Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Offset-fed vortex wave generator based on reflective metasurface

Sun Sheng Yang Ling-Jun Sha Wei

Citation:

Offset-fed vortex wave generator based on reflective metasurface

Sun Sheng, Yang Ling-Jun, Sha Wei
PDF
HTML
Get Citation
  • Orbital angular momentum, as a basic physical quantity of electromagnetic waves, has been widely studied since 1992. Recently, the geometric phase metasurface, which is also known as Pancharatnam-Berry (P-B) phase metasurface, has been proposed. Because of its frequency-independent and angle-dependent phase control characteristics, it can generate high-performance and broadband vortex wave. However, the current design of reflective metasurface encounters the following problems: 1) the reflected vortex wave is partly blocked by the feeding antenna; 2) in practical applications, the cross-polarized field will inevitably be induced due to the feed antenna and the reflective metasurface. How to avoid the cross-polarization is still worth further investigating. In this work, an offset-fed vortex wave generator is proposed. It consists of a right-handed circularly polarized Archimedes spiral antenna and a reflective metasurface. Firstly, the offset feeding design is introduced to avoid generating the cross-polarized fields caused by the feeding antenna. A geometric meta-atom of the reflective metasurface is designed at a working frequency of 8.5 GHz. By regularly arranging meta-atoms with different orientation angles, the convergence and phase compensation functions are imparted only to the co-polarization field. The cross-polarized field is intentionally weakened and refracted along other directions. Subsequently, a low cross-polarized vortex wave with an enhancement effect is obtained at the desired observation position. There are three contributions made in this work: 1) a P-B meta-atom is proposed to fabricate the reflective metasurface; 2) the conversion relationship between the co-polarized and cross-polarized field is studied from the initial state to the final state, and the four transformation processes are demonstrated in detail; 3) an offset-fed vortex wave generator is established which allows one to generate high-performance vortex beam with arbitrary OAM mode. The experimental results are in good agreement with those simulation results, proving the proposed method effective and feasible. The proposed design shows its advantages including simple structure, polarization selectivity, and regional field enhancement effect, which has great potential applications in vortex wave communication and OAM-based target detection.
      Corresponding author: Sun Sheng, sunsheng@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61971115, 61975177, 61721001)
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Kim H, Park J, Cho S W, Lee S Y, Kang M, Lee B 2010 Nano Lett. 10 529Google Scholar

    [3]

    Thidé B, Then H, Sjöholm J, Palmer K, Bergman J, Carozzi T D, Istomin Y N, Ibragimov N H, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar

    [4]

    Jiang X, Liang B, Cheng J C, Qiu C W 2018 Adv. Mater. 30 1800257Google Scholar

    [5]

    郭忠义, 刘洪郡, 李晶晶, 周红平, 郭凯, 高隽 2020 69 244301Google Scholar

    Guo Z Y, Liu H J, Li J J, Zhou H P, Guo K, Gao J 2020 Acta Phys. Sin. 69 244301Google Scholar

    [6]

    Liu K, Cheng Y, Gao Y, Li X, Qin Y, Wang H 2017 Appl. Phys. Lett. 110 164102Google Scholar

    [7]

    Herring R A 2011 Science 331 155Google Scholar

    [8]

    Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S 2013 Science 340 1545Google Scholar

    [9]

    Yan Y, Xie G, Lavery M P J, Huang H, Ahmed N, Bao C, Ren Y, Cao Y, Li L, Zhao Z, Molisch A F, Tur M, Padgett M J, Willner A E 2014 Nat. Commun. 5 4876Google Scholar

    [10]

    Chen Y, Zheng S, Li Y, Hui X, Jin X, Chi H, Zhang X 2016 IEEE Antennas Wirel. Propag. Lett. 15 1156Google Scholar

    [11]

    Liu K, Liu H, Qin Y, Cheng Y, Wang S, Li X, Wang H 2016 IEEE Trans. Antennas Propag. 64 3850Google Scholar

    [12]

    Yang Y, Zhao Z, Ding X, Nie Z, Liu Q-H 2019 IEEE Trans. Antennas Propag. 67 140Google Scholar

    [13]

    Chen M L N, Jiang L J, Sha W E I 2019 IEEE Antennas Wirel. Propag. Lett. 18 477Google Scholar

    [14]

    Yang L J, Sun S, Sha W E I 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting Montréal, Québec, Canada, July 5–10, 2020 pp923−924

    [15]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [16]

    Yu S, Li L, Shi G, Zhu C, Zhou X, Shi Y 2016 Appl. Phys. Lett. 108 121903Google Scholar

    [17]

    Yu S, Li L, Shi G 2016 Appl. Phys. Express 9 082202Google Scholar

    [18]

    Jiang S, Chen C, Zhang H, Chen W 2018 Opt. Express 26 6466Google Scholar

    [19]

    Chen M, Li J J, Sha W 2016 J. Appl. Phys. 119 064506Google Scholar

    [20]

    Xu H X, Liu H, Ling X, Sun Y, Yuan F 2017 IEEE Trans. Antennas Propag. 65 7378Google Scholar

    [21]

    Ran Y, Liang J, Tong C, Li H 2018 Opt. Commun. 427 101Google Scholar

    [22]

    李晓楠, 周璐, 赵国忠 2019 68 238101Google Scholar

    Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [23]

    Yang L J, Sun S, Sha W E I 2020 IEEE Trans. Antennas Propag. 68 2166Google Scholar

    [24]

    Yang L J, Sun S, Sha W E I 2021 Adv. Opt. Mater. 9 2001711Google Scholar

    [25]

    Liu H, Xue H, Liu Y, Feng Q, Li L 2020 IEEE Access 8 126504Google Scholar

    [26]

    Zhang K, Yuan Y, Zhang D, Ding X, Ratni B, Burokur S N, Lu M, Tang K, Wu Q 2018 Opt. Express 26 1351Google Scholar

    [27]

    李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学 2015 64 124102Google Scholar

    Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 124102Google Scholar

  • 图 1  偏馈式涡旋波产生装置工作示意图, 其中超表面单元的具体结构被放大显示

    Figure 1.  The work schematic diagram of the offset-fed vortex wave generator, where the specific structure of the metasurface unit is also displayed.

    图 2  在圆极化下激励下, 超表面单元在不同取向角下的反射谱 (a)同极化; (b)交叉极

    Figure 2.  The reflection spectra for the meta-atom with different orientation angles under CP wave excitations: (a) Co-polarization; (b) corss-polarization.

    图 3  超表面相位实现过程, 包括涡旋相位, 偏馈补偿相位, 汇聚补偿相位和最终的超表面相位

    Figure 3.  The design process of metasurface phase including the vortex phase, the offset feed compensation phase, the convergence compensation phase, and the final metasurface phase.

    图 4  四种转化过程的场路径描述 (a) 激励的交叉极化到交叉极化; (b) 激励的主极化到主极化; (c) 激励的交叉极化到主极化; (d) 激励的主极化到交叉极化

    Figure 4.  Path description of field for the four transformation processes: (a) Excited cross polarization to cross polarization; (b) excited main polarization to main polarization; (c) excited cross polarization to main polarization; (d) excited main polarization to cross polarization.

    图 5  三个具体案例被仿真并进行场采样对比(观测平面设置在z = 150 mm, 大小为100 mm × 100 mm) (a) 偏馈${{\boldsymbol{r}}_{\rm{f}}} = [ - 8 p, 0, 8 p]$, 有汇聚项$ {{\boldsymbol{r}}_{\rm{o}}} = {\rm{ }}\left[ {0, 0, 24 p} \right] $; (b) 偏馈$ {{\boldsymbol{r}}_{\rm{f}}} = \left[ { - 8 p, 0, 8 p} \right] $, 无汇聚项$ {{\boldsymbol{r}}_{\rm{o}}} = {\rm{ }}\left[ {0, 0, \infty } \right] $; (c) 正馈$ {{\boldsymbol{r}}_{\rm{f}}} = \left[ {0, 0, 8 p} \right] $, 有汇聚项$ {{\boldsymbol{r}}_{\rm{o}}} = \left[ {0, 0, 24 p} \right] $

    Figure 5.  The sampling field for three specific cases (the observation plane at z = 150 mm, and the size 100 mm × 100 mm): (a) Offset reflector with convergence term; (b) offset reflector without convergence term; (c) forward reflector with convergence term.

    图 6  实物照片 (a) 超表面正面; (b) 超表面背面; (c) 偏馈式涡旋波发生装置; (d) 暗室测量图

    Figure 6.  The photograph of the specific generator and the fabricated metasurface: (a) The front view of the metasurface; (b) the back view of the metasurface; (c) the offset-fed vortex wave generator; (d) the measurement scene in anechoic chamber.

    图 7  上半平面的远场测量结果, 包括主、交叉极化的增益和电场相位图, 其中半径大小对应于θ范围0°到90°

    Figure 7.  Far-field measurement results of the upper half plane including the gain and phase pattern of the co and cross polarization.

    Baidu
  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Kim H, Park J, Cho S W, Lee S Y, Kang M, Lee B 2010 Nano Lett. 10 529Google Scholar

    [3]

    Thidé B, Then H, Sjöholm J, Palmer K, Bergman J, Carozzi T D, Istomin Y N, Ibragimov N H, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar

    [4]

    Jiang X, Liang B, Cheng J C, Qiu C W 2018 Adv. Mater. 30 1800257Google Scholar

    [5]

    郭忠义, 刘洪郡, 李晶晶, 周红平, 郭凯, 高隽 2020 69 244301Google Scholar

    Guo Z Y, Liu H J, Li J J, Zhou H P, Guo K, Gao J 2020 Acta Phys. Sin. 69 244301Google Scholar

    [6]

    Liu K, Cheng Y, Gao Y, Li X, Qin Y, Wang H 2017 Appl. Phys. Lett. 110 164102Google Scholar

    [7]

    Herring R A 2011 Science 331 155Google Scholar

    [8]

    Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S 2013 Science 340 1545Google Scholar

    [9]

    Yan Y, Xie G, Lavery M P J, Huang H, Ahmed N, Bao C, Ren Y, Cao Y, Li L, Zhao Z, Molisch A F, Tur M, Padgett M J, Willner A E 2014 Nat. Commun. 5 4876Google Scholar

    [10]

    Chen Y, Zheng S, Li Y, Hui X, Jin X, Chi H, Zhang X 2016 IEEE Antennas Wirel. Propag. Lett. 15 1156Google Scholar

    [11]

    Liu K, Liu H, Qin Y, Cheng Y, Wang S, Li X, Wang H 2016 IEEE Trans. Antennas Propag. 64 3850Google Scholar

    [12]

    Yang Y, Zhao Z, Ding X, Nie Z, Liu Q-H 2019 IEEE Trans. Antennas Propag. 67 140Google Scholar

    [13]

    Chen M L N, Jiang L J, Sha W E I 2019 IEEE Antennas Wirel. Propag. Lett. 18 477Google Scholar

    [14]

    Yang L J, Sun S, Sha W E I 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting Montréal, Québec, Canada, July 5–10, 2020 pp923−924

    [15]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [16]

    Yu S, Li L, Shi G, Zhu C, Zhou X, Shi Y 2016 Appl. Phys. Lett. 108 121903Google Scholar

    [17]

    Yu S, Li L, Shi G 2016 Appl. Phys. Express 9 082202Google Scholar

    [18]

    Jiang S, Chen C, Zhang H, Chen W 2018 Opt. Express 26 6466Google Scholar

    [19]

    Chen M, Li J J, Sha W 2016 J. Appl. Phys. 119 064506Google Scholar

    [20]

    Xu H X, Liu H, Ling X, Sun Y, Yuan F 2017 IEEE Trans. Antennas Propag. 65 7378Google Scholar

    [21]

    Ran Y, Liang J, Tong C, Li H 2018 Opt. Commun. 427 101Google Scholar

    [22]

    李晓楠, 周璐, 赵国忠 2019 68 238101Google Scholar

    Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [23]

    Yang L J, Sun S, Sha W E I 2020 IEEE Trans. Antennas Propag. 68 2166Google Scholar

    [24]

    Yang L J, Sun S, Sha W E I 2021 Adv. Opt. Mater. 9 2001711Google Scholar

    [25]

    Liu H, Xue H, Liu Y, Feng Q, Li L 2020 IEEE Access 8 126504Google Scholar

    [26]

    Zhang K, Yuan Y, Zhang D, Ding X, Ratni B, Burokur S N, Lu M, Tang K, Wu Q 2018 Opt. Express 26 1351Google Scholar

    [27]

    李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学 2015 64 124102Google Scholar

    Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 124102Google Scholar

  • [1] Wang Yue, Wang Hao-Jie, Cui Zi-Jian, Zhang Da-Chi. Bound states in continuum domain of double resonant ring metal metasurfaces. Acta Physica Sinica, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [2] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [3] Bai Yu, Zhang Zhen-Fang, Yang Hai-Bin, Cai Li, Yu Dian-Long. Metasurface acoustic liner of engine based on asymmetric absorber. Acta Physica Sinica, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [4] Huang Xiao-Jun, Gao Huan-Huan, He Jia-Hao, Luan Su-Zhen, Yang He-Lin. Dynamically tunable frequency-domain multifunctional reconfigurable polarization conversion metasurface. Acta Physica Sinica, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [5] Fan Hui-Ying, Luo Jie. Research progress of non-Hermitian electromagnetic metasurfaces. Acta Physica Sinica, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [6] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [7] Li Guo-Qiang, Shi Hong-Yu, Liu Kang, Li Bo-Lin, Yi Jian-Jia, Zhang An-Xue, Xu Zhuo. Multi-beam multi-mode vortex beams generation based on metasurface in terahertz band. Acta Physica Sinica, 2021, 70(18): 188701. doi: 10.7498/aps.70.20210897
    [8] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [9] Yan Wei, Wang Ji-Yong, Qu Yu-Rui, Li Qiang, Qiu Min. Tunable metasurfaces based on phase-change materials. Acta Physica Sinica, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [10] Wang Chao-Hui, Li Yong-Xiang, Zhu Shuai. Absorbers with spin-selection based on metasurface. Acta Physica Sinica, 2020, 69(23): 234103. doi: 10.7498/aps.69.20200511
    [11] Xie Zhi-Qiang, He Yan-Liang, Wang Pei-Pei, Su Ming-Yang, Chen Xue-Yu, Yang Bo, Liu Jun-Min, Zhou Xin-Xing, Li Ying, Chen Shu-Qing, Fan Dian-Yuan. Two-dimensional optical edge detection based on Pancharatnam-Berry phase metasurface. Acta Physica Sinica, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [12] Zhou Lu, Zhao Guo-Zhong, Li Xiao-Nan. Broadband terahertz vortex beam generation based on metasurface of double-split resonant rings. Acta Physica Sinica, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [13] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [14] Chen Huan, Ling Xiao-Hui, He Wu-Guang, Li Qian-Guang, Yi Xu-Nong. Generation of Bessel beam by manipulating Pancharatnam-Berry phase. Acta Physica Sinica, 2017, 66(4): 044203. doi: 10.7498/aps.66.044203
    [15] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [16] Guo Wen-Long, Wang Guang-Ming, Li Hai-Peng, Hou Hai-Sheng. Utra-thin single-layered high-efficiency focusing metasurface lens. Acta Physica Sinica, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [17] Wu Chen-Jun, Cheng Yong-Zhi, Wang Wen-Ying, He Bo, Gong Rong-Zhou. Design and radar cross section reduction experimental verification of phase gradient meta-surface based on cruciform structure. Acta Physica Sinica, 2015, 64(16): 164102. doi: 10.7498/aps.64.164102
    [18] Fan Ya, Qu Shao-Bo, Wang Jia-Fu, Zhang Jie-Qiu, Feng Ming-De, Zhang An-Xue. Broadband anomalous reflector based on cross-polarized version phase gradient metasurface. Acta Physica Sinica, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [19] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Circularly polarized wave reflection focusing metasurfaces. Acta Physica Sinica, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [20] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Chen Hong-Ya, Xu Zhuo, Zhang An-Xue. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction. Acta Physica Sinica, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
Metrics
  • Abstract views:  6078
  • PDF Downloads:  284
  • Cited By: 0
Publishing process
  • Received Date:  12 April 2021
  • Accepted Date:  17 May 2021
  • Available Online:  07 June 2021
  • Published Online:  05 October 2021

/

返回文章
返回
Baidu
map