-
In this paper, we present a kind of broadband absorbent material. The broadband absorbent material is designed based on topology optimization and tested. The optimizing of metamaterials with a genetic algorithm has become one of the most effective methods of designing metamaterials in recent years. An integral system with interactive simulation of MATLAB and CST Microwave Studio is developed, and the main program of genetic algorithm is written in MATLAB; with simulation and computation in CST the metamaterial is optimized by a genetic algorithm with power of global optimization. Vacuum assistant resin infusion process is a new cost-effective and high-performance process. The proposed radar absorbent material possesses a sandwich structure, which consists of transparent composite skin panel, resistive metasurface, polyurethane foam and reflective composite skin panel. The transparent composite skin panel is low-dielectric-constant glass fiber reinforced composite, which has excellent physical properties and weather resistant property. The core material is composed of low density polyurethane foam and metamaterials, which can well meet the requirements for weight reduction and the invisibility. The reflective composite skin panel is a low-resistance carbon fiber reinforced composite, which prevents the electromagnetic waves from transmitting and also provides electrical boundary conditions for metamaterial. Simulation and test results indicate that the reflectivity of the radar absorbent material is less than-12 dB in a range of 2-18 GHz. Because of the symmetrical structure design of the resistance film, the radar absorbent material is polarization-independent. We preliminarily produce a batch of radar absorbent materials and test their various performances. Such a radar absorbent material has a strong absorption and other properties such as light quality, high temperature resistance, low temperature resistance, humidity resistance and corrosion resistance. The radar absorbent material which has been widely used in the engineering field is easy to achieve the compatibility of absorption, mechanical properties and environmental performance. Compared with previous design method, the topology optimization design is simple in programming operation, good in generality, and short in design periode. The radar absorbent materials owns strong application value.
-
Keywords:
- topology optimization /
- resistive metasurface /
- radar absorbing property /
- mechanical properties /
- environmental performance
[1] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402
[2] Pendry J B, Schurig D, Smith D R 2006 Science 312 1780
[3] Schurig D, Mock J J, Justice B J 2006 Science 314 977
[4] Yan H H, Cao X Y, Gao J, Liu T, Li S J, Zhao Y, Yuan Z D, Zhang H 2013 Acta Phys. Sin. 62 214101 (in Chinese)[杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩 2013 62 214101]
[5] Zhang L, Liu S, Cui T J 2017 Chin. Opt. 10 1 (in Chinese)[张磊, 刘硕, 崔铁军 2017 中国光学 10 1]
[6] Yan X, Liang L J, Yang J, Liu W W, Ding X, Xu D G, Zhang Y T, Cui T J, Yao J Q 2015 Opt. Express 23 29128
[7] Liu J F, Liu S, Fu X J, Cui T J 2018 J. Radars 7 46 (in Chinese)[刘峻峰, 刘硕, 傅晓建, 崔铁军 2018 雷达学报 7 46]
[8] Zhang C, Cheng Q, Yang J, Zhao J, Cui T J 2017 Appl. Phys. Lett. 110 143511
[9] Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110
[10] Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese)[李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学 2014 63 084103]
[11] Li Y F, Wang J F, Zhang J Q, Qu S B, Pang Y Q, Zheng L, Yan M B, Xu Z, Zhang A X 2014 Prog. Electromagn. Res. M 40 9
[12] Zhu B, Wang Z B, Yu Z Z, Zhang Q, Zhao J M, Feng Y J, Jing T 2009 Chin. Phys. Lett. 26 114102
[13] Pan W B, Huang C, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Antennas Propag. 62 945
[14] Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111
[15] Chen H Y, Hou X Y, Deng L J 2009 IEEE Antennas Wirel. Propag. Lett. 8 1231
[16] Xu Y Q, Zhou P H, Zhang H B, Chen L, Deng L J 2011 J. Appl. Phys. 110 044102
[17] Zhang L B, Zhou P H, Chen H Y, Lu H P, Xie H Y, Zhang L, Li E, Xie J L, Deng L J 2016 Sci. Rep. 6 33826
[18] Cui Y X, Feng K H, Xu J, Ma H J, Jin Y, He S L, Fang N X 2012 Nano Lett. 12 1443
[19] Cui Y X, He Y R, Jin Y, Ding F, Yang L, Ye Y Q, Zhong S M, Lin Y Y, He S L 2014 Laser Photon. Rev. 8 495
[20] Zhong S M, He S L 2013 Sci. Rep. 3 2083
[21] Zhong S M, Ma Y G, He S L 2014 Appl. Phys. Lett. 105 023504
[22] Zhu J F, Ma Z F, Sun W J, Ding F, He Q, Zhou L, Ma Y G 2014 Appl. Phys. Lett. 105 021102
[23] Ding F, Jin Y, Li B R, Cheng H, Mo L, He S L 2014 Laser Photonics Rev. 8 946
[24] Cheng Y Z, Nie Y, Gong R Z, Zheng D H, Fan Y N, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134101 (in Chinese)[程用志, 聂彦, 龚荣洲, 郑栋浩, 范跃农, 熊炫, 王鲜 2012 61 134101]
[25] Cheng Y Z, Wang Y, Nie Y, Zheng D H, Gong R Z, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134102 (in Chinese)[程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜 2012 61 134102]
-
[1] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402
[2] Pendry J B, Schurig D, Smith D R 2006 Science 312 1780
[3] Schurig D, Mock J J, Justice B J 2006 Science 314 977
[4] Yan H H, Cao X Y, Gao J, Liu T, Li S J, Zhao Y, Yuan Z D, Zhang H 2013 Acta Phys. Sin. 62 214101 (in Chinese)[杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩 2013 62 214101]
[5] Zhang L, Liu S, Cui T J 2017 Chin. Opt. 10 1 (in Chinese)[张磊, 刘硕, 崔铁军 2017 中国光学 10 1]
[6] Yan X, Liang L J, Yang J, Liu W W, Ding X, Xu D G, Zhang Y T, Cui T J, Yao J Q 2015 Opt. Express 23 29128
[7] Liu J F, Liu S, Fu X J, Cui T J 2018 J. Radars 7 46 (in Chinese)[刘峻峰, 刘硕, 傅晓建, 崔铁军 2018 雷达学报 7 46]
[8] Zhang C, Cheng Q, Yang J, Zhao J, Cui T J 2017 Appl. Phys. Lett. 110 143511
[9] Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110
[10] Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese)[李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学 2014 63 084103]
[11] Li Y F, Wang J F, Zhang J Q, Qu S B, Pang Y Q, Zheng L, Yan M B, Xu Z, Zhang A X 2014 Prog. Electromagn. Res. M 40 9
[12] Zhu B, Wang Z B, Yu Z Z, Zhang Q, Zhao J M, Feng Y J, Jing T 2009 Chin. Phys. Lett. 26 114102
[13] Pan W B, Huang C, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Antennas Propag. 62 945
[14] Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111
[15] Chen H Y, Hou X Y, Deng L J 2009 IEEE Antennas Wirel. Propag. Lett. 8 1231
[16] Xu Y Q, Zhou P H, Zhang H B, Chen L, Deng L J 2011 J. Appl. Phys. 110 044102
[17] Zhang L B, Zhou P H, Chen H Y, Lu H P, Xie H Y, Zhang L, Li E, Xie J L, Deng L J 2016 Sci. Rep. 6 33826
[18] Cui Y X, Feng K H, Xu J, Ma H J, Jin Y, He S L, Fang N X 2012 Nano Lett. 12 1443
[19] Cui Y X, He Y R, Jin Y, Ding F, Yang L, Ye Y Q, Zhong S M, Lin Y Y, He S L 2014 Laser Photon. Rev. 8 495
[20] Zhong S M, He S L 2013 Sci. Rep. 3 2083
[21] Zhong S M, Ma Y G, He S L 2014 Appl. Phys. Lett. 105 023504
[22] Zhu J F, Ma Z F, Sun W J, Ding F, He Q, Zhou L, Ma Y G 2014 Appl. Phys. Lett. 105 021102
[23] Ding F, Jin Y, Li B R, Cheng H, Mo L, He S L 2014 Laser Photonics Rev. 8 946
[24] Cheng Y Z, Nie Y, Gong R Z, Zheng D H, Fan Y N, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134101 (in Chinese)[程用志, 聂彦, 龚荣洲, 郑栋浩, 范跃农, 熊炫, 王鲜 2012 61 134101]
[25] Cheng Y Z, Wang Y, Nie Y, Zheng D H, Gong R Z, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134102 (in Chinese)[程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜 2012 61 134102]
计量
- 文章访问数: 7728
- PDF下载量: 249
- 被引次数: 0