Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Metasurface acoustic liner of engine based on asymmetric absorber

Bai Yu Zhang Zhen-Fang Yang Hai-Bin Cai Li Yu Dian-Long

Citation:

Metasurface acoustic liner of engine based on asymmetric absorber

Bai Yu, Zhang Zhen-Fang, Yang Hai-Bin, Cai Li, Yu Dian-Long
PDF
HTML
Get Citation
  • In order to solve the problem of low frequency noise of engine, based on the principle of dual port asymmetric sound absorber, a kind of gradually changing size sound absorbing metasurface is designed to reduce the noise of engine acoustic liner. Firstly, the theoretical analysis model and simulation analysis model of the asymmetric resonance sound absorber are established, the noise reduction mechanism is revealed, and the influencing factors of the noise reduction effect are analyzed. Then an acoustic metasurface acoustic liner is designed based on the asymmetric resonance sound absorber. The noise reduction effect of the acoustic liner is analyzed in depth by using three methods: full model theoretical calculation, equivalent impedance theoretical calculation and COMSOL finite element simulation. Then, the parameters of this structure are optimized, and the influence of flow velocity on the noise reduction effect is considered by using the full model theoretical calculation and equivalent impedance theoretical calculation. The research results show that the acoustic metasurface acoustic liner designed based on asymmetric sound absorber can achieve noise reduction effect of more than 3 dB in a frequency band range from 252 to 692 Hz when the thickness is only 2.5 cm (only 1/54 of the corresponding wavelength of 252 Hz), which provides a new idea for designing engine noise reduction.
      Corresponding author: Yu Dian-Long, dianlongyu@vip.sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11872371), the Major Program of the National Natural Science Foundation of China (Grant No. 11991032), and the Hunan Provincial Science and Technology Innovation Program, China (Grant No. 2020RC4022).
    [1]

    Kaltenbach M, Maschke C, Heb F, Niemann H, Führ M 2016 Int. J. Environ. Prot. 6 15

    [2]

    Čavka I, Čokorilo O, Vasov L 2016 Energy Build. 115 63Google Scholar

    [3]

    乔渭阳, 许开富, 武兆伟, 黄文超, 秦浩明 2008 航空学报 29 534Google Scholar

    Qiao W Y, Xu K F, Wu Z W, Huang W C, Qin H M 2008 Acta Aeronaut. Astronaut. Sin. 29 534Google Scholar

    [4]

    陈俊, 周驯黄, 徐珺, 刘常春, 许尧 2019 推进技术 40 1498

    Chen J, Zhou X H, Xu J, Liu C C, Xu Y 2019 Promotion Technol. 40 1498

    [5]

    陈超, 闫照华, 李晓东 2018 航空动力学报 33 3041

    Chen C, Yan Z H, Li X D 2018 J. Aerospace Power 33 3041

    [6]

    霍施宇, 杨嘉丰, 邓云华, 燕群 2022 航空学报 43 519

    Huo S Y, Yang J F, Deng Y H, Yan Q 2022 Acta Aeronaut. Astronaut. Sin. 43 519

    [7]

    Zhao D, Ji C, Li J W, Ang L 2018 Appl. Acoust. 141 281Google Scholar

    [8]

    Jha N, Das D, Tripathi A, Hota R 2019 Appl. Acoust. 150 179Google Scholar

    [9]

    Dannemann M, Kucher M, Kunze E, Modler N, Knobloch K, Enghardt L, Sarradj E, Höschler K 2018 Appl. Sci. 8 1923Google Scholar

    [10]

    Knobloch K, Enghardt L, Bake F 2018 24th AIAA/CEAS Aeroacoustics Conference Atlanta, Georgia, June 25–29, 2018 p4102

    [11]

    Simon F 2018 J. Sound and Vibr. 421 1Google Scholar

    [12]

    Sandu C, Humbert T, Auregan Y, Deaconu M, Totu A, Radu A, Serbescu H, Tipa T 2022 IOP Conference Series: Materials Science and Engineering 1226 012049Google Scholar

    [13]

    Huang S B, Fang X S, Wang X, Assouar B, Cheng Q, Li Y 2019 J. Acoust. Soc. Am. 145 254Google Scholar

    [14]

    黄思博, 周志凌, 李东庭, 刘拓, 王旭, 祝捷, 李勇 2020 科学通报 65 373Google Scholar

    Huang S B, Zhou Z L, Li D T, Liu T, Wang X, Zhu J, Li Y 2020 Sc. Bull. 65 373Google Scholar

    [15]

    Huang S B, Zhou E M, Huang Z L, Lei P F, Zhou Z L, Li Y 2021 Appl. Phys. Lett. 118 063504Google Scholar

    [16]

    Ding H, Wang N Y, Qiu S, Huang S B, Zhou Z L, Zhou C C, Jia B, Li Y 2022 Int. J. Mech. Sci. 232 107601Google Scholar

    [17]

    Cheng B Z, Gao N S, Huang Y K, Hou H 2022 J. Vib. Control 28 410Google Scholar

    [18]

    Yang X C, Yang F, Shen X M, Wang E S, Zhang X N, Shen C, Peng W Q 2022 Materials 15 5938Google Scholar

    [19]

    Wang E S, Yang F, Shen X M, Duan H Q, Zhang X N, Yin Q, Peng W Q, Yang X C, Yang L 2022 Materials 15 3417Google Scholar

    [20]

    Beck B S, Schiller N H, Jones M G 2015 Appl. Acoust. 93 15Google Scholar

    [21]

    Guo J W, Fang Y, Jiang Z Y, Zhang X 2021 J. Acoust. Soc. Am. 149 70Google Scholar

    [22]

    Oh T S, Jeon W 2022 Appl. Phys. Lett. 120 044103Google Scholar

    [23]

    Jiménez N, Romero-García V, Pagneux V, Groby J P 2017 Sci. Rep. 7 1Google Scholar

    [24]

    Long H Y, Cheng Y, Liu X J 2017 Appl. Phys. Lett. 111 143502Google Scholar

    [25]

    Long H Y, Liu C, Shao C, Cheng Y, Tao J C, Qiu X J, Liu X J 2020 J. Sound Vib. 479 115371Google Scholar

    [26]

    Long H Y, Shao C, Cheng Y, Tao J C, Liu X J 2021 Appl. Phys. Lett. 118 263502Google Scholar

    [27]

    Seo S H, Kim Y H, Kim K J 2018 Appl. Acoust. 138 188Google Scholar

    [28]

    Guess A 1975 J. Sound Vib. 40 119Google Scholar

    [29]

    Kooi J, Sarin S 1981 7th Aeroacoustics Conference Palo Alto, California, October 5–7, 1981 p1998

  • 图 1  非对称吸声器结构示意图

    Figure 1.  Structural diagram of asymmetric sound absorber.

    图 2  声波正向入射 (a)和反向入射 (b)不同情况下, 吸声器的吸声系数A和反射系数R及在770 Hz处的声压变化

    Figure 2.  The sound absorption coefficient A and reflection coefficient R of the sound absorber and the change of sound pressure at 770 Hz under different conditions of normal (a) and reverse (b) incidence of sound waves.

    图 3  吸声系数和频率的关系 (a) HR2的内插管长度变化; (b) HR1与内插管长度变化的HR2耦合; (c) 声波反向入射时, HR1与内插管长度变化的HR2耦合; (d) HR1和HR2之间间距变化; (e) 两组吸声器

    Figure 3.  The relationship between sound absorption coefficient and frequency: (a) The length change of HR2 endotracheal tube; (b) HR1is coupled with HR2 with varying length of endotracheal tube; (c) HR1 is coupled to HR2 with the change of the length of the endotracheal tube when the acoustic wave is incident in the reverse direction; (d) change in spacing between HR1 and HR2; (e) two sets of sound absorbers.

    图 4  (a) 全尺寸建模; (b) 三维等效阻抗建模

    Figure 4.  (a) Full scale modeling; (b) three dimensional equivalent impedance modeling.

    图 5  用理论、仿真和等效阻抗计算得出的(a)吸声系数和(b)传递损失

    Figure 5.  (a) Sound absorption coefficient and (b) transmission loss calculated by substituting theory, simulation and equivalent impedance.

    图 6  (a) 二维对称等效阻抗建模; 400 Hz频率处(b)无声衬等效阻抗时和(c) 有声衬等效阻抗时声压变化

    Figure 6.  (a) Two dimensional symmetrical equivalent impedance modeling. Sound pressure change at 400 Hz frequency (b) when there is no acoustic liner equivalent impedance and (c) when there is acoustic liner equivalent impedance.

    图 7  参数优化后理论计算得到的(a)吸声系数和(b)传递损失

    Figure 7.  (a) Sound absorption coefficient and (b) transmission loss calculated theoretically after parameter optimization.

    图 8  马赫数为0, 0.1, 0.2时, 声衬的(a)吸声系数和(b)传递损失

    Figure 8.  When Mach number is 0, 0.1, 0.2, (a) sound absorption coefficient and (b) transmission loss of sound liner.

    表 1  共振器的尺寸

    Table 1.  Size of resonator.

    l/mma/mml/mma/mml/mma/mm
    11.122124.4272310.831
    21.522135.5262411.233
    31.124146.0282513.834
    41.524157.1262614.236
    51.924167.6282713.834
    62.324178.5282814.236
    71.828189.0282917.040
    82.328198.5283019.740
    92.828209.0283117.040
    103.1282110.8313219.740
    114.4252211.233332342
    342342
    DownLoad: CSV

    表 2  每一个非对称吸声器对应的耦合频率

    Table 2.  Coupling frequency corresponding to each pair of asymmetric sound absorbers.

    非对称
    共振
    吸声器
    fcr非对称
    共振
    吸声器
    fcr非对称
    共振
    吸声器
    fcr
    1770749013300
    2740845014300
    3690940015250
    464010400 16250
    55901135017210
    653012350
    DownLoad: CSV

    表 3  共振器的尺寸

    Table 3.  Size of resonator.

    l/mma/mml/mma/mml/mma/mm
    12.42212627231431
    22.522137.5262413.533
    32.724147282514.834
    42.824159262614.536
    53.524168.5282717.534
    63.624179.728281736
    73.45281810.2282917.140
    83.65281911.5283017.640
    94.4528201228312040
    104.6528211231322140
    116.6252211.533332341
    342342
    DownLoad: CSV
    Baidu
  • [1]

    Kaltenbach M, Maschke C, Heb F, Niemann H, Führ M 2016 Int. J. Environ. Prot. 6 15

    [2]

    Čavka I, Čokorilo O, Vasov L 2016 Energy Build. 115 63Google Scholar

    [3]

    乔渭阳, 许开富, 武兆伟, 黄文超, 秦浩明 2008 航空学报 29 534Google Scholar

    Qiao W Y, Xu K F, Wu Z W, Huang W C, Qin H M 2008 Acta Aeronaut. Astronaut. Sin. 29 534Google Scholar

    [4]

    陈俊, 周驯黄, 徐珺, 刘常春, 许尧 2019 推进技术 40 1498

    Chen J, Zhou X H, Xu J, Liu C C, Xu Y 2019 Promotion Technol. 40 1498

    [5]

    陈超, 闫照华, 李晓东 2018 航空动力学报 33 3041

    Chen C, Yan Z H, Li X D 2018 J. Aerospace Power 33 3041

    [6]

    霍施宇, 杨嘉丰, 邓云华, 燕群 2022 航空学报 43 519

    Huo S Y, Yang J F, Deng Y H, Yan Q 2022 Acta Aeronaut. Astronaut. Sin. 43 519

    [7]

    Zhao D, Ji C, Li J W, Ang L 2018 Appl. Acoust. 141 281Google Scholar

    [8]

    Jha N, Das D, Tripathi A, Hota R 2019 Appl. Acoust. 150 179Google Scholar

    [9]

    Dannemann M, Kucher M, Kunze E, Modler N, Knobloch K, Enghardt L, Sarradj E, Höschler K 2018 Appl. Sci. 8 1923Google Scholar

    [10]

    Knobloch K, Enghardt L, Bake F 2018 24th AIAA/CEAS Aeroacoustics Conference Atlanta, Georgia, June 25–29, 2018 p4102

    [11]

    Simon F 2018 J. Sound and Vibr. 421 1Google Scholar

    [12]

    Sandu C, Humbert T, Auregan Y, Deaconu M, Totu A, Radu A, Serbescu H, Tipa T 2022 IOP Conference Series: Materials Science and Engineering 1226 012049Google Scholar

    [13]

    Huang S B, Fang X S, Wang X, Assouar B, Cheng Q, Li Y 2019 J. Acoust. Soc. Am. 145 254Google Scholar

    [14]

    黄思博, 周志凌, 李东庭, 刘拓, 王旭, 祝捷, 李勇 2020 科学通报 65 373Google Scholar

    Huang S B, Zhou Z L, Li D T, Liu T, Wang X, Zhu J, Li Y 2020 Sc. Bull. 65 373Google Scholar

    [15]

    Huang S B, Zhou E M, Huang Z L, Lei P F, Zhou Z L, Li Y 2021 Appl. Phys. Lett. 118 063504Google Scholar

    [16]

    Ding H, Wang N Y, Qiu S, Huang S B, Zhou Z L, Zhou C C, Jia B, Li Y 2022 Int. J. Mech. Sci. 232 107601Google Scholar

    [17]

    Cheng B Z, Gao N S, Huang Y K, Hou H 2022 J. Vib. Control 28 410Google Scholar

    [18]

    Yang X C, Yang F, Shen X M, Wang E S, Zhang X N, Shen C, Peng W Q 2022 Materials 15 5938Google Scholar

    [19]

    Wang E S, Yang F, Shen X M, Duan H Q, Zhang X N, Yin Q, Peng W Q, Yang X C, Yang L 2022 Materials 15 3417Google Scholar

    [20]

    Beck B S, Schiller N H, Jones M G 2015 Appl. Acoust. 93 15Google Scholar

    [21]

    Guo J W, Fang Y, Jiang Z Y, Zhang X 2021 J. Acoust. Soc. Am. 149 70Google Scholar

    [22]

    Oh T S, Jeon W 2022 Appl. Phys. Lett. 120 044103Google Scholar

    [23]

    Jiménez N, Romero-García V, Pagneux V, Groby J P 2017 Sci. Rep. 7 1Google Scholar

    [24]

    Long H Y, Cheng Y, Liu X J 2017 Appl. Phys. Lett. 111 143502Google Scholar

    [25]

    Long H Y, Liu C, Shao C, Cheng Y, Tao J C, Qiu X J, Liu X J 2020 J. Sound Vib. 479 115371Google Scholar

    [26]

    Long H Y, Shao C, Cheng Y, Tao J C, Liu X J 2021 Appl. Phys. Lett. 118 263502Google Scholar

    [27]

    Seo S H, Kim Y H, Kim K J 2018 Appl. Acoust. 138 188Google Scholar

    [28]

    Guess A 1975 J. Sound Vib. 40 119Google Scholar

    [29]

    Kooi J, Sarin S 1981 7th Aeroacoustics Conference Palo Alto, California, October 5–7, 1981 p1998

  • [1] Wang Yue, Wang Hao-Jie, Cui Zi-Jian, Zhang Da-Chi. Bound states in continuum domain of double resonant ring metal metasurfaces. Acta Physica Sinica, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [2] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [3] Huang Xiao-Jun, Gao Huan-Huan, He Jia-Hao, Luan Su-Zhen, Yang He-Lin. Dynamically tunable frequency-domain multifunctional reconfigurable polarization conversion metasurface. Acta Physica Sinica, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [4] Fan Hui-Ying, Luo Jie. Research progress of non-Hermitian electromagnetic metasurfaces. Acta Physica Sinica, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [5] Sun Sheng, Yang Ling-Jun, Sha Wei. Offset-fed vortex wave generator based on reflective metasurface. Acta Physica Sinica, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [6] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [7] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [8] Yan Wei, Wang Ji-Yong, Qu Yu-Rui, Li Qiang, Qiu Min. Tunable metasurfaces based on phase-change materials. Acta Physica Sinica, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [9] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [10] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [11] Fan Qing-Bin, Xu Ting. Research progress of imaging technologies based on electromagnetic metasurfaces. Acta Physica Sinica, 2017, 66(14): 144208. doi: 10.7498/aps.66.144208
    [12] Lü Hao, You Kai, Lan Yan-Yan, Gao Dong, Zhao Qiu-Ling, Wang Xia. Fabrication of two-dimensional micro-nano photonic structures by symmetry-lost beams interference. Acta Physica Sinica, 2017, 66(21): 217801. doi: 10.7498/aps.66.217801
    [13] Qiu Tian-Shuo, Wang Jia-Fu, Li Yong-Feng, Wang Jun, Yan Ming-Bao, Qu Shao-Bo. Magnetless circulator based on phase gradient metasurface. Acta Physica Sinica, 2016, 65(17): 174101. doi: 10.7498/aps.65.174101
    [14] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng. Broadband circularly polarized high-gain antenna design based on single-layer reflecting metasurface. Acta Physica Sinica, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [15] Guo Wen-Long, Wang Guang-Ming, Li Hai-Peng, Hou Hai-Sheng. Utra-thin single-layered high-efficiency focusing metasurface lens. Acta Physica Sinica, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [16] Yu Ji-Bao, Ma Hua, Wang Jia-Fu, Feng Ming-De, Li Yong-Feng, Qu Shao-Bo. High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators. Acta Physica Sinica, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [17] Fan Ya, Qu Shao-Bo, Wang Jia-Fu, Zhang Jie-Qiu, Feng Ming-De, Zhang An-Xue. Broadband anomalous reflector based on cross-polarized version phase gradient metasurface. Acta Physica Sinica, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [18] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Circularly polarized wave reflection focusing metasurfaces. Acta Physica Sinica, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [19] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Chen Hong-Ya, Xu Zhuo, Zhang An-Xue. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction. Acta Physica Sinica, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [20] Zhang Liang, Liu Jian-Guo, Kan Rui-Feng, Liu Wen-Qing, Zhang Yu-Jun, Xu Zhen-Yu, Chen Jun. On the methodology of measuring high-speed flows using tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2012, 61(3): 034214. doi: 10.7498/aps.61.034214
Metrics
  • Abstract views:  4528
  • PDF Downloads:  111
  • Cited By: 0
Publishing process
  • Received Date:  21 October 2022
  • Accepted Date:  30 November 2022
  • Available Online:  29 December 2022
  • Published Online:  05 March 2023

/

返回文章
返回
Baidu
map