13 044040Google Scholar
[24] Wang X, Díaz-Rubio A, Tretyakov S A 2020 Phys. Rev. Appl. 14 024089Google Scholar
[25] Asadchy V S, Díaz-Rubio A, Tcvetkova S N, et al. 2017 Phys. Rev. X 7 031046Google Scholar
-
图 4 所设计双通道反射功率1∶1超表面反射器及反射特性 (a) 超胞; (b) 微结构; (c) 反射器俯仰向归一化双站RCS; (d) 三维双站RCS
Figure 4. Designed double-channel metasurface reflector with a 1∶1 ratio of retroreflection power to specular reflection power and its reflection characteristics: (a) The unit cell; (b) the microstructure; (c) the normalized bistatic RCS in the elevation coordinate; (d) the three-dimensional bistatic RCS of the designed reflector.
图 6 双通道超表面实验测试平台及结果 (a) RCS测试示意图; (b) 所设计超表面试件; (c)测试所得反射特性
Figure 6. Experimental platform for the double-channel metasurface reflector testing and the tested results: (a) The schematic diagram of the RCS testing platform; (b) the designed metasurface specimen; (c) the tested reflection characteristics.
图 7 入射角度偏差下的反射功率1∶1超表面反射特性 (a) 归一化双站RCS; (b) 负反射角度及镜像反射与负反射幅值比
Figure 7. Reflection characteristics of the metasurface with a 1∶1 ratio of retroreflection power to specular reflection power when the incident angle is adjusted: (a) The normalized bistatic RCS of the metasurface; (b) the retroreflection angle and ratio between the specular reflection and retroreflection.
图 8 入射波频率偏差下的反射功率1∶1超表面反射特性 (a) 归一化双站RCS; (b) 负反射角度及镜像反射与负反射幅值比
Figure 8. Reflection characteristics of the metasurface with a 1∶1 ratio of retroreflection power to specular reflection power when the frequency of the incident wave is biased: (a) The normalized bistatic RCS of the designed metasurface; (b) the retroreflection angle and the ratio between the specular reflection and retroreflection.
图 9 所设计的逆反射占比最大超表面反射器及反射特性 (a) 超胞; (b) 微结构; (c) 俯仰向归一化双站RCS; (d) 测试所得反射特性及所设计超表面试件
Figure 9. Designed metasurface reflector with the maximum retroreflection ratio and its reflection characteristics: (a) The unit cell; (b) the microstructure; (c) the normalized bistatic RCS in the elevation coordinate; (d) the tested radiation pattern and the metasurface retroreflector prototype.
图 10 入射角度偏差下的逆反射占比最大超表面反射特性 (a) 归一化双站RCS; (b) 负反射角度及逆反射功率占比
Figure 10. Reflection characteristics of the metasurface with the maximum retroreflection ratio when the incident angle is adjusted: (a) The normalized bistatic RCS of the metasurface; (b) the retroreflection angle and retroreflection ratio under excitation of incident waves with different incident angle.
图 11 入射波频率偏差下的逆反射占比最大超表面反射特性 (a) 归一化双站RCS; (b) 负反射角度及逆反射功率占比
Figure 11. Reflection characteristics of the metasurface with the maximum retroreflection ratio when the frequency of the incident wave is biased: (a) The normalized bistatic RCS of the designed metasurface; (b) the retroreflection angle and retroreflection ratio under excitation of incident waves with different frequencies.
-
[1] Kuga Y, Ishimaru A 1984 J. Opt. Soc. Am. A 1 831Google Scholar
[2] 杨丹青, 王莉, 王新龙 2015 64 054301Google Scholar
Yang D Q, Wang L, Wang X L 2015 Acta Phys. Sin. 64 054301Google Scholar
[3] 盛泉, 耿婧旎, 王爱华, 王盟, 齐岳, 刘俊杰, 付士杰, 史伟, 姚建铨 2023 72 044203Google Scholar
Sheng Q, Geng J N, Wang A H, Wang M, Qi Y, Liu J J, Fu S J, Shi W, Yao J Q 2023 Acta Phys. Sin. 72 044203Google Scholar
[4] Yang R, Fan Y, Zhu W, Hu C, Chen S, Wei H, Chen W, Chang C T, Zhao Q, Zhou J, Zhang F, Qiu C W 2023 Laser Photonics Rev. 17 2200975Google Scholar
[5] Jin X, Holzman J F 2010 IEEE Sens. J. 10 1875Google Scholar
[6] Vitaz J A, Buerkle A M, Sarabandi K 2010 IEEE Trans. Antennas Propag. 58 3539Google Scholar
[7] Deroba J C, Sobczak K D, Good A, Larimore Z, Mirotznik M 2019 IEEE Aero. El. Sys. Mag. 34 20Google Scholar
[8] Kim H, Lee B 2007 Opt. Eng. 46 094002Google Scholar
[9] Kadera P, Jimenez-Saez A, Burmeister T, Lacik J, Jakoby R 2020 IEEE Access 8 212765Google Scholar
[10] Chang C C, Chen T Y, Tsai J C 2016 IEEE Photonics Technol. Lett. 28 554Google Scholar
[11] Pon C Y 1964 IEEE Trans. Antennas Propag. 12 176Google Scholar
[12] Yan L, Shen Z 2020 IEEE Antennas Wirel. Propag. Lett. 19 736Google Scholar
[13] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[14] Hessel A, Schmoys J, Tseng D Y 1975 J. Opt. Soc. Am. 65 380Google Scholar
[15] Jull E V, Heath J W, Ebbeson G R 1977 J. Opt. Soc. Am. 67 557Google Scholar
[16] Ra'Di Y, Sounas D L, Alu A 2017 Phys. Rev. Lett. 119 067404Google Scholar
[17] Hoang T V, Lee C H, Lee J H 2019 IEEE Trans. Antennas Propag. 68 2451Google Scholar
[18] Wong A M H, Eleftheriades G V 2017 Phys. Rev. X 8 011036Google Scholar
[19] Wong A M H, Christian P, Eleftheriades G V 2018 IEEE Trans. Antennas Propag. 66 2892Google Scholar
[20] Lee S G, Lee J H 2020 IEEE Trans. Antennas Propag. 69 3588Google Scholar
[21] Tao C, Itoh T U 2020 IEEE Trans. Antennas Propag. 68 6193Google Scholar
[22] Estakhri N M, Alù A 2016 Phys. Rev. X 6 041008Google Scholar
[23] Wang X C, Díaz-Rubio A, Li H, Tretyakov S A, Alù A 2020 Phys. Rev. Appl. 13 044040Google Scholar
[24] Wang X, Díaz-Rubio A, Tretyakov S A 2020 Phys. Rev. Appl. 14 024089Google Scholar
[25] Asadchy V S, Díaz-Rubio A, Tcvetkova S N, et al. 2017 Phys. Rev. X 7 031046Google Scholar
Catalog
Metrics
- Abstract views: 2286
- PDF Downloads: 112
- Cited By: 0