搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型手性电磁超材料非对称传输性能设计分析

邱克鹏 骆越 张卫红

引用本文:
Citation:

新型手性电磁超材料非对称传输性能设计分析

邱克鹏, 骆越, 张卫红

Analysis and design of new chiral metamaterials with asymmetric transmission characteristics

Qiu Ke-Peng, Luo Yue, Zhang Wei-Hong
PDF
HTML
导出引用
  • 非对称传输型超材料在极化转换器与光电二极管等领域具有重要的研究意义及应用价值. 本文借助于结构设计中的拓扑优化技术, 设计出一种具有优异非对称传输特性的新型双层L型变体超材料结构, 实现了线性极化波在K波段及Ka波段的非对称传输现象; 数值仿真分析及实验结果表明, 其非对称传输系数在21.65 GHz处达到0.8562, 在28.575 GHz处达到0.8175, 并通过分析在谐振频点处的表面电流、电场分布, 阐明了双层L型变体超材料结构非对称传输性能的物理机理; 此外, 选取合理的几何参数并改变该结构金属层的旋转角度, 进一步实现了对非对称传输现象的调控, 并在K波段同时实现了线性极化波和圆极化波的非对称传输现象. 本文采用拓扑优化设计方法得到的非对称传输型手性超材料结构具有结构简单、易调控等优点, 且具有明确的方向性, 在手性超材料结构设计领域拥有广阔的应用前景.
    Asymmetric transmission (AT) metamaterials are extensively studied and applied in the fields of polarization converters and photodiodes. In order to further improve the properties of polarization conversion and unidirectional conduction in the high frequency band and to implement their tunability, the novel chiral electromagnetic metamaterials are studied. By the topology optimization technique, a new type of double-layer L-shaped variant metamaterial structure with excellent asymmetric transmission characteristics is designed. The objective function is to maximize the asymmetric transmission coefficient for the linear polarization wave. The rotationally symmetrical design domain is determined by considering polarization conversion and computation efficiency simultaneously. The design domain of upper layer is divided into two parts which are both the 180° rotationally symmetrical. The design domain of the upper layer and lower layer are the 90° rotationally symmetrical around the x and z axis respectively. Therefore, the number of design variables is only 18. Asymmetric transmission of linear polarization wave in the K band and Ka band are implemented. Numerical simulation results and experimental results show that the optimized chiral metamaterial has excellent asymmetric transmission characteristics, and its asymmetric transmission coefficient reaches 0.8562 at a frequency of 21.65 GHz and 0.8175 at a frequency of 28.575 GHz. Its asymmetric transmission mechanism is expounded by analyzing the electric field and surface current distribution at the resonance frequency. Based on the optimized chiral metamatertials, the reasonable geometric parameters are selected and the rotation angle of the metal layer is changed in order to further achieve the tunable AT characteristics. First, the influences of the dielectric substrate layer, the thickness of the metal layer and the side length of the grid on resonance frequency and asymmetric transmission coefficient are analyzed respectively, which provides the basis for the reasonable adjustment of the structural parameters to obtain better asymmetric transmission characteristics. After the reasonable geometric parameters are determined, the rotational angle of the upper metal layer and lower metal layer are changed. The linearly and circularly polarized wave are simultaneously achieved in the K band. In this article, the topology optimization technique is used to design the asymmetric transmission chiral metamaterial structure. The design process has a clear direction. The optimized asymmetric transmission chiral metamaterial has the simple structure type and the easy tunability of its asymmetric transmission characteristics. It can be used widely and easily in the fields of polarization converters and photodiodes. This design method has a broad application prospect in the chiral metamaterial field.
      通信作者: 邱克鹏, qiukp@nwpu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFB1102800)和国家自然科学基金(批准号: 11772258)资助的课题
      Corresponding author: Qiu Ke-Peng, qiukp@nwpu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFB1102800) and the National Natural Science Foundation of China (Grant No. 11772258)
    [1]

    徐进, 李荣强, 蒋小平, 王身云, 韩天成 2019 68 117801Google Scholar

    Xu J, Li R Q, Jiang X P, Wang S Y, Han T C 2019 Acta Phys. Sin. 68 117801Google Scholar

    [2]

    金柯, 刘永强, 韩俊, 杨崇民, 王颖辉, 王慧娜 2017 66 134201Google Scholar

    Jin K, Liu Y Q, Han J, Yang C M, Wang Y H, Wang H N 2017 Acta Phys. Sin. 66 134201Google Scholar

    [3]

    Silva A, Monticone F, Castaldi G, Galdi V, Alu A, Engheta N 2014 Science 343 6167Google Scholar

    [4]

    Veselago V G 1968 Sov. Phys. Usp. 10 509Google Scholar

    [5]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 5514Google Scholar

    [6]

    Smith D R, Padilla W J, Vier D C, Nasser N, Schultz S 2000 Phys. Rev. Let. 84 4184Google Scholar

    [7]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Let. 76 4773Google Scholar

    [8]

    Pendry J B, Holden A J, Robbins D J, Stewart W J, Member 1999 IEEE Trans. on Microw. Theory. 47 2075Google Scholar

    [9]

    Caloz C, Itoh T 2004 IEEE Microw. Mag. 5 34Google Scholar

    [10]

    Liu D Y, Yao L F, Zhai X M, Li M H, Dong J F 2014 Appl. Phys. A 116 9Google Scholar

    [11]

    Yang Y, Wang W, Moitra P, Kravchenko I I, Briggs D P, Valentine J 2014 Nano Lett. 14 1394Google Scholar

    [12]

    Baena J D, Tisco J P, Slobozhanyuk A P, Glybovski S B, Belov P A 2015 Phys. Rev. B 92 245413Google Scholar

    [13]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Let. 100 207402Google Scholar

    [14]

    Yu N, Aieta F, Genevet P, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 6328Google Scholar

    [15]

    Pendry J B 2000 Phys. Rev. Let. 85 3966Google Scholar

    [16]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 5801Google Scholar

    [17]

    Ganesel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G, Linden S, Wegener M 2009 Science 325 1513Google Scholar

    [18]

    Tretyakov S, Nefedov I, Sihvola A, Maslovski S, Simovski C 2003 J. Electromagnet. Wave. 17 695Google Scholar

    [19]

    Fedotov V A, Mladyonov P L, Prosvirnin S L, Rogacheva A V, Chen Y, Zheludev N I 2006 Phys. Rev. Let. 97 167401Google Scholar

    [20]

    Fedotov V A, Schwanecke A S, Zheludev N I, Khardikov V V, Prosvirnin S L 2007 Nano Lett. 7 1996Google Scholar

    [21]

    Menzel C, Helgert C, Rockstuhl C, Kley E B, Tünnermann A, Pertsch T, Lederer F 2010 Phys. Rev. Let. 104 253902Google Scholar

    [22]

    Mutlu M, Akosman A E, Serebryannikov A E, Ozbay E 2012 Phys. Rev. Let. 108 213905Google Scholar

    [23]

    Singh R, Plum E, Menzel C, et al. 2009 Phys. Rev. B 80 153104Google Scholar

    [24]

    Plum E, Fedotov V A, Zheludev N I 2011 J. Opt. 13 024006

    [25]

    Shi J H, Liu X C, Yu S, Lv T T, Zhu Z, Ma H F, Cui T J 2013 Appl. Phys. Let 102 191905Google Scholar

    [26]

    Wu L X, Zhang M, Zhu B, Zhao J M, Jiang T, Feng Y J 2014 Appl. Phys. B 117 527

    [27]

    Stephen L, Yogesh N, Subramanian V 2018 J. Appl. Phys. 123 033103Google Scholar

    [28]

    Ji W, Cai T, Wang B, Wang G G, Li H P, Wang C Y, Hou H S, Zhang C B 2019 Opt. Express 27 2844Google Scholar

    [29]

    Liu W B, Wu W, Huang L R, Ling Y H, Ba C F, Li S, Chun Z H, Li H H 2019 Opt. Express 27 33399Google Scholar

    [30]

    Song Q H, Wu P C, Zhu W M, et al. 2019 Appl. Phys. Let. 114 151105Google Scholar

    [31]

    Liu M, Xu Q, Chen X Y, et al. 2019 Sci. Rep. 9 4097Google Scholar

    [32]

    Zhao J X, Song J L, Xu T Y, Yang T X, Zhou J H 2019 Opt. Express 27 9773Google Scholar

    [33]

    Dai L L, Zhang Y P, F. O’Hara J, Zhang H Y 2019 Opt. Express 27 35784Google Scholar

    [34]

    Novitsky A V, Galynsky V M, Zhukovsky S V 2012 Phys. Rev. B 86 075138Google Scholar

    [35]

    Mühlig S, Menzel C, Rockstuhl C, Lederer F 2011 Met. Mater. 5 64

    [36]

    Mirzamohammadi F, Nourinia J, Ghobadi C, Majidzadeh M 2019 Int. J. Electron. Commun. (AEÜ) 98 58Google Scholar

    [37]

    Liu D J, Xiao Z Y, Ma X L, Ma Q W, Xu X X, Wang Z H 2015 Opt. Commun. 338 359

  • 图 1  设计域原理图 (a) 6 × 6正方形网格; (b)表层设计域; (c)底层设计域

    Fig. 1.  Schematic of design domain: (a) 6 × 6 square grid; (b) upper layer; (c) lower layer.

    图 2  优化迭代过程中的构型变化

    Fig. 2.  Changing configuration during optimization iteration.

    图 3  优化单元仿真模型 (a) 3D视图; (b)正视图; (c)侧视图

    Fig. 3.  Optimization unit simulation model: (a) 3D view; (b) front view; (c) side view.

    图 4  电磁波沿–z方向时, (a)初始结构透射系数(幅值)和(b)优化结构透射系数(幅值)

    Fig. 4.  (a) Transmission coefficient (amplitude) of initial structure and (b) transmission coefficient (amplitude) of optimized structure under the condition of electromagnetic waves along the –z direction.

    图 5  (a)初始结构非对称传输系数$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x}/{\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{y} $; (b)优化结构非对称传输系数$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x}/{\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{y} $

    Fig. 5.  (a) Asymmetric transmission coefficient of initial structure $ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x}/{\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{y} $; (b) asymmetric transmission coefficient of optimized structure $ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x}/{\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{y} $.

    图 6  样品图 (a)初始结构; (b)优化结构

    Fig. 6.  Sample drawing: (a) Initial structure; (b) optimized structure.

    图 7  (a)矢量网络分析仪; (b)喇叭天线测试图

    Fig. 7.  (a) Vector network analyzer; (b) horn antenna test chart.

    图 8  初始结构交叉极化透射系数 (a) $ {T}_{xy} $ ; (b)$ {T}_{yx} $

    Fig. 8.  Cross polarization transmission coefficient of initial structure: (a) $ {T}_{xy} $; (b) $ {T}_{yx} $.

    图 9  优化结构交叉极化透射系数 (a) $ {T}_{xy} $ ; (b)$ {T}_{yx} $

    Fig. 9.  Cross-polarization transmission coefficient of optimized structure: (a) $ {T}_{xy} $; (b) $ {T}_{yx} $.

    图 10  f = 20.075 GHz时的表面电流 (a)优化结构表层表面电流; (b)优化结构底层表面电流

    Fig. 10.  Surface current at f = 20.075 GHz: (a) On the upper surface of the optimized structure; (b) on the lower surface of the optimized structure.

    图 11  f = 21.65 GHz时的表面电流 (a)优化结构表层表面电流; (b)优化结构底层表面电流

    Fig. 11.  Surface current at f = 21.65 GHz: (a) On the upper surface of the optimized structure; (b) on the lower surface of the optimized structure.

    图 12  f = 28.575 GHz时的表面电流 (a)优化结构表层表面电流; (b)优化结构底层表面电流

    Fig. 12.  Surface current at f = 28.575 GHz: (a) On the upper surface of the optimized structure; (b) on the lower surface of the optimized structure.

    图 13  线性x极化波沿–z及+z方向入射时优化结构两侧电场分布 (a), (b) f = 20.075 GHz; (c), (d) f = 21.65 GHz; (e), (f) f = 28.575 GHz

    Fig. 13.  Electrical field distributions on both sides of the optimized structure when the linear x-polarized wave is incident along the –z and +z directions: (a), (b) f = 20.075 GHz; (c), (d) f = 21.65 GHz; (e), (f) f = 28.575 GHz

    图 14  线性x极化波沿–z方向入射时优化结构介质层厚度d对非对称传输系数$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $的影响

    Fig. 14.  Effect of the thickness d of dielectric layer on the asymmetric transmission coefficient $ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $when linear x-polarized wave is incident in the –z direction.

    图 15  线性x极化波沿–z方向入射时优化结构金属层厚度t对非对称传输系数$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $影响

    Fig. 15.  Effect of the thickness t of the optimized structural metal layer on the asymmetric transmission coefficient $ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $ when the linear x-polarized wave is incident in the–z direction.

    图 16  线性x极化波沿–z方向入射时优化结构网格边长b对非对称传输系数$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $影响

    Fig. 16.  Effect of the small square side length b on the asymmetric transmission coefficient $ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $ when the linear x-polarized wave is incident in the –z direction.

    图 17  旋转角度 (a)$ { \theta }_{1} $; (b)$ { \theta }_{2} $

    Fig. 17.  Rotation angle: (a)$ {\theta }_{1} $; (b)$ { \theta }_{2} $.

    图 18  线性x极化波沿–z方向入射时底层金属旋转角度对非对称传输系数$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $影响

    Fig. 18.  Influence of the rotation angle of the underlying metal on the asymmetric transmission coefficient $ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x} $ when the linear x-polarized wave is incident in the –z direction.

    图 19  圆极化波沿–z方向入射时底层金属旋转角度对非对称传输系数$ {\varDelta }_{\mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c}}^{-} $影响

    Fig. 19.  Influence of the rotation angle of the underlying metal on the asymmetric transmission coefficient $ {\varDelta }_{\mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c}}^{-} $ when a circularly polarized wave is incident in the –z direction.

    图 20  (a)线性极化波非对称传输系数$ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x}/{\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{y} $; (b)圆极化波非对称传输系数$ {\varDelta }_{\mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c}}^{+}/{\varDelta }_{\mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c}}^{-} $

    Fig. 20.  (a) Asymmetric transmission coefficient of linearly polarized wave $ {\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{x}/{\varDelta }_{\mathrm{l}\mathrm{i}\mathrm{n}}^{y} $; (b) asymmetric transmission coefficient of circularly polarized wave $ {\varDelta }_{\mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c}}^{+}/{\varDelta }_{\mathrm{c}\mathrm{i}\mathrm{r}\mathrm{c}}^{-} $.

    Baidu
  • [1]

    徐进, 李荣强, 蒋小平, 王身云, 韩天成 2019 68 117801Google Scholar

    Xu J, Li R Q, Jiang X P, Wang S Y, Han T C 2019 Acta Phys. Sin. 68 117801Google Scholar

    [2]

    金柯, 刘永强, 韩俊, 杨崇民, 王颖辉, 王慧娜 2017 66 134201Google Scholar

    Jin K, Liu Y Q, Han J, Yang C M, Wang Y H, Wang H N 2017 Acta Phys. Sin. 66 134201Google Scholar

    [3]

    Silva A, Monticone F, Castaldi G, Galdi V, Alu A, Engheta N 2014 Science 343 6167Google Scholar

    [4]

    Veselago V G 1968 Sov. Phys. Usp. 10 509Google Scholar

    [5]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 5514Google Scholar

    [6]

    Smith D R, Padilla W J, Vier D C, Nasser N, Schultz S 2000 Phys. Rev. Let. 84 4184Google Scholar

    [7]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Let. 76 4773Google Scholar

    [8]

    Pendry J B, Holden A J, Robbins D J, Stewart W J, Member 1999 IEEE Trans. on Microw. Theory. 47 2075Google Scholar

    [9]

    Caloz C, Itoh T 2004 IEEE Microw. Mag. 5 34Google Scholar

    [10]

    Liu D Y, Yao L F, Zhai X M, Li M H, Dong J F 2014 Appl. Phys. A 116 9Google Scholar

    [11]

    Yang Y, Wang W, Moitra P, Kravchenko I I, Briggs D P, Valentine J 2014 Nano Lett. 14 1394Google Scholar

    [12]

    Baena J D, Tisco J P, Slobozhanyuk A P, Glybovski S B, Belov P A 2015 Phys. Rev. B 92 245413Google Scholar

    [13]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Let. 100 207402Google Scholar

    [14]

    Yu N, Aieta F, Genevet P, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 6328Google Scholar

    [15]

    Pendry J B 2000 Phys. Rev. Let. 85 3966Google Scholar

    [16]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 5801Google Scholar

    [17]

    Ganesel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G, Linden S, Wegener M 2009 Science 325 1513Google Scholar

    [18]

    Tretyakov S, Nefedov I, Sihvola A, Maslovski S, Simovski C 2003 J. Electromagnet. Wave. 17 695Google Scholar

    [19]

    Fedotov V A, Mladyonov P L, Prosvirnin S L, Rogacheva A V, Chen Y, Zheludev N I 2006 Phys. Rev. Let. 97 167401Google Scholar

    [20]

    Fedotov V A, Schwanecke A S, Zheludev N I, Khardikov V V, Prosvirnin S L 2007 Nano Lett. 7 1996Google Scholar

    [21]

    Menzel C, Helgert C, Rockstuhl C, Kley E B, Tünnermann A, Pertsch T, Lederer F 2010 Phys. Rev. Let. 104 253902Google Scholar

    [22]

    Mutlu M, Akosman A E, Serebryannikov A E, Ozbay E 2012 Phys. Rev. Let. 108 213905Google Scholar

    [23]

    Singh R, Plum E, Menzel C, et al. 2009 Phys. Rev. B 80 153104Google Scholar

    [24]

    Plum E, Fedotov V A, Zheludev N I 2011 J. Opt. 13 024006

    [25]

    Shi J H, Liu X C, Yu S, Lv T T, Zhu Z, Ma H F, Cui T J 2013 Appl. Phys. Let 102 191905Google Scholar

    [26]

    Wu L X, Zhang M, Zhu B, Zhao J M, Jiang T, Feng Y J 2014 Appl. Phys. B 117 527

    [27]

    Stephen L, Yogesh N, Subramanian V 2018 J. Appl. Phys. 123 033103Google Scholar

    [28]

    Ji W, Cai T, Wang B, Wang G G, Li H P, Wang C Y, Hou H S, Zhang C B 2019 Opt. Express 27 2844Google Scholar

    [29]

    Liu W B, Wu W, Huang L R, Ling Y H, Ba C F, Li S, Chun Z H, Li H H 2019 Opt. Express 27 33399Google Scholar

    [30]

    Song Q H, Wu P C, Zhu W M, et al. 2019 Appl. Phys. Let. 114 151105Google Scholar

    [31]

    Liu M, Xu Q, Chen X Y, et al. 2019 Sci. Rep. 9 4097Google Scholar

    [32]

    Zhao J X, Song J L, Xu T Y, Yang T X, Zhou J H 2019 Opt. Express 27 9773Google Scholar

    [33]

    Dai L L, Zhang Y P, F. O’Hara J, Zhang H Y 2019 Opt. Express 27 35784Google Scholar

    [34]

    Novitsky A V, Galynsky V M, Zhukovsky S V 2012 Phys. Rev. B 86 075138Google Scholar

    [35]

    Mühlig S, Menzel C, Rockstuhl C, Lederer F 2011 Met. Mater. 5 64

    [36]

    Mirzamohammadi F, Nourinia J, Ghobadi C, Majidzadeh M 2019 Int. J. Electron. Commun. (AEÜ) 98 58Google Scholar

    [37]

    Liu D J, Xiao Z Y, Ma X L, Ma Q W, Xu X X, Wang Z H 2015 Opt. Commun. 338 359

  • [1] 曾超, 毛一屹, 吴骥宙, 苑涛, 戴汉宁, 陈宇翱. 一维超冷原子动量光晶格中的手征对称性破缺拓扑相.  , 2024, 73(4): 040301. doi: 10.7498/aps.73.20231566
    [2] 吕宇曦, 王晨, 段添期, 赵彤, 常朋发, 王安帮. 级联声光器件与回音壁模式微腔实现非对称传输.  , 2024, 73(1): 014101. doi: 10.7498/aps.73.20230653
    [3] 刘金品, 王秉中, 陈传升, 王任. 基于深度物理启发神经网络的微波波导器件逆设计方法.  , 2023, 72(8): 080201. doi: 10.7498/aps.72.20230031
    [4] 史鹏飞, 马馨莹, 向川, 赵宏革, 李渊, 高仁璟, 刘书田. 幅值可控的逆反射和镜像反射双通道超表面结构拓扑优化设计.  , 2023, 72(24): 247801. doi: 10.7498/aps.72.20230775
    [5] 史书姝, 肖姗, 许秀来. 不同抗磁行为量子点发光在波导中的手性传输.  , 2022, 71(6): 067801. doi: 10.7498/aps.71.20211858
    [6] 桑迪, 徐明峰, 安强, 付云起. 基于拓扑优化的自由形状波分复用超光栅.  , 2022, 71(22): 224204. doi: 10.7498/aps.71.20221013
    [7] 聂长文, 吴瀚舟, 王书豪, 蔡园园, 宋树, SokolovOleg, BichurinM. I., 汪尧进. 磁电电压可调电感器的理论设计与可调性优化.  , 2021, 70(24): 247501. doi: 10.7498/aps.70.20210899
    [8] 武敏, 费宏明, 林瀚, 赵晓丹, 杨毅彪, 陈智辉. 基于二维六方氮化硼材料的光子晶体非对称传输异质结构设计.  , 2021, 70(2): 028501. doi: 10.7498/aps.70.20200741
    [9] 王鹏程, 曹亦, 谢红光, 殷垚, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维. 层状手性拓扑磁材料Cr1/3NbS2的磁学特性.  , 2020, 69(11): 117501. doi: 10.7498/aps.69.20200007
    [10] 费宏明, 严帅, 徐瑜成, 林瀚, 武敏, 杨毅彪, 陈智辉, 田媛, 张娅敏. 可实现宽频带光波非对称传输的自准直效应光子晶体异质结构.  , 2020, 69(18): 184214. doi: 10.7498/aps.69.20200538
    [11] 耿治国, 彭玉桂, 沈亚西, 赵德刚, 祝雪丰. 手性声子晶体中拓扑声传输.  , 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [12] 李含灵, 曹炳阳. 微纳尺度体点导热的拓扑优化.  , 2019, 68(20): 200201. doi: 10.7498/aps.68.20190923
    [13] 廖涛, 孙小伟, 宋婷, 田俊红, 康太凤, 孙伟彬. 新型二维压电声子晶体板带隙可调性研究.  , 2018, 67(21): 214208. doi: 10.7498/aps.67.20180611
    [14] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋. 磁畴壁手性和磁斯格明子的拓扑性表征及其调控.  , 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [15] 莫漫漫, 马武伟, 庞永强, 陈润华, 张笑梅, 柳兆堂, 李想, 郭万涛. 基于拓扑优化设计的宽频吸波复合材料.  , 2018, 67(21): 217801. doi: 10.7498/aps.67.20181170
    [16] 罗小元, 李昊, 马巨海. 基于最小刚性图代数特性的无线网络拓扑优化算法.  , 2016, 65(24): 240201. doi: 10.7498/aps.65.240201
    [17] 尚勋忠, 陈威, 曹万强. 弛豫铁电体介电可调性的研究.  , 2012, 61(21): 217701. doi: 10.7498/aps.61.217701
    [18] 顾超, 屈绍波, 裴志斌, 徐卓, 马华, 林宝勤, 柏鹏, 彭卫东. 一种极化不敏感和双面吸波的手性超材料吸波体.  , 2011, 60(10): 107801. doi: 10.7498/aps.60.107801
    [19] 梁瑞虹, 董显林, 陈 莹, 曹 菲, 王永龄. 直流偏置电场下BaTiO3基陶瓷介电常数非线性机理的研究.  , 2005, 54(10): 4914-4919. doi: 10.7498/aps.54.4914
    [20] 陶卫东, 夏海平, 白贵儒, 董建峰, 聂秋华. 固体手性材料的研制及其特性测试.  , 2002, 51(3): 685-689. doi: 10.7498/aps.51.685
计量
  • 文章访问数:  7728
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-14
  • 修回日期:  2020-06-05
  • 上网日期:  2020-10-28
  • 刊出日期:  2020-11-05

/

返回文章
返回
Baidu
map