Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Double-channel absorption enhancement of graphene using narrow groove metal grating

Gao Jian Sang Tian Li Jun-Lang Wang La

Citation:

Double-channel absorption enhancement of graphene using narrow groove metal grating

Gao Jian, Sang Tian, Li Jun-Lang, Wang La
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A structure containing substrate/narrow groove metal grating/covering layer/graphene is constructed. The operational principle of the structure is based on the surface plasmon polariton (SPP) resonance excited by the metal grating and the Fabry-Prot (FP) resonance supported by the narrow grating groove. Double-channel absorption enhancement of monolayer graphene is realized in the visible range, and a simplified model is used to estimate the locations of the double-absorption channels. At the wavelengths of 462 nm and 768 nm, the light absorption efficiencies of graphene are 35.6% and 40.1%, respectively, which are more than 15.5 times the intrinsic light absorption of the monolayer graphene. Further analysis shows that the energy of the absorption peak at the short-wavelength position mainly concentrates on the surface of the metal grating, which has an obvious characteristic of the SPP mode. The resonant wavelength of SPP=476 nm, estimated by the simplified model, is basically consistent with the location of the short-wavelength absorption peak at 1=462 nm. The absorption characteristics are less affected by the thickness of the covering layer, the depth and width of the groove. For the long-wavelength absorption peak at 2=768 nm, the energy of the light field in the structure is mainly localized in the metal groove, which has a significant cavity resonance characteristic. Because the SPP resonance generates a strong electromagnetic coupling in the metal groove, the energy of the optical field is strongly confined by the grating groove. The localized light field energy gradually leaks out and is absorbed by the graphene layer above the groove, resulting in a significant increase in the light absorption efficiency of the graphene. The resonance position estimated by the FP cavity resonance model is 658 nm, which is larger than the actual absorption peak position 2=768 nm. This is because the exact length of the FP cavity is affected by the thickness of the SiO2 covering layer, and the presence of the SiO2 covering layer will enlarge the exact length of the FP cavity. To further increase the depth of the groove, the agreement between the estimated resonance position and the actual absorption peak will continue to increase. However, the increase of the thickness of the SiO2 covering layer will weaken the magnetic field enhancement effect in the groove, resulting in the decrease of light absorption efficiency of the structure and graphene. Since the absorption enhancement at the long-wavelength peak originates from the FP resonance in the narrow groove, it exhibits a good angle-insensitive absorption characteristic. The double-channel absorption enhancement of graphene based on the narrow grooved gratings may have potential applications in the fields of photodetection and solar cells.
      Corresponding author: Sang Tian, sangt@jiangnan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11811530052), the Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, China (Grant No. BM2014402), and the Postgraduate Research Practice Innovation Program of Jiangsu Provence, China (Grant No. SJCX18_0634).
    [1]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photon. 4 611

    [2]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [3]

    Pirruccio G, Martn M L, Lozano G, Gmez R J 2013 ACS Nano 7 4810

    [4]

    Lee S, Tran T Q, Kim M, Heo H, Heo J, Kim S 2015 Opt. Express 23 33350

    [5]

    Zheng G, Zhang H, Xu L, Liu Y 2016 Opt. Lett. 41 2274

    [6]

    Wang R, Sang T, Wang L, Gao J, Wang Y, Wang J 2018 Optik 157 651

    [7]

    Sang T, Wang R, Li J, Zhou J, Wang Y 2018 Opt. Commun. 413 255

    [8]

    Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H, Klang P, Andrews A M, Schrenk W, Strasser G, Mueller T 2012 Nano Lett. 12 2773

    [9]

    Liang Z J, Liu H X, Niu Y X, Yin Y H 2016 Acta Phys. Sin. 65 138501 (in Chinese) [梁振江, 刘海霞, 牛燕雄, 尹贻恒 2016 65 138501]

    [10]

    Lu H, Cumming B P, Gu M 2015 Opt. Lett. 40 3647

    [11]

    Song S, Chen Q, Jin L, Sun F 2013 Nanoscale 5 9615

    [12]

    Zhao B, Zhao J M, Zhang Z M 2014 Appl. Phys. Lett. 105 31905

    [13]

    Cai Y, Zhu J, Liu Q H 2015 Appl. Phys. Lett. 106 43105

    [14]

    Wang W, Klots A, Yang Y, Li W, Kravchenko I I, Briggs D P, Bolotin K I, Valentine J 2015 Appl. Phys. Lett. 106 181104

    [15]

    Zheng G, Zou X, Chen Y, Xu L, Liu Y 2017 Plasmonics 12 1177

    [16]

    Thareja V, Kang J H, Yuan H, Milaninia K M, Hwang H Y, Cui Y, Kik P G, Brongersma M L 2015 Nano Lett. 15 1570

    [17]

    Xia S X, Zhai X, Huang Y, Liu J Q, Wang L L, Wen S C 2017 Opt. Lett. 42 3052

    [18]

    Zhu B, Ren G, Zheng S, Lin Z, Jian S 2013 Opt. Commun. 308 204

    [19]

    Lu H, Gan X, Jia B, Mao D, Zhao J 2016 Opt. Lett. 41 4743

    [20]

    Hu J H, Huang Y Q, Duan X F, Wang Q, Zhang X, Wang J, Ren X M 2014 Appl. Phys. Lett. 105 221113

    [21]

    Liu J T, Liu N H, Li J, Li X J, Huang J H 2012 Appl. Phys. Lett. 101 52104

    [22]

    Ke S, Wang B, Huang H, Long H, Wang K, Lu P 2015 Opt. Express 23 8888

    [23]

    Guo C C, Zhu Z H, Yuan X D, Ye W M, Liu K, Zhang J F, Xu W, Qin S Q 2016 Adv. Opt. Mater. 4 1955

    [24]

    Su Z, Yin J, Zhao X 2015 Opt. Express 23 1679

    [25]

    Zhan T R, Zhao F Y, Hu X H, Liu X H, Zi J 2012 Phys. Rev. B 86 165416

    [26]

    Pu M, Chen P, Wang Y, Zhao Z, Wang C, Huang C, Hu C, Luo X 2013 Opt. Express 21 11618

    [27]

    Iorsh I V, Shadrivov I V, Belov P A, Kivshar Y S 2013 Phys. Rev. B 88 195422

    [28]

    Deng B, Guo Q, Li C, Wang H, Ling X, Farmer D B, Han S, Kong J, Xia F 2016 ACS Nano 10 11172

    [29]

    Wu P C, Papasimakis N, Tsai D P 2016 Phys. Rev. Appl. 6 44019

    [30]

    Liu B, Tang C, Chen J, Wang Q, Pei M, Tang H 2017 Opt. Express 25 12061

    [31]

    Hanson G W 2008 J. Appl. Phys. 103 64302

    [32]

    Wu J, Zhou C, Yu J, Cao H, Li S, Jia W 2014 IEEE Photon. Technol. Lett. 26 949

    [33]

    Wu Y K R, Hollowell A E, Zhang C, Guo L J 2013 Sci. Rep. 3 1194

    [34]

    Shao H, Wang J, Liu D, Hu Z D, Xia X, Sang T 2017 Plasmonics 12 361

    [35]

    Chu J K, Wang Q Y, Wang Z W, Wang L D 2015 Acta Phys. Sin. 64 164206 (in Chinese) [褚金奎, 王倩怡, 王志文, 王立鼎 2015 64 164206]

    [36]

    Sang T, Wang Z, Wang L, Wu Y, Chen L 2006 J. Opt. A: Pure Appl. Opt. 8 62

  • [1]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photon. 4 611

    [2]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [3]

    Pirruccio G, Martn M L, Lozano G, Gmez R J 2013 ACS Nano 7 4810

    [4]

    Lee S, Tran T Q, Kim M, Heo H, Heo J, Kim S 2015 Opt. Express 23 33350

    [5]

    Zheng G, Zhang H, Xu L, Liu Y 2016 Opt. Lett. 41 2274

    [6]

    Wang R, Sang T, Wang L, Gao J, Wang Y, Wang J 2018 Optik 157 651

    [7]

    Sang T, Wang R, Li J, Zhou J, Wang Y 2018 Opt. Commun. 413 255

    [8]

    Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H, Klang P, Andrews A M, Schrenk W, Strasser G, Mueller T 2012 Nano Lett. 12 2773

    [9]

    Liang Z J, Liu H X, Niu Y X, Yin Y H 2016 Acta Phys. Sin. 65 138501 (in Chinese) [梁振江, 刘海霞, 牛燕雄, 尹贻恒 2016 65 138501]

    [10]

    Lu H, Cumming B P, Gu M 2015 Opt. Lett. 40 3647

    [11]

    Song S, Chen Q, Jin L, Sun F 2013 Nanoscale 5 9615

    [12]

    Zhao B, Zhao J M, Zhang Z M 2014 Appl. Phys. Lett. 105 31905

    [13]

    Cai Y, Zhu J, Liu Q H 2015 Appl. Phys. Lett. 106 43105

    [14]

    Wang W, Klots A, Yang Y, Li W, Kravchenko I I, Briggs D P, Bolotin K I, Valentine J 2015 Appl. Phys. Lett. 106 181104

    [15]

    Zheng G, Zou X, Chen Y, Xu L, Liu Y 2017 Plasmonics 12 1177

    [16]

    Thareja V, Kang J H, Yuan H, Milaninia K M, Hwang H Y, Cui Y, Kik P G, Brongersma M L 2015 Nano Lett. 15 1570

    [17]

    Xia S X, Zhai X, Huang Y, Liu J Q, Wang L L, Wen S C 2017 Opt. Lett. 42 3052

    [18]

    Zhu B, Ren G, Zheng S, Lin Z, Jian S 2013 Opt. Commun. 308 204

    [19]

    Lu H, Gan X, Jia B, Mao D, Zhao J 2016 Opt. Lett. 41 4743

    [20]

    Hu J H, Huang Y Q, Duan X F, Wang Q, Zhang X, Wang J, Ren X M 2014 Appl. Phys. Lett. 105 221113

    [21]

    Liu J T, Liu N H, Li J, Li X J, Huang J H 2012 Appl. Phys. Lett. 101 52104

    [22]

    Ke S, Wang B, Huang H, Long H, Wang K, Lu P 2015 Opt. Express 23 8888

    [23]

    Guo C C, Zhu Z H, Yuan X D, Ye W M, Liu K, Zhang J F, Xu W, Qin S Q 2016 Adv. Opt. Mater. 4 1955

    [24]

    Su Z, Yin J, Zhao X 2015 Opt. Express 23 1679

    [25]

    Zhan T R, Zhao F Y, Hu X H, Liu X H, Zi J 2012 Phys. Rev. B 86 165416

    [26]

    Pu M, Chen P, Wang Y, Zhao Z, Wang C, Huang C, Hu C, Luo X 2013 Opt. Express 21 11618

    [27]

    Iorsh I V, Shadrivov I V, Belov P A, Kivshar Y S 2013 Phys. Rev. B 88 195422

    [28]

    Deng B, Guo Q, Li C, Wang H, Ling X, Farmer D B, Han S, Kong J, Xia F 2016 ACS Nano 10 11172

    [29]

    Wu P C, Papasimakis N, Tsai D P 2016 Phys. Rev. Appl. 6 44019

    [30]

    Liu B, Tang C, Chen J, Wang Q, Pei M, Tang H 2017 Opt. Express 25 12061

    [31]

    Hanson G W 2008 J. Appl. Phys. 103 64302

    [32]

    Wu J, Zhou C, Yu J, Cao H, Li S, Jia W 2014 IEEE Photon. Technol. Lett. 26 949

    [33]

    Wu Y K R, Hollowell A E, Zhang C, Guo L J 2013 Sci. Rep. 3 1194

    [34]

    Shao H, Wang J, Liu D, Hu Z D, Xia X, Sang T 2017 Plasmonics 12 361

    [35]

    Chu J K, Wang Q Y, Wang Z W, Wang L D 2015 Acta Phys. Sin. 64 164206 (in Chinese) [褚金奎, 王倩怡, 王志文, 王立鼎 2015 64 164206]

    [36]

    Sang T, Wang Z, Wang L, Wu Y, Chen L 2006 J. Opt. A: Pure Appl. Opt. 8 62

  • [1] Guan Jian-Fei, Yu Xiao, Ding Guan-Tian, Chen Tao, Lu Yun-Qing. Transmission enhancement effect of distributed Bragg reflector structure covered with metal grating. Acta Physica Sinica, 2024, 73(11): 117301. doi: 10.7498/aps.73.20240357
    [2] Zhang Yi-Fei, Liu Yuan, Mei Jia-Dong, Wang Jun-Zhuan, Wang Xiao-Mu, Shi Yi. Quaternary nanoparticle array antenna for graphene/silicon near-infrared detector. Acta Physica Sinica, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [3] Shi Peng-Fei, Ma Xin-Ying, Xiang Chuan, Zhao Hong-Ge, Li Yuan, Gao Ren-Jing, Liu Shu-Tian. Topology optimization design of dual-channel metasurface structure with controllable amplitude of retroreflection and mirror reflection. Acta Physica Sinica, 2023, 72(24): 247801. doi: 10.7498/aps.72.20230775
    [4] Deng Xu-Liang, Ji Xian-Fei, Wang De-Jun, Huang Ling-Qin. First principle study on modulating of Schottky barrier at metal/4H-SiC interface by graphene intercalation. Acta Physica Sinica, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [5] Guo Xiao-Meng, Qing Fang-Zhu, Li Xue-Song. Applications of graphene in anti-corrosion of metal surface. Acta Physica Sinica, 2021, 70(9): 098102. doi: 10.7498/aps.70.20210349
    [6] Hu Bao-Jing, Huang Ming, Li Peng, Yang Jing-Jing. Multiband plasmon-induced transparency based on nanometals-graphene hybrid model. Acta Physica Sinica, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [7] Jiang Xiao-Wei, Wu Hua, Yuan Shou-Cai. Enhancement of graphene three-channel optical absorption based on metal grating. Acta Physica Sinica, 2019, 68(13): 138101. doi: 10.7498/aps.68.20182173
    [8] Chen Cai-Yun, Liu Jin-Xing, Zhang Xiao-Min, Li Jin-Long, Ren Ling-Ling, Dong Guo-Cai. Coverage measurement of graphene film on metallic substrate using scanning electron microscopy. Acta Physica Sinica, 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [9] Pu Xiao-Qing, Wu Jing, Guo Qiang, Cai Jian-Zhen. Theoretical study on ohmic contact between graphene and metal electrode. Acta Physica Sinica, 2018, 67(21): 217301. doi: 10.7498/aps.67.20181479
    [10] Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons. Acta Physica Sinica, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [11] Guo Hui, Lu Hong-Liang, Huang Li, Wang Xue-Yan, Lin Xiao, Wang Ye-Liang, Du Shi-Xuan, Gao Hong-Jun. Intercalation and its mechanism of high quality large area graphene on metal substrate. Acta Physica Sinica, 2017, 66(21): 216803. doi: 10.7498/aps.66.216803
    [12] Lu Xiao-Bo, Zhang Guang-Yu. Graphene/h-BN Moiré superlattice. Acta Physica Sinica, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [13] Li Feng, Xiao Chuan-Yun, Kan Er-Jun, Lu Rui-Feng, Deng Kai-Ming. Density functional study on the different behaviors of Pd and Pt coating on graphene. Acta Physica Sinica, 2014, 63(17): 176802. doi: 10.7498/aps.63.176802
    [14] Yu Hai-Ling, Zhu Jia-Qi, Cao Wen-Xin, Han Jie-Cai. Process in preparation of metal-catalyzed graphene. Acta Physica Sinica, 2013, 62(2): 028201. doi: 10.7498/aps.62.028201
    [15] Shen Yun, Yu Guo-Ping, Fu Ji-Wu. Theoretical analysis of coherent perfect absorption in one-dimensional anti-laser. Acta Physica Sinica, 2012, 61(16): 164204. doi: 10.7498/aps.61.164204
    [16] Wang Ya-Wei, Liu Ming-Li, Liu Ren-Jie, Lei Hai-Na, Tian Xiang-Long. Fabry-Perot resonance on extraordinary transmission through one-dimensional metallic gratings with sub-wavelength under transverse electric wave excitation. Acta Physica Sinica, 2011, 60(2): 024217. doi: 10.7498/aps.60.024217
    [17] Hao Jun, Li Hong-Gen, Cao Zhuang-Qi, Chen Fan. Double-channel narrowband filter based on Goos-Hänchen shift. Acta Physica Sinica, 2011, 60(7): 074223. doi: 10.7498/aps.60.074223
    [18] Wang Ya-Wei, Liu Ming-Li, Liu Ren-Jie, Lei Hai-Na, Deng Xiao-Bin. Extraordinary transmission through one-dimensional metallic gratings with sub-wavelength slits under transverse electric wave excitation. Acta Physica Sinica, 2010, 59(6): 4030-4035. doi: 10.7498/aps.59.4030
    [19] Liu Min-Min, Zhang Guo-Ping, Zou Ming. Electromagnetic theory of enhanced diffraction for a binary metallic grating. Acta Physica Sinica, 2006, 55(9): 4608-4612. doi: 10.7498/aps.55.4608
    [20] Tan Chun-Lei, Yi Yong-Xiang, Wang Gu-Peng. . Acta Physica Sinica, 2002, 51(5): 1063-1067. doi: 10.7498/aps.51.1063
Metrics
  • Abstract views:  7115
  • PDF Downloads:  123
  • Cited By: 0
Publishing process
  • Received Date:  28 April 2018
  • Accepted Date:  28 May 2018
  • Published Online:  20 September 2019

/

返回文章
返回
Baidu
map