Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic properties of two-dimensional kagome lattice based on transition metal phthalocyanine heterojunctions

Jiang Zhou Jiang Xue Zhao Ji-Jun

Citation:

Electronic properties of two-dimensional kagome lattice based on transition metal phthalocyanine heterojunctions

Jiang Zhou, Jiang Xue, Zhao Ji-Jun
PDF
HTML
Get Citation
  • Transition metal phthalocyanine molecules serve as building blocks for two-dimensional (2D) metal-organic frameworks with potential applications in optics, electronics, and spintronics. Previous theoretical studies predicted that a two-dimensional transition metal phthalocyanine framework with kagome lattice (kag-TMPc) has stable magnetically ordered properties, which are promising for spintronics and optoelectronics. However, there is a lack of studies on their heterojunctions, which can effectively tune the properties through interlayer coupling despite its weak nature. Here we use the density functional theory (DFT) to calculate the electronic properties of eight representative 2D kag-TMPc vertical heterojunctions with two different stackings (AA and AB) and interlayer distances. We find that most of the kag-MnPc-based heterojunctions can maintain the electronic properties of monolayer materials with low bandgap. The kag-MnPc/ZnPc is a ferromagnetic semiconductor with magnetic exchange energy above 40 meV, regardless of stacking sequences; the electronic properties of kag-MnPc/MnPc heterojunctions change from magnetic half-metal to magnetic semiconductor during the transition from AA stacking to AB stacking. Interestingly, the AB stacked kag-CuPc/CoPc heterojunction is a ferromagnetic semiconductor, and the spin-polarized energy band arrangement changes with the layer spacing: when the layer spacing is as long as the equilibrium distance, the spin-up and spin-down energy bands are aligned as type II; when the layer spacing increases by 0.2 Å, the spin-up energy bands are aligned as type-I energy bands, while the spin-down energy bands are aligned as type-II energy bands. This distance-dependent spin properties can realize magnetic optoelectronic “switching” and has potential applications in new magnetic field modulated electromagnetic and optoelectronic devices.
      Corresponding author: Zhao Ji-Jun, zhaojj@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12274050).
    [1]

    Lu S, Liu L B, Demissie H, An G Y, Wang D S 2021 Environ. Int. 146 106273Google Scholar

    [2]

    Wei X Q, Shao D, Xue C L, Qu X Y, Chai J, Li J Q, Du Y E, Chen Y Q 2020 CrystEngComm 22 5275Google Scholar

    [3]

    Thorarinsdottir A E, Harris T D 2020 Chem. Rev. 120 8716Google Scholar

    [4]

    Van Heumen E 2021 Nat. Mater. 20 1308Google Scholar

    [5]

    Yang Y X, Fan W H, Zhang Q H, Chen Z X, Chen X, Ying T P, Wu X X, Yang X F, Meng F Q, Li G, Li S Y, Gu L, Qian T, Schnyder A P, Guo J G, Chen X L 2021 Chin. Phys. Lett. 38 127102Google Scholar

    [6]

    Zeng K Y, Song F Y, Ling L S, Tong W, Li S L, Tian Z M, Ma L, Pi L 2022 Chin. Phys. Lett. 39 107501Google Scholar

    [7]

    Yang Y Y, Chen K W, Ding Z F, Hillier A D, Shu L 2022 Chin. Phys. Lett. 39 107502Google Scholar

    [8]

    Chen H Q, Shan H, Zhao A D, Li B 2019 Chin. J. Chem. Phys. 32 563Google Scholar

    [9]

    Kambe T, Sakamoto R, Hoshiko K, Takada K, Miyachi M, Ryu J H, Sasaki S, Kim J, Nakazato K, Takata M, Nishihara H 2013 J. Am. Chem. Soc. 135 2462Google Scholar

    [10]

    Wang Z F, Su N H, Liu F 2013 Nano Lett. 13 2842Google Scholar

    [11]

    Abel M, Clair S, Ourdjini O, Mossoyan M, Porte L 2011 J. Am. Chem. Soc. 133 1203Google Scholar

    [12]

    Zhou J, Sun Q 2011 J. Am. Chem. Soc. 133 15113Google Scholar

    [13]

    Xu Y N, Gu Z Q, Ching W Y 2000 J. Appl. Phys. 87 4867Google Scholar

    [14]

    Lü K, Zhou J, Zhou L, Wang Q, Sun Q, Jena P 2011 Appl. Phys. Lett. 99 163104Google Scholar

    [15]

    Xie L S, Jin G X, He L, Bauer G E W, Barker J, Xia K 2017 Phys. Rev. B 95 014423Google Scholar

    [16]

    Ma Y D, Dai Y, Guo M, Niu C W, Huang B B 2011 Nanoscale 3 3883Google Scholar

    [17]

    Li X D, Yu S, Wu S Q, Wen Y H, Zhou S, Zhu Z Z 2013 J. Phys. Chem. C 117 15347Google Scholar

    [18]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotech. 5 722Google Scholar

    [19]

    Lin X, Xu Y, Hakro A A, Hasan T, Hao R, Zhang B, Chen H 2013 J. Mater. Chem. C 1 1618Google Scholar

    [20]

    Guo L J, Hu J S, Ma X G, Xiang J 2019 Acta Phys. Sin. 68 097101Google Scholar

    [21]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [22]

    Kresse G, Furthmuller J 1996 Comp. Mater. Sci. 6 15Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [26]

    Panchmatia P M, Sanyal B, Oppeneer P M 2008 Chemical Physics 343 47Google Scholar

    [27]

    Bernien M, Miguel J, Weis C, Ali Md E, Kurde J, Krumme B, Panchmatia P M, Sanyal B, Piantek M, Srivastava P, Baberschke K, Oppeneer P M, Eriksson O, Kuch W, Wende H 2009 Phys. Rev. Lett. 102 047202Google Scholar

    [28]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [29]

    Ningrum V P, Liu B, Wang W, Yin Y, Cao Y, Zha C, Xie H, Jiang X, Sun Y, Qin S, Chen X, Qin T, Zhu C, Wang L, Huang W 2020 Research 2020 1768918Google Scholar

    [30]

    Jiang X, Jiang Z, Zhao J J 2017 Appl. Phys. Lett. 111 253904Google Scholar

    [31]

    Yu J T, Jiang Z, Hao Y F, Zhu Q H, Zhao M L, Jiang X, Zhao J J 2018 J. Phys. Condens. Matter 30 25LT02Google Scholar

    [32]

    Deng Z X, Wang X H 2019 RSC Adv. 9 26024Google Scholar

    [33]

    Ben Aziza Z, Pierucci D, Henck H, Silly M G, David C, Yoon M, Sirotti F, Xiao K, Eddrief M, Girard J C, Ouerghi A 2017 Phys. Rev. B 96 035407Google Scholar

    [34]

    Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J B, Sinclair R, Wu J Q 2014 Nano Lett. 14 3185Google Scholar

  • 图 1  AA和AB堆叠kag-TMPc异质结 (a)俯视图和(b)侧视图; (c) kag-MnPc, (d) kag-FePc, (e) kag-CoPc, (f) kag-CuPc的能带结构

    Figure 1.  Atomic structure of (a) AA stacking and (b) AB stacking heterostructures in kag-TMPc unit cell from a top view (upper panel) and side view (lower panel), respectively; band structures of monolayer (c) kag-MnPc, (d) kag-FePc, (e) kag-CoPc, (f) kag-CuPc.

    图 2  从AA移动到AB堆叠过程中, kag-MnPc/McPc异质结结构框架的示意图与能带图

    Figure 2.  Schematic models and band structures of kag-MnPc/McPc heterostructure from AA to AB stacking pattern.

    图 3  在(a) 0.00, (b) 0.33, (c) 0.50, (d) 0.67, (e) 1.00比例下, kag-MnPc/McPc异质结原子投影能带图; (f)带隙随比例的变化图

    Figure 3.  Atom-projected band structures of kag-MnPc/McPc heterostructure in (a) 0.00, (b) 0.33, (c) 0.50, (d) 0.67, (e) 1.00 movement ratios; (f) bandgap as a function of movement ratio.

    图 4  kag-CoPc/CoPc异质结铁磁态和反铁磁态的磁构型

    Figure 4.  Illustration of three possible spin orders: FM state, AFM1 state, and AFM2 state of kag-CoPc/CoPc.

    图 5  AA和AB堆叠的kag-MnPc/MnPc, kag-MnPc/CuPc, kag-MnPc/ZnPc异质结能带带隙对比

    Figure 5.  Comparison of bandgaps of kag-MnPc/MnPc, kag-MnPc/CuPc, and kag-MnPc/ZnPc heterostructures in AA and AB stacking.

    图 6  (a) AA, (b) AB堆叠的kag-MnPc/kag-MnPc同质结能带; 其中绿色代表自旋向上, 蓝色代表自旋向下, 1-kag-MnPc为同质结的第一层, 2-kag-MnPc为同质结的第二层

    Figure 6.  Band structures of kag-MnPc/kag-MnPc homostructure in (a) AA and (b) AB stacking. Green and blue lines represent spin up and spin down electronic structures, respectively.

    图 8  AB堆叠的kag-MnPc/kag-ZnPc异质结的能带图, 绿色代表自旋向上, 蓝色代表自旋向下

    Figure 8.  Band structures of kag-MnPc/kag-ZnPc heterostructure in AB stacking. Green and blue lines represent spin up and spin down electronic structures, respectively.

    图 7  (a) AA, (b) AB堆叠的kag-MnPc/kag-CuPc异质结的能带图; 其中绿色代表自旋向上, 蓝色代表自旋向下, kag-MnPc为Mn原子所在的单层, kag-CuPc为Cu原子所在的单层

    Figure 7.  Band structures of kag-MnPc/kag-CuPc heterostructure in (a) AA and (b) AB stacking. Green and blue lines represent spin up and spin down bands, respectively.

    图 9  不同层间距下AB堆叠kag-CoPc/CuPc异质结的能带图 (a) 3.254 Å; (b) 3.354 Å; (c) 3.454 Å; (d) 3.554 Å; (e) 3.654 Å

    Figure 9.  Spin-polarized band structures of AB stacking kag-CoPc/CuPc heterostructures in different interlayer distance: (a) 3.254 Å; (b) 3.354 Å; (c) 3.454 Å; (d) 3.554 Å; (e) 3.654 Å.

    图 10  不同层间距下AB堆叠kag-CoPc/CuPc异质结的(a)—(d)能级位置变化和(e)能带排列

    Figure 10.  (a)–(d) Energy level and (e) band alignment of AB stacking kag-CoPc/CuPc heterostructures in different interlayer distance.

    图 11  不同层间距下AB堆叠kag-CoPc/CuPc异质结的单层投影能带图 (a) 3.267 Å; (b) 3.367 Å; (c) 3.467 Å; (d) 3.567 Å; (e) 3.667 Å

    Figure 11.  Layer-projected band structures of AB stacking kag-CoPc/CuPc heterostructures in different interlayer distance: (a) 3.267 Å; (b) 3.367 Å; (c) 3.467 Å; (d) 3.567 Å; (e) 3.667 Å.

    表 1  kag-TMPc (TM = Cr, Mn, Co, Cu, Zn)的晶格常数、带隙和磁矩(MTM)

    Table 1.  Lattice parameters, bandgaps and magnetic moments on TM atom (MTM) of kag-TMPc (TM = Cr, Mn, Co, Cu and Zn).

    Monolayer Lattice parameter/Å Bandgap/eV MTMB
    Reference[8] This work Up Down Total
    kag-CrPc 18.91 18.72 1.26 1.10 0.82 4
    kag-MnPc 18.80 18.65 1.21 0.15 0.15 3.52
    kag-CoPc 18.71 18.59 1.27 1.27 1.27 0.98
    kag-CuPc 18.85 18.71 1.31 1.25 1.25 0.59
    kag-ZnPc 19.03 18.82 1.238 0
    DownLoad: CSV

    表 2  四类kag-TMPc异质结的晶格失配度、平衡层间距、不能堆叠方式下的能量差(ΔEheter)、层间结合能(EB)和自旋极化的能带带隙

    Table 2.  Lattice mismatch, equilibrium distance, energy difference between two stacking modes, interlayer binding energy, and spin-polarized bandgap of kag-TMPc heterostructures.

    Heterojunction Lattice
    mismatch
    Stacking
    pattern
    Equilibrium
    distance/Å
    ΔEheter/eV $ {E}_{{\mathrm{B}}} $/meV Bandgap/eV
    Up Down Total
    kag-MnPc/MnPc 0.00% AA 3.705 0.172 –16 0.96 0.00 0.00
    AB 3.452 –17 1.08 0.07 0.07
    kag-MnPc/CuPc 0.32% AA 3.591 0.005 –18 0.94 0.10 0.10
    AB 3.453 –18 1.10 0.16 0.16
    kag-MnPc/ZnPc 0.88% AA 3.672 0.032 –17 0.94 0.16 0.16
    AB 3.448 –17 1.08 0.17 0.17
    kag-CoPc/CuPc 0.64% AA 3.617 0.189 –15 0.00 0.00 0.00
    AB 3.454 –16 1.08 1.08 1.08
    DownLoad: CSV

    表 3  kag-TMPc异质结的磁交换能 (ΔE)和磁矩(M)

    Table 3.  Exchange energies per formula (ΔE) and magnetic moments (M) for kag-TMPc heterostructures.

    Heterojunction Stacking pattern ΔE/meV Magnetic property Magnetic moment
    MAB MBB
    kag-MnPc/MnPc AB 7.1 FM 3.543/3.527/3.527 3.543/3.527/3.527
    kag-MnPc/ZnPc AA 42.65 FM 3.568 0
    AB 43.69 FM 3.557 0
    kag-CoPc/CuPc AB 240 FiM 1.05/–1.05/–1.05 0.59/–0.59/–0.59
    DownLoad: CSV

    表 4  在不同层间距下AB堆叠kag-CoPc/CuPc异质结电子结构信息

    Table 4.  Electronic structure parameters of AB stacking kag-CoPc/CuPc heterostructures in different interlayer distance.

    Interlayer distance/Å Bandgap/eV Band alignment
    Spin up Spin down Total Spin up Spin down
    3.254 0.990 0.990 0.990 II
    3.354 0.610 0.490 0.050 I I
    3.454 1.080 1.080 1.080 II II
    3.554 1.130 1.070 1.060 II II
    3.654 0.970 1.150 0.970 I II
    DownLoad: CSV
    Baidu
  • [1]

    Lu S, Liu L B, Demissie H, An G Y, Wang D S 2021 Environ. Int. 146 106273Google Scholar

    [2]

    Wei X Q, Shao D, Xue C L, Qu X Y, Chai J, Li J Q, Du Y E, Chen Y Q 2020 CrystEngComm 22 5275Google Scholar

    [3]

    Thorarinsdottir A E, Harris T D 2020 Chem. Rev. 120 8716Google Scholar

    [4]

    Van Heumen E 2021 Nat. Mater. 20 1308Google Scholar

    [5]

    Yang Y X, Fan W H, Zhang Q H, Chen Z X, Chen X, Ying T P, Wu X X, Yang X F, Meng F Q, Li G, Li S Y, Gu L, Qian T, Schnyder A P, Guo J G, Chen X L 2021 Chin. Phys. Lett. 38 127102Google Scholar

    [6]

    Zeng K Y, Song F Y, Ling L S, Tong W, Li S L, Tian Z M, Ma L, Pi L 2022 Chin. Phys. Lett. 39 107501Google Scholar

    [7]

    Yang Y Y, Chen K W, Ding Z F, Hillier A D, Shu L 2022 Chin. Phys. Lett. 39 107502Google Scholar

    [8]

    Chen H Q, Shan H, Zhao A D, Li B 2019 Chin. J. Chem. Phys. 32 563Google Scholar

    [9]

    Kambe T, Sakamoto R, Hoshiko K, Takada K, Miyachi M, Ryu J H, Sasaki S, Kim J, Nakazato K, Takata M, Nishihara H 2013 J. Am. Chem. Soc. 135 2462Google Scholar

    [10]

    Wang Z F, Su N H, Liu F 2013 Nano Lett. 13 2842Google Scholar

    [11]

    Abel M, Clair S, Ourdjini O, Mossoyan M, Porte L 2011 J. Am. Chem. Soc. 133 1203Google Scholar

    [12]

    Zhou J, Sun Q 2011 J. Am. Chem. Soc. 133 15113Google Scholar

    [13]

    Xu Y N, Gu Z Q, Ching W Y 2000 J. Appl. Phys. 87 4867Google Scholar

    [14]

    Lü K, Zhou J, Zhou L, Wang Q, Sun Q, Jena P 2011 Appl. Phys. Lett. 99 163104Google Scholar

    [15]

    Xie L S, Jin G X, He L, Bauer G E W, Barker J, Xia K 2017 Phys. Rev. B 95 014423Google Scholar

    [16]

    Ma Y D, Dai Y, Guo M, Niu C W, Huang B B 2011 Nanoscale 3 3883Google Scholar

    [17]

    Li X D, Yu S, Wu S Q, Wen Y H, Zhou S, Zhu Z Z 2013 J. Phys. Chem. C 117 15347Google Scholar

    [18]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotech. 5 722Google Scholar

    [19]

    Lin X, Xu Y, Hakro A A, Hasan T, Hao R, Zhang B, Chen H 2013 J. Mater. Chem. C 1 1618Google Scholar

    [20]

    Guo L J, Hu J S, Ma X G, Xiang J 2019 Acta Phys. Sin. 68 097101Google Scholar

    [21]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [22]

    Kresse G, Furthmuller J 1996 Comp. Mater. Sci. 6 15Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [26]

    Panchmatia P M, Sanyal B, Oppeneer P M 2008 Chemical Physics 343 47Google Scholar

    [27]

    Bernien M, Miguel J, Weis C, Ali Md E, Kurde J, Krumme B, Panchmatia P M, Sanyal B, Piantek M, Srivastava P, Baberschke K, Oppeneer P M, Eriksson O, Kuch W, Wende H 2009 Phys. Rev. Lett. 102 047202Google Scholar

    [28]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [29]

    Ningrum V P, Liu B, Wang W, Yin Y, Cao Y, Zha C, Xie H, Jiang X, Sun Y, Qin S, Chen X, Qin T, Zhu C, Wang L, Huang W 2020 Research 2020 1768918Google Scholar

    [30]

    Jiang X, Jiang Z, Zhao J J 2017 Appl. Phys. Lett. 111 253904Google Scholar

    [31]

    Yu J T, Jiang Z, Hao Y F, Zhu Q H, Zhao M L, Jiang X, Zhao J J 2018 J. Phys. Condens. Matter 30 25LT02Google Scholar

    [32]

    Deng Z X, Wang X H 2019 RSC Adv. 9 26024Google Scholar

    [33]

    Ben Aziza Z, Pierucci D, Henck H, Silly M G, David C, Yoon M, Sirotti F, Xiao K, Eddrief M, Girard J C, Ouerghi A 2017 Phys. Rev. B 96 035407Google Scholar

    [34]

    Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J B, Sinclair R, Wu J Q 2014 Nano Lett. 14 3185Google Scholar

  • [1] Zheng Peng-Fei, Liu Zhi-Xu, Wang Chao, Liu Wei-Fang. First principles study on polarization and piezoelectric properties of group substitution regulated lead-free organic perovskite ferroelectrics. Acta Physica Sinica, 2024, 73(12): 126202. doi: 10.7498/aps.73.20240385
    [2] Zhang Qiao, Tan Wei, Ning Yong-Qi, Nie Guo-Zheng, Cai Meng-qiu, Wang Jun-Nian, Zhu Hui-Ping, Zhao Yu-Qing. Prediction of Magnetic Janus Materials Based on Machine Learning and First-Principles Calculations. Acta Physica Sinica, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [3] Liu Jun-Ling, Bai Yu-Jie, Xu Ning, Zhang Qin-Fang. First-principles study on electronic structure of GaS/Mg(OH)2 heterostructure. Acta Physica Sinica, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [4] Yan Zhi, Fang Cheng, Wang Fang, Xu Xiao-Hong. First-principles calculations of structural and magnetic properties of SmCo3 alloys doped with transition metal elements. Acta Physica Sinica, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [5] Deng Lin-Mei, Si Jun-Shan, Wu Xu-Cai, Zhang Wei-Bing. Study of transition metal dichalcogenides/chromium trihalides van der Waals heterostructure by band unfolding method. Acta Physica Sinica, 2022, 71(14): 147101. doi: 10.7498/aps.71.20220326
    [6] Fang Xiao-Nan, Du Yan-Ling, Wu Chen-Yu, Liu Jing. First principle study of tuning metal-insulator transition and magnetic properties of (SrVO3)5/(SrTiO3)1 (111) heterostructures. Acta Physica Sinica, 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [7] Liu Zi-Yuan, Pan Jin-Bo, Zhang Yu-Yang, Du Shi-Xuan. First principles calculation of two-dimensional materials at an atomic scale. Acta Physica Sinica, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [8] Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong. Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations. Acta Physica Sinica, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [9] Luan Li-Jun, He Yi, Wang Tao, Liu Zong-Wen. First-principles study of e interface interaction and photoelectric properties of the solar cell heterojunction CdS/CdMnTe. Acta Physica Sinica, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [10] Bai Liang, Zhao Qi-Xu, Shen Jian-Wei, Yang Yan, Yuan Qing-Hong, Zhong Cheng, Sun Hai-Tao, Sun Zhen-Rong. Computational screening of photocathodes based on layered MXene coated Cs3Sb heterostructures. Acta Physica Sinica, 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [11] Long Hui, Hu Jian-Wei, Wu Fu-Gen, Dong Hua-Feng. Ultrafast pulse lasers based on two-dimensional nanomaterial heterostructures as saturable absorber. Acta Physica Sinica, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [12] Zheng Lu-Min, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying. First-principles study of rare-earth-doped cathode materials Li2MnO3 in Li-ion batteries. Acta Physica Sinica, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [13] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [14] Chen Min, Wan Ting, Wang Zheng, Luo Zhao-Ming, Liu Jing. One-dimensional magnetic photonic crystal structures with wide absolute bandgaps. Acta Physica Sinica, 2017, 66(1): 014204. doi: 10.7498/aps.66.014204
    [15] Zhang Xin-Wei, Hua Zheng-He, Jiang Yu-Wen, Yang Shao-Guang. Progress in sol-gel autocombustion synthesis of metals and alloys. Acta Physica Sinica, 2015, 64(9): 098101. doi: 10.7498/aps.64.098101
    [16] Zhou Zhuo-Hui, Liu Xiao-Lai, Huang Da-Qing, Kang Fei-Yu. Design and preparation of a low frequency absorber based on hollowed-out cross-shaped meta-material structure. Acta Physica Sinica, 2014, 63(18): 184101. doi: 10.7498/aps.63.184101
    [17] Zhang Zhao-Fu, Geng Zhao-Hui, Wang Peng, Hu Yao-Qiao, Zheng Yu-Fei, Zhou Tie-Ge. Properties of 5d atoms doped boron nitride nanotubes:a first-principles calculation and molecular orbital analysis. Acta Physica Sinica, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [18] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [19] Li Yan-Wu, Liu Peng-Yi, Hou Lin-Tao, Wu Bing. Heterojunction organic solar cells with Rubrene as electron transporting layer. Acta Physica Sinica, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [20] Liu Lu, Fan Guang-Han, Liao Chang-Jun, Cao Ming-De, Chen Gui-Chu, Chen Lian-Hui. Graded heterojunction in AlGaInP compound semiconductors and its application to HB-LED. Acta Physica Sinica, 2003, 52(5): 1264-1271. doi: 10.7498/aps.52.1264
Metrics
  • Abstract views:  2537
  • PDF Downloads:  178
  • Cited By: 0
Publishing process
  • Received Date:  01 June 2023
  • Accepted Date:  03 September 2023
  • Available Online:  20 September 2023
  • Published Online:  20 December 2023

/

返回文章
返回
Baidu
map