-
超表面由亚波长尺度排列的人工原子阵列组成, 在调控光场相位、振幅、偏振等方面具有巨大优势. 受离散采样原理和周期性假设的限制, 传统正向设计方法不可避免地存在设计误差, 容易导致器件性能下降. 本文采用基于伴随的多目标拓扑优化方法, 逆向设计了一种具有大偏折角度、偏振不敏感特性的自由形状波分复用超光栅. 仿真结果表明, 相比于离散规则结构, 拓扑优化的波分复用超光栅具有更优越的偏振不敏感性能. 此外, 该结构对510 nm入射光的偏折角度可达70.8°, 其绝对偏折效率高达48%; 对于852 nm入射光, 其透射效率为98%. 在此基础上, 通过使用随机初始结构可将绝对偏折效率优化至70%以上. 本文设计的自由形状波分复用超光栅具有偏折角度大、效率高和空间串扰低等优点, 在光通信、微纳光场调控、基于里德堡原子的微波测量等领域具有潜在应用前景.Metasurfaces consist of arrays of artificial atoms arranged on a subwavelength scale, and have significant advantages in modulating the phase, amplitude, and polarization of optical field. Limited by the discrete sampling principle and the assumption of periodicity, the conventional forward design method suffers unavoidable design errors, which easily leads the device performance to degrade. In this paper, a freeform wavelength division multiplexing (WDM) metagrating with a large deflection angle and polarization-insensitive characteristics is inversely designed by using an adjoint multi-objective topology optimization method. The simulation results show that the topology-optimized WDM metagrating has superior polarization in sensitivity compared with the discrete regular structure, with a deflection angle of 70.8° at 510 nm, an absolute deflection efficiency of 48%, and a transmission efficiency of 98% for 852 nm incident light. On this basis, the absolute deflection efficiency can be optimized to more than 70% by using a random initial structure. The freeform WDM metagrating designed in this paper has the advantages of large deflection angle, high efficiency, and low spatial crosstalk, and has potential applications in optical communication, micro and nano-optical field modulation, and Rydberg atom-based microwave measurements.
-
Keywords:
- freeform metasurface /
- inverse design /
- topology optimization /
- wavelength division multiplexing
[1] Yu N, Capasso F 2014 Nat. Mater. 13 139Google Scholar
[2] Luo X 2019 Adv. Mater. 31 1804680Google Scholar
[3] Yu Y F, Zhu A Y, Paniagua-Domínguez R, Fu Y H, Luk’yanchuk B, Kuznetsov A I 2015 Laser Photonics Rev. 9 412Google Scholar
[4] Wang Y, Fan Q, Xu T 2021 Opto-Electron. Adv. 4 200008Google Scholar
[5] Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H, Lin R M, Kuan C H, Li T, Wang Z, Zhu S, Tsai D P 2018 Nat. Nanotechnol. 13 227Google Scholar
[6] Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar
[7] Li X, Chen L, Li Y, Zhang X, Pu M, Zhao Z, Ma X, Wang Y, Hong M, Luo X 2016 Sci. Adv. 2 e1601102Google Scholar
[8] Gao H, Fan X, Xiong W, Hong M 2021 Opto-Electron. Adv. 4 210030Google Scholar
[9] Arbabi A, Horie Y, Bagheri M, Faraon A 2015 Nat. Nanotechnol. 10 937Google Scholar
[10] Fan Q, Liu M, Zhang C, Zhu W, Wang Y, Lin P, Yan F, Chen L, Lezec H J, Lu Y, Agrawal A, Xu T 2020 Phys. Rev. Lett. 125 267402Google Scholar
[11] Yue Z, Li J, Li J, Zheng C, Liu J, Wang G, Xu H, Chen M, Zhang Y, Zhang Y, Yao J 2022 Opto-Electron. Sci. 1 210014Google Scholar
[12] Decker M, Staude I, Falkner M, Dominguez J, Neshev D N, Brener I, Pertsch T, Kivshar Y S 2015 Adv. Opt. Mater. 3 813Google Scholar
[13] Shalaev M I, Sun J, Tsukernik A, Pandey A, Nikolskiy K, Litchinitser N M 2015 Nano Lett. 15 6261Google Scholar
[14] Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar
[15] Lin D, Fan P, Hasman E, Brongersma M L 2014 Science 345 298Google Scholar
[16] Xie X, Pu M, Jin J, Xu M, Guo Y, Li X, Gao P, Ma X, Luo X 2021 Phys. Rev. Lett. 126 183902Google Scholar
[17] Lalanne P, Chavel P 2017 Laser Photonics Rev. 11 1600295Google Scholar
[18] Khaidarov E, Hao H, Paniagua-Domínguez R, Yu Y F, Fu Y H, Valuckas V, Yap S L K, Toh Y T, Ng J S K, Kuznetsov A I 2017 Nano Lett. 17 6267Google Scholar
[19] Paniagua-Domínguez R, Yu Y F, Khaidarov E, Choi S, Leong V, Bakker R M, Liang X, Fu Y H, Valuckas V, Krivitsky L A, Kuznetsov A I 2018 Nano Lett. 18 2124Google Scholar
[20] Xu M, Pu M, Sang D, Zheng Y, Li X, Ma X, Guo Y, Zhang R, Luo X 2021 Opt. Express 29 10181Google Scholar
[21] Xu M F, He Q, Pu M B, Zhang F, Li L, Sang D, Guo Y H, Zhang R Y, Li X, Ma X L, Luo X G 2022 Adv. Mater. 34 2108709Google Scholar
[22] Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396Google Scholar
[23] Molesky S, Lin Z, Piggott A Y, Jin W, Vuckovic J, Rodriguez A W 2018 Nat. Photonics 12 659Google Scholar
[24] Elsawy M M R, Lanteri S, Duvigneau R, Fan J A, Genevet P 2020 Laser Photonics Rev. 14 1900445Google Scholar
[25] Sell D, Yang J, Doshay S, Yang R, Fan J 2017 Nano Lett. 17 3752Google Scholar
[26] Piggott A Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M, Vuckovic J 2015 Nat. Photonics 9 374Google Scholar
[27] Shi Z, Zhu A Y, Li Z, Huang Y W, Chen W T, Qiu C W, Capasso F 2020 Sci. Adv. 6 eaba3367Google Scholar
[28] Mansouree H K M, Arbabi E, Mcclung A, Faraon A, Arbabi A 2020 Optica 7 77Google Scholar
[29] Zheng Y, Xu M, Pu M, Zhang F, Sang D, Guo Y, Li X, Ma X, Luo X 2022 Nanophotonics 11 2967Google Scholar
[30] Chung Hand Miller O D 2020 Opt. Express 28 6945Google Scholar
[31] Lalau-Keraly C M, Bhargava S, Miller O D, Yablonovitch E 2013 Opt. Express 21 21693Google Scholar
[32] Luo X, Pu M, Zhang F, Xu M, Guo Y, Li X, Ma X 2022 J. Appl. Phys. 131 181101Google Scholar
[33] 付云起, 林沂, 武博, 安强, 刘燚 2022 电波科学学报 37 279Google Scholar
Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Chin. J. Radio Sci. 37 279Google Scholar
[34] 林沂, 吴逢川, 毛瑞棋, 姚佳伟, 刘燚, 安强, 付云起 2022 71 170702Google Scholar
Lin Y, Wu F C, Mao R Q, Yao J W, Liu Y, An Q, Fu Y Q 2022 Acta Phys. Sin. 71 170702Google Scholar
[35] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[36] Mansouree M, McClung A, Samudrala S, Arbabi A 2021 ACS Photonics 8 455Google Scholar
[37] Li L 1997 J. Opt. Soc. Am. A 14 2758Google Scholar
-
图 2 波长为510和852 nm时, 具有不同单元尺寸和占空比的方形晶格上周期性TiO2圆柱的(a), (d)透射率和(b), (e)相位; (c), (f) 具有180 nm单元尺寸和600 nm高度的不同直径的周期性TiO2圆柱的透射率和相位
Fig. 2. Calculation of (a), (d) the transmission and (b), (e) the phase of the periodic TiO2 cylinders on a square lattice with different unit size and duty cycles at λ = 510 nm and 852 nm; (c), (f) transmission and phase of the periodic TiO2 cylinders with 180 nm unit size and 600 nm height for different diameters.
图 8 (a) 拓扑优化的超光栅在不同偏振方向下的传输效率与偏折效率; (b) TM和(c) TE平面波垂直入射时, 透射光强的远场分布
Fig. 8. (a) Transmission efficiency and deflection efficiency of the topology-optimized metagrating with different polarization directions; far-field profiles of transmitted light intensity at normal incidence of (b) TM and (c) TE plane wave.
表 1 选取的不同直径TiO2圆柱的性能参数
Table 1. Performance parameters of selected TiO2 cylinders with different diameters.
圆柱直径 /nm 透过率 相位/(º) 510 nm 852 nm 510 nm 852 nm 64 0.989 0.988 45.0 22.6 106 0.968 0.981 163.4 69.4 130 0.970 0.964 285.2 112.7 -
[1] Yu N, Capasso F 2014 Nat. Mater. 13 139Google Scholar
[2] Luo X 2019 Adv. Mater. 31 1804680Google Scholar
[3] Yu Y F, Zhu A Y, Paniagua-Domínguez R, Fu Y H, Luk’yanchuk B, Kuznetsov A I 2015 Laser Photonics Rev. 9 412Google Scholar
[4] Wang Y, Fan Q, Xu T 2021 Opto-Electron. Adv. 4 200008Google Scholar
[5] Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H, Lin R M, Kuan C H, Li T, Wang Z, Zhu S, Tsai D P 2018 Nat. Nanotechnol. 13 227Google Scholar
[6] Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar
[7] Li X, Chen L, Li Y, Zhang X, Pu M, Zhao Z, Ma X, Wang Y, Hong M, Luo X 2016 Sci. Adv. 2 e1601102Google Scholar
[8] Gao H, Fan X, Xiong W, Hong M 2021 Opto-Electron. Adv. 4 210030Google Scholar
[9] Arbabi A, Horie Y, Bagheri M, Faraon A 2015 Nat. Nanotechnol. 10 937Google Scholar
[10] Fan Q, Liu M, Zhang C, Zhu W, Wang Y, Lin P, Yan F, Chen L, Lezec H J, Lu Y, Agrawal A, Xu T 2020 Phys. Rev. Lett. 125 267402Google Scholar
[11] Yue Z, Li J, Li J, Zheng C, Liu J, Wang G, Xu H, Chen M, Zhang Y, Zhang Y, Yao J 2022 Opto-Electron. Sci. 1 210014Google Scholar
[12] Decker M, Staude I, Falkner M, Dominguez J, Neshev D N, Brener I, Pertsch T, Kivshar Y S 2015 Adv. Opt. Mater. 3 813Google Scholar
[13] Shalaev M I, Sun J, Tsukernik A, Pandey A, Nikolskiy K, Litchinitser N M 2015 Nano Lett. 15 6261Google Scholar
[14] Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar
[15] Lin D, Fan P, Hasman E, Brongersma M L 2014 Science 345 298Google Scholar
[16] Xie X, Pu M, Jin J, Xu M, Guo Y, Li X, Gao P, Ma X, Luo X 2021 Phys. Rev. Lett. 126 183902Google Scholar
[17] Lalanne P, Chavel P 2017 Laser Photonics Rev. 11 1600295Google Scholar
[18] Khaidarov E, Hao H, Paniagua-Domínguez R, Yu Y F, Fu Y H, Valuckas V, Yap S L K, Toh Y T, Ng J S K, Kuznetsov A I 2017 Nano Lett. 17 6267Google Scholar
[19] Paniagua-Domínguez R, Yu Y F, Khaidarov E, Choi S, Leong V, Bakker R M, Liang X, Fu Y H, Valuckas V, Krivitsky L A, Kuznetsov A I 2018 Nano Lett. 18 2124Google Scholar
[20] Xu M, Pu M, Sang D, Zheng Y, Li X, Ma X, Guo Y, Zhang R, Luo X 2021 Opt. Express 29 10181Google Scholar
[21] Xu M F, He Q, Pu M B, Zhang F, Li L, Sang D, Guo Y H, Zhang R Y, Li X, Ma X L, Luo X G 2022 Adv. Mater. 34 2108709Google Scholar
[22] Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396Google Scholar
[23] Molesky S, Lin Z, Piggott A Y, Jin W, Vuckovic J, Rodriguez A W 2018 Nat. Photonics 12 659Google Scholar
[24] Elsawy M M R, Lanteri S, Duvigneau R, Fan J A, Genevet P 2020 Laser Photonics Rev. 14 1900445Google Scholar
[25] Sell D, Yang J, Doshay S, Yang R, Fan J 2017 Nano Lett. 17 3752Google Scholar
[26] Piggott A Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M, Vuckovic J 2015 Nat. Photonics 9 374Google Scholar
[27] Shi Z, Zhu A Y, Li Z, Huang Y W, Chen W T, Qiu C W, Capasso F 2020 Sci. Adv. 6 eaba3367Google Scholar
[28] Mansouree H K M, Arbabi E, Mcclung A, Faraon A, Arbabi A 2020 Optica 7 77Google Scholar
[29] Zheng Y, Xu M, Pu M, Zhang F, Sang D, Guo Y, Li X, Ma X, Luo X 2022 Nanophotonics 11 2967Google Scholar
[30] Chung Hand Miller O D 2020 Opt. Express 28 6945Google Scholar
[31] Lalau-Keraly C M, Bhargava S, Miller O D, Yablonovitch E 2013 Opt. Express 21 21693Google Scholar
[32] Luo X, Pu M, Zhang F, Xu M, Guo Y, Li X, Ma X 2022 J. Appl. Phys. 131 181101Google Scholar
[33] 付云起, 林沂, 武博, 安强, 刘燚 2022 电波科学学报 37 279Google Scholar
Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Chin. J. Radio Sci. 37 279Google Scholar
[34] 林沂, 吴逢川, 毛瑞棋, 姚佳伟, 刘燚, 安强, 付云起 2022 71 170702Google Scholar
Lin Y, Wu F C, Mao R Q, Yao J W, Liu Y, An Q, Fu Y Q 2022 Acta Phys. Sin. 71 170702Google Scholar
[35] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[36] Mansouree M, McClung A, Samudrala S, Arbabi A 2021 ACS Photonics 8 455Google Scholar
[37] Li L 1997 J. Opt. Soc. Am. A 14 2758Google Scholar
计量
- 文章访问数: 4955
- PDF下载量: 166
- 被引次数: 0