搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超表面的Tamm等离激元与激子的强耦合作用

吴晗 吴竞宇 陈卓

引用本文:
Citation:

基于超表面的Tamm等离激元与激子的强耦合作用

吴晗, 吴竞宇, 陈卓

Strong coupling between metasurface based Tamm plasmon microcavity and exciton

Wu Han, Wu Jing-Yu, Chen Zhuo
PDF
HTML
导出引用
  • 本文研究了由超表面-介质间隔层-分布式布拉格反射器(distributed Bragg reflector, DBR)构成的等离激元微腔结构中的Tamm等离激元及其与激子间的相互作用. 利用超表面中的结构参数变化能够调控光在其表面的反射位相这一特性, 可以在微腔结构的介质间隔层厚度保持不变时, 通过调节超表面的结构参数来调控微腔结构所支持的Tamm等离激元模式的共振位置, 从而为Tamm等离激元模式的调控提供更多自由度. 相比于传统金属薄膜-介质间隔层-DBR结构, 我们发现超表面的引入及其对反射位相的调控可以使超表面-介质间隔层-DBR结构在更小的间隔层厚度下支持共振在相同波长处的Tamm等离激元模式. 此外, 结合超表面对场的局域特性, 可以有效地降低Tamm等离激元模式体积. 在此基础上, 对比研究了传统的和基于超表面的Tamm等离激元与单层二硫化钨(WS2)的相互作用, 发现基于超表面的Tamm等离激元可以产生更强的光子与激子的强耦合作用, 获得更大的拉比(Rabi)劈裂.
    In this paper, the Tamm plasmon and its interaction with excitons in a plasmon microcavity consisting of metasurface, dielectric spacer, distributed Bragg reflector (DBR) are studied. The reflection phase of light on the surface can be controlled by changing the structure parameters in the metasurface. When the thickness of the dielectric spacer layer of the microcavity structure keeps unchanged, the resonance position of the Tamm plasmon mode supported by the microcavity structure can be adjusted by varying the structure parameters of the metasurface, and thus providing more degrees of freedom for regulating the Tamm plasmon mode. In addition, by comparing the traditional metal thin film-dielectric spacer-DBR structure, we find that the introduction of metasurface and its regulation of reflection phase can make the metasurface-dielectric spacer-DBR structure support the Tamm plasmon mode resonance at the same wavelength under a smaller thickness of spacer. And combining the local characteristics of the super-surface field, the model volume of Tamm plasmon can be reduced effectively. On this basis, we compare the interaction of traditional and metasurface-based Tamm plasmon with single-layer tungsten disulfide (WS2), and find that metasurface-based Tamm plasmon can produce stronger photon-exciton coupling and obtain larger Rabi splitting.
      通信作者: 陈卓, zchen@nju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11674168)资助的课题
      Corresponding author: Chen Zhuo, zchen@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11674168)
    [1]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photonics 4 83Google Scholar

    [2]

    Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L 2010 Nat. Mater. 9 193Google Scholar

    [3]

    McFarland A D, Van Duyne R P 2013 Nano Lett. 3 1057

    [4]

    Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner W E 2009 Nat. Photonics 3 654Google Scholar

    [5]

    Schietinger S, Barth M, Aichele T, Benson O 2009 Nano Lett. 9 1694Google Scholar

    [6]

    Xu H, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [7]

    Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M, Manzoni C, Cerullo G, Lienau C 2013 Nat. Photonics 7 128Google Scholar

    [8]

    Santhosh K, Bitton O, Chuntonov L, Haran G 2016 Nat. Commun. 7 11823Google Scholar

    [9]

    Shi L, Hakala T K, Rekola H T, Martikainen J P, Moerland R J, Törmä P 2014 Phys. Rev. Lett. 112 153002Google Scholar

    [10]

    Ramezani M, Le-Van Q, Halpin A, Rivas J G 2018 Phys. Rev. Lett. 121 243904Google Scholar

    [11]

    Bellessa J, Symonds C, Vynck K, Lemaitre A, Brioude A, Beaur L, Plenet J C, Viste P, Fellbacq D, Cambrll E, Valvin P 2009 Phys. Rev. B 80 033303Google Scholar

    [12]

    赵泽宇, 刘晋侨, 李爱, 武徐颖 2016 65 231101Google Scholar

    Zhao Z Y, Liu J Q, Li A W, Xu X Y 2016 Acta Phys. Sin. 65 231101Google Scholar

    [13]

    Coles D M, Yang Y, Wang Y, Grant R T, Taylor R A, Saikin S K, Aspuru-Guzik A, Lidzey D G, Tang J K, Smith J M 2014 Nat. Commun. 5 5561Google Scholar

    [14]

    Todorov Y, Andrews A M, Sagnes I, Colombelli R, Klang P, Strasser G, Sirtori C 2009 Phys. Rev. Lett. 102 186402Google Scholar

    [15]

    Schwartz T, Hutchison J A, Genet C, Ebbesen T W 2011 Phys. Rev. Lett. 106 196405Google Scholar

    [16]

    Wurdack M, Lundt N, Klaas M, Baumann V, Kavokin A V, Höfling S, Schneider C 2017 Nat. Commun. 8 259Google Scholar

    [17]

    Lundt N, Klembt S, Cherotchenko E, Betzold S, Iff O, Nalitov A V, Klaas M, Dietrich C P, Kavokin A V, Höfling S, Schneider C 2016 Nat. Commun. 7 13328Google Scholar

    [18]

    Yu N, Aieta F, Genevet P, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 6328Google Scholar

    [19]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [20]

    Yang Y, Wang W, Moitra P, Kravchenko I I, Briggs D P, Valentine J 2014 Nano Lett. 14 1394Google Scholar

    [21]

    Jiang S C, Xiong X, Hu Y S, Hu Y H, Ma G B, Peng R W, Sun C, Wang M 2014 Phys. Rev. X 4 021026

    [22]

    Lin D, Fan P, Hasman E, Brongersma M L 2014 Science 345 298Google Scholar

    [23]

    Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar

    [24]

    Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Huang T T, Wang J H, Lin R M, Kuan C H, Li T, Wang Z, Tsai D P 2018 Nat. Nanotechnol. 13 227Google Scholar

    [25]

    Deng Z L, Deng J, Zhuang X, Wang S, Li K, Wang Y, Chi Y, Ye X, Xu J, Wang G P, Zhao R, Wang X, Cao Y, Cheng X, Li G, Li X 2018 Nano Lett. 18 2885Google Scholar

    [26]

    Wang S, Li F, Deng J, Ye X, Deng Z L, Cao Y, Guan B O, Li G, Li X 2019 J. Phys. D: Appl. Phys. 52 324002Google Scholar

    [27]

    Blaber M G, Arnold M D, Ford M J 2009 J. Phys. Chem. C 113 3041

    [28]

    Dai Y, Ren W, Cai H, Ding H, Pan N, Wang X 2014 Opt. Express 22 7465Google Scholar

    [29]

    Liu W, Lee B, Naylor C H, Ee H S, Park J, Johnson A C, Agarwal R 2016 Nano Lett. 16 1262Google Scholar

    [30]

    Li Y, Chernikov A, Zhang X, Rigosi A, Hill H M, van der Zande A M, Chenet D A, Shih E M, Hone J, Heinz T F 2014 Phys. Rev. B 90 205422Google Scholar

  • 图 1  (a)银光栅-氧化铝介质层-银薄膜构成的超表面结构示意图, 其中银薄膜厚度、银光栅周期和厚度分别固定为t = 30 nm, p = 150 nm和d = 10 nm; (b), (d)氧化铝层厚度h = 20 nm银光栅同宽度时超表面的反射谱和反射位相; (c)光栅宽度w = 50 nm和氧化铝层厚度h = 20 nm的超表面在共振时的磁场分布图; (e), (f)银光栅宽度w = 30 nm氧化铝层厚度不同时超表面的反射谱和反射位相

    Fig. 1.  (a) A schematic diagram of metasurface consisting of silver grating, alumina dielectric layer and silver film, in which the thickness of silver film, the period and thickness of silver grating are fixed at t = 30 nm, P = 150 nm and d = 10 nm, respectively; (b), (d) the thickness of alumina layer is h = 20 nm, and the reflection spectrum and phase of metasurface at different width of silver grating; (c) the magnetic field distribution of metasurface at resonance with grating width w = 50 nm and alumina layer thickness h = 20 nm; (e), (f) with grating width w = 30 nm and different thickness of alumina layer have reflected spectra and phases on the metasurface.

    图 2  (a)由超表面-介质间隔层-DBR构成的Tamm等离激元微腔结构示意图. DBR由8对二氧化硅和二氧化钛多层介质膜组成, 其中二氧化硅和二氧化钛的折射率为n a = 1.45和n b = 2.4, 厚度为d a = 103.5 nm和d b = 62.5 nm; 介质间隔层厚度为l, 折射率与图1(a)中超表面结构的包覆层折射率相同, 超表面的结构参数与图1(a)中所展示的相同. φDBRφmetal分别是光在DBR的表面和超表面结构的表面反射引起的位相变化, φ prop代表光在介质间隔层中的传播位相; (b)固定介质间隔层厚度为l = 10 nm, 超表面中氧化铝层厚度为h = 40 nm, 银光栅宽度为w = 10 nm和50 nm两种情况下所获得的φms以及φDBR, φprop, 总位相φtotal随波长的变化关系. 水平虚线代表相位为0; (c) l = 10 nm, h = 40 nm以及w = 10 nm和50 nm条件下的超表面-介质间隔层-DBR结构的反射谱

    Fig. 2.  (a) A schematic diagram of the structure of a Tamm plasmon microcavity consisting of metasurface-dielectric spacer-DBR. DBR consists of 8 pairs of silica and titanium dioxide multilayer dielectric films, in which the refractive index of silica is n a = 1.45, the refractive index of titanium dioxide is n b = 2.4, and the thickness of silica and titanium dioxide in each layer is d a = 103.5 nm and d b = 62.5 nm. The thickness of the dielectric spacer is l, and the refractive index is the same as that of the cladding layer of the metasurface structure in Fig. 1(a). The structural parameters of the metasurface are the same as those shown in Fig. 1(a). The phase transitions of φDBR and φmetal are caused by the reflection of light on the surface of DBR and metasurface structure respectively. φprop represents the phase of light propagating in the dielectric spacer; (b) the thickness of fixed dielectric spacer is l = 10 nm, the thickness of alumina layer in metasurface is h = 40 nm, and the width of silver grating is w = 10 nm and 50 nm. In both cases, the relationship between wavelength and the obtained φms, φDBR, φprop and total phase φtotal is obtained. The horizontal dashed line represents the phase of 0; (c) reflectance spectra of metasurface-dielectric spacer-DBR structures at l = 10 nm, h = 40 nm and w = 10 nm and 50 nm.

    图 3  (a)金属薄膜-介质间隔层-DBR结构中Tamm等离激元模式的共振波长随介质间隔层厚度l的变化关系. 超表面-介质间隔层-DBR结构中固定介质间隔层厚度l = 10 nm和氧化铝层厚度h = 30 nm时Tamm等离激元模式共振波长随银光栅宽度w的变化关系以及l = 10 nm和w = 40 nm时Tamm等离激元模式的共振波长随氧化铝层厚度h的变化关系; (b)介质间隔层厚度固定为l = 10 nm时, 不同的氧化铝层厚度h和银光栅宽度w的参数组合情况下超表面-介质间隔层-DBR结构的反射光谱

    Fig. 3.  (a) The variation of Tamm plasmon mode wavelength with the thickness of dielectric spacer l in metal film-dielectric spacer-DBR structure, the variation of Tamm plasmon mode wavelength with the width of silver grating w when the thickness of fixed dielectric spacer l = 10 nm and alumina layer h = 30 nm in metasurface-dielectric spacer-DBR structure, and fixed l = 10 nm and w = 40 nm, the Tamm plasmon mode wavelength varies with the thickness of alumina layer h; (b) reflectance spectra of metasurface-dielectric spacer-DBR structure with different thickness of alumina and width of silver grating w when the thickness of dielectric spacer is fixed at l = 10 nm.

    图 4  (a)和(b)分别为共振波长位于620 nm的常规金属薄膜-介质间隔层-DBR结构和超表面-介质间隔层-DBR结构的反射谱和吸收谱; (c)和(d)分别为有超表面的和常规的Tamm等离激元微腔结构所支持的Tamm等离激元模式的电场分布图. 左侧为结构示意图, 水平虚线代表二维激子材料在结构中放置的位置; (e)和(f)分别为两种Tamm等离激元微腔中加入二维激子材料后的反射谱和吸收谱

    Fig. 4.  (a) and (b) are the reflection and absorption spectra of the conventional metal film-dielectric spacer-DBR structure and the metasurface-dielectric spacer-DBR structure with resonant wavelength at 620 nm, respectively; (c) and (d) electric field distributions of Tamm plasmon modes supported by metasurface and conventional Tamm plasmon microcavities, respectively. On the left is a structural sketch. The horizontal dashed line represents the position of the two-dimensional exciton material in the structure; (e) and (f) are the reflection and absorption spectra of two kinds of Tamm plasmon microcavities with two-dimensional exciton materials.

    Baidu
  • [1]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photonics 4 83Google Scholar

    [2]

    Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L 2010 Nat. Mater. 9 193Google Scholar

    [3]

    McFarland A D, Van Duyne R P 2013 Nano Lett. 3 1057

    [4]

    Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner W E 2009 Nat. Photonics 3 654Google Scholar

    [5]

    Schietinger S, Barth M, Aichele T, Benson O 2009 Nano Lett. 9 1694Google Scholar

    [6]

    Xu H, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [7]

    Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M, Manzoni C, Cerullo G, Lienau C 2013 Nat. Photonics 7 128Google Scholar

    [8]

    Santhosh K, Bitton O, Chuntonov L, Haran G 2016 Nat. Commun. 7 11823Google Scholar

    [9]

    Shi L, Hakala T K, Rekola H T, Martikainen J P, Moerland R J, Törmä P 2014 Phys. Rev. Lett. 112 153002Google Scholar

    [10]

    Ramezani M, Le-Van Q, Halpin A, Rivas J G 2018 Phys. Rev. Lett. 121 243904Google Scholar

    [11]

    Bellessa J, Symonds C, Vynck K, Lemaitre A, Brioude A, Beaur L, Plenet J C, Viste P, Fellbacq D, Cambrll E, Valvin P 2009 Phys. Rev. B 80 033303Google Scholar

    [12]

    赵泽宇, 刘晋侨, 李爱, 武徐颖 2016 65 231101Google Scholar

    Zhao Z Y, Liu J Q, Li A W, Xu X Y 2016 Acta Phys. Sin. 65 231101Google Scholar

    [13]

    Coles D M, Yang Y, Wang Y, Grant R T, Taylor R A, Saikin S K, Aspuru-Guzik A, Lidzey D G, Tang J K, Smith J M 2014 Nat. Commun. 5 5561Google Scholar

    [14]

    Todorov Y, Andrews A M, Sagnes I, Colombelli R, Klang P, Strasser G, Sirtori C 2009 Phys. Rev. Lett. 102 186402Google Scholar

    [15]

    Schwartz T, Hutchison J A, Genet C, Ebbesen T W 2011 Phys. Rev. Lett. 106 196405Google Scholar

    [16]

    Wurdack M, Lundt N, Klaas M, Baumann V, Kavokin A V, Höfling S, Schneider C 2017 Nat. Commun. 8 259Google Scholar

    [17]

    Lundt N, Klembt S, Cherotchenko E, Betzold S, Iff O, Nalitov A V, Klaas M, Dietrich C P, Kavokin A V, Höfling S, Schneider C 2016 Nat. Commun. 7 13328Google Scholar

    [18]

    Yu N, Aieta F, Genevet P, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 6328Google Scholar

    [19]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [20]

    Yang Y, Wang W, Moitra P, Kravchenko I I, Briggs D P, Valentine J 2014 Nano Lett. 14 1394Google Scholar

    [21]

    Jiang S C, Xiong X, Hu Y S, Hu Y H, Ma G B, Peng R W, Sun C, Wang M 2014 Phys. Rev. X 4 021026

    [22]

    Lin D, Fan P, Hasman E, Brongersma M L 2014 Science 345 298Google Scholar

    [23]

    Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar

    [24]

    Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Huang T T, Wang J H, Lin R M, Kuan C H, Li T, Wang Z, Tsai D P 2018 Nat. Nanotechnol. 13 227Google Scholar

    [25]

    Deng Z L, Deng J, Zhuang X, Wang S, Li K, Wang Y, Chi Y, Ye X, Xu J, Wang G P, Zhao R, Wang X, Cao Y, Cheng X, Li G, Li X 2018 Nano Lett. 18 2885Google Scholar

    [26]

    Wang S, Li F, Deng J, Ye X, Deng Z L, Cao Y, Guan B O, Li G, Li X 2019 J. Phys. D: Appl. Phys. 52 324002Google Scholar

    [27]

    Blaber M G, Arnold M D, Ford M J 2009 J. Phys. Chem. C 113 3041

    [28]

    Dai Y, Ren W, Cai H, Ding H, Pan N, Wang X 2014 Opt. Express 22 7465Google Scholar

    [29]

    Liu W, Lee B, Naylor C H, Ee H S, Park J, Johnson A C, Agarwal R 2016 Nano Lett. 16 1262Google Scholar

    [30]

    Li Y, Chernikov A, Zhang X, Rigosi A, Hill H M, van der Zande A M, Chenet D A, Shih E M, Hone J, Heinz T F 2014 Phys. Rev. B 90 205422Google Scholar

  • [1] 夏兆生, 刘宇行, 包正, 王丽华, 吴博, 王刚, 王辉, 任信钢, 黄志祥. 基于准连续域束缚态的强圆二色性超表面.  , 2024, 73(17): 178102. doi: 10.7498/aps.73.20240834
    [2] 赵世杭, 张元, 吕思远, 程少博, 郑长林, 王鹿霞. 电子能量损失谱探测银纳米棒与介质层强耦合的数值模拟.  , 2022, 71(14): 147302. doi: 10.7498/aps.71.20220194
    [3] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合.  , 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [4] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器.  , 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [5] 张萌徕, 覃赵福, 陈卓. 基于开口环阵列结构的表面晶格共振产生及二次谐波增强.  , 2021, 70(5): 054206. doi: 10.7498/aps.70.20201424
    [6] 郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应.  , 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [7] 谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘俊敏, 周新星, 李瑛, 陈书青, 范滇元. 基于Pancharatnam-Berry相位超表面的二维光学边缘检测.  , 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [8] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控.  , 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [9] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性.  , 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [10] 吴立祥, 李鑫, 杨元杰. 基于双层阿基米德螺线的表面等离激元涡旋产生方法.  , 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [11] 虞华康, 刘伯东, 吴婉玲, 李志远. 表面等离激元增强的光和物质相互作用.  , 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [12] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应.  , 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [13] 李盼. 表面等离激元纳米聚焦研究进展.  , 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [14] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制.  , 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [15] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控.  , 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [16] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗.  , 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [17] 王栋, 许军, 陈溢杭. 介电常数近零模式与表面等离激元模式耦合实现宽带光吸收.  , 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [18] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器.  , 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [19] 邱天硕, 王甲富, 李勇峰, 王军, 闫明宝, 屈绍波. 基于超表面的无磁性材料环行器.  , 2016, 65(17): 174101. doi: 10.7498/aps.65.174101
    [20] 赵泽宇, 刘晋侨, 李爱武, 徐颖. 金纳米柱阵列表面等离子体激元与J-聚集分子强耦合作用.  , 2016, 65(23): 231101. doi: 10.7498/aps.65.231101
计量
  • 文章访问数:  13469
  • PDF下载量:  520
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-13
  • 修回日期:  2019-10-08
  • 上网日期:  2019-12-07
  • 刊出日期:  2020-01-05

/

返回文章
返回
Baidu
map