搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于拓扑优化的自由形状波分复用超光栅

桑迪 徐明峰 安强 付云起

引用本文:
Citation:

基于拓扑优化的自由形状波分复用超光栅

桑迪, 徐明峰, 安强, 付云起

Freeform wavelength division multiplexing metagrating based on topology optimization

Sang Di, Xu Ming-Feng, An Qiang, Fu Yun-Qi
PDF
HTML
导出引用
  • 超表面由亚波长尺度排列的人工原子阵列组成, 在调控光场相位、振幅、偏振等方面具有巨大优势. 受离散采样原理和周期性假设的限制, 传统正向设计方法不可避免地存在设计误差, 容易导致器件性能下降. 本文采用基于伴随的多目标拓扑优化方法, 逆向设计了一种具有大偏折角度、偏振不敏感特性的自由形状波分复用超光栅. 仿真结果表明, 相比于离散规则结构, 拓扑优化的波分复用超光栅具有更优越的偏振不敏感性能. 此外, 该结构对510 nm入射光的偏折角度可达70.8°, 其绝对偏折效率高达48%; 对于852 nm入射光, 其透射效率为98%. 在此基础上, 通过使用随机初始结构可将绝对偏折效率优化至70%以上. 本文设计的自由形状波分复用超光栅具有偏折角度大、效率高和空间串扰低等优点, 在光通信、微纳光场调控、基于里德堡原子的微波测量等领域具有潜在应用前景.
    Metasurfaces consist of arrays of artificial atoms arranged on a subwavelength scale, and have significant advantages in modulating the phase, amplitude, and polarization of optical field. Limited by the discrete sampling principle and the assumption of periodicity, the conventional forward design method suffers unavoidable design errors, which easily leads the device performance to degrade. In this paper, a freeform wavelength division multiplexing (WDM) metagrating with a large deflection angle and polarization-insensitive characteristics is inversely designed by using an adjoint multi-objective topology optimization method. The simulation results show that the topology-optimized WDM metagrating has superior polarization in sensitivity compared with the discrete regular structure, with a deflection angle of 70.8° at 510 nm, an absolute deflection efficiency of 48%, and a transmission efficiency of 98% for 852 nm incident light. On this basis, the absolute deflection efficiency can be optimized to more than 70% by using a random initial structure. The freeform WDM metagrating designed in this paper has the advantages of large deflection angle, high efficiency, and low spatial crosstalk, and has potential applications in optical communication, micro and nano-optical field modulation, and Rydberg atom-based microwave measurements.
      通信作者: 付云起, yunqifu@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12104509, 62105338)和四川省国际科技合作计划(批准号: 2020YFH0002)资助的课题.
      Corresponding author: Fu Yun-Qi, yunqifu@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104509, 62105338), and the International Science and Technology Cooperation Program of Sichuan Province, China (Grant No. 2020YFH0002).
    [1]

    Yu N, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [2]

    Luo X 2019 Adv. Mater. 31 1804680Google Scholar

    [3]

    Yu Y F, Zhu A Y, Paniagua-Domínguez R, Fu Y H, Luk’yanchuk B, Kuznetsov A I 2015 Laser Photonics Rev. 9 412Google Scholar

    [4]

    Wang Y, Fan Q, Xu T 2021 Opto-Electron. Adv. 4 200008Google Scholar

    [5]

    Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H, Lin R M, Kuan C H, Li T, Wang Z, Zhu S, Tsai D P 2018 Nat. Nanotechnol. 13 227Google Scholar

    [6]

    Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar

    [7]

    Li X, Chen L, Li Y, Zhang X, Pu M, Zhao Z, Ma X, Wang Y, Hong M, Luo X 2016 Sci. Adv. 2 e1601102Google Scholar

    [8]

    Gao H, Fan X, Xiong W, Hong M 2021 Opto-Electron. Adv. 4 210030Google Scholar

    [9]

    Arbabi A, Horie Y, Bagheri M, Faraon A 2015 Nat. Nanotechnol. 10 937Google Scholar

    [10]

    Fan Q, Liu M, Zhang C, Zhu W, Wang Y, Lin P, Yan F, Chen L, Lezec H J, Lu Y, Agrawal A, Xu T 2020 Phys. Rev. Lett. 125 267402Google Scholar

    [11]

    Yue Z, Li J, Li J, Zheng C, Liu J, Wang G, Xu H, Chen M, Zhang Y, Zhang Y, Yao J 2022 Opto-Electron. Sci. 1 210014Google Scholar

    [12]

    Decker M, Staude I, Falkner M, Dominguez J, Neshev D N, Brener I, Pertsch T, Kivshar Y S 2015 Adv. Opt. Mater. 3 813Google Scholar

    [13]

    Shalaev M I, Sun J, Tsukernik A, Pandey A, Nikolskiy K, Litchinitser N M 2015 Nano Lett. 15 6261Google Scholar

    [14]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar

    [15]

    Lin D, Fan P, Hasman E, Brongersma M L 2014 Science 345 298Google Scholar

    [16]

    Xie X, Pu M, Jin J, Xu M, Guo Y, Li X, Gao P, Ma X, Luo X 2021 Phys. Rev. Lett. 126 183902Google Scholar

    [17]

    Lalanne P, Chavel P 2017 Laser Photonics Rev. 11 1600295Google Scholar

    [18]

    Khaidarov E, Hao H, Paniagua-Domínguez R, Yu Y F, Fu Y H, Valuckas V, Yap S L K, Toh Y T, Ng J S K, Kuznetsov A I 2017 Nano Lett. 17 6267Google Scholar

    [19]

    Paniagua-Domínguez R, Yu Y F, Khaidarov E, Choi S, Leong V, Bakker R M, Liang X, Fu Y H, Valuckas V, Krivitsky L A, Kuznetsov A I 2018 Nano Lett. 18 2124Google Scholar

    [20]

    Xu M, Pu M, Sang D, Zheng Y, Li X, Ma X, Guo Y, Zhang R, Luo X 2021 Opt. Express 29 10181Google Scholar

    [21]

    Xu M F, He Q, Pu M B, Zhang F, Li L, Sang D, Guo Y H, Zhang R Y, Li X, Ma X L, Luo X G 2022 Adv. Mater. 34 2108709Google Scholar

    [22]

    Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396Google Scholar

    [23]

    Molesky S, Lin Z, Piggott A Y, Jin W, Vuckovic J, Rodriguez A W 2018 Nat. Photonics 12 659Google Scholar

    [24]

    Elsawy M M R, Lanteri S, Duvigneau R, Fan J A, Genevet P 2020 Laser Photonics Rev. 14 1900445Google Scholar

    [25]

    Sell D, Yang J, Doshay S, Yang R, Fan J 2017 Nano Lett. 17 3752Google Scholar

    [26]

    Piggott A Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M, Vuckovic J 2015 Nat. Photonics 9 374Google Scholar

    [27]

    Shi Z, Zhu A Y, Li Z, Huang Y W, Chen W T, Qiu C W, Capasso F 2020 Sci. Adv. 6 eaba3367Google Scholar

    [28]

    Mansouree H K M, Arbabi E, Mcclung A, Faraon A, Arbabi A 2020 Optica 7 77Google Scholar

    [29]

    Zheng Y, Xu M, Pu M, Zhang F, Sang D, Guo Y, Li X, Ma X, Luo X 2022 Nanophotonics 11 2967Google Scholar

    [30]

    Chung Hand Miller O D 2020 Opt. Express 28 6945Google Scholar

    [31]

    Lalau-Keraly C M, Bhargava S, Miller O D, Yablonovitch E 2013 Opt. Express 21 21693Google Scholar

    [32]

    Luo X, Pu M, Zhang F, Xu M, Guo Y, Li X, Ma X 2022 J. Appl. Phys. 131 181101Google Scholar

    [33]

    付云起, 林沂, 武博, 安强, 刘燚 2022 电波科学学报 37 279Google Scholar

    Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Chin. J. Radio Sci. 37 279Google Scholar

    [34]

    林沂, 吴逢川, 毛瑞棋, 姚佳伟, 刘燚, 安强, 付云起 2022 71 170702Google Scholar

    Lin Y, Wu F C, Mao R Q, Yao J W, Liu Y, An Q, Fu Y Q 2022 Acta Phys. Sin. 71 170702Google Scholar

    [35]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [36]

    Mansouree M, McClung A, Samudrala S, Arbabi A 2021 ACS Photonics 8 455Google Scholar

    [37]

    Li L 1997 J. Opt. Soc. Am. A 14 2758Google Scholar

  • 图 1  大角度波分复用超光栅示意图 (a) 器件示意图; (b) 单元示意图

    Fig. 1.  Schematic diagram of large-angle wavelength-division multiplexing-based metagrating: (a) Overall schematic; (b) unit schematic.

    图 2  波长为510和852 nm时, 具有不同单元尺寸和占空比的方形晶格上周期性TiO2圆柱的(a), (d)透射率和(b), (e)相位; (c), (f) 具有180 nm单元尺寸和600 nm高度的不同直径的周期性TiO2圆柱的透射率和相位

    Fig. 2.  Calculation of (a), (d) the transmission and (b), (e) the phase of the periodic TiO2 cylinders on a square lattice with different unit size and duty cycles at λ = 510 nm and 852 nm; (c), (f) transmission and phase of the periodic TiO2 cylinders with 180 nm unit size and 600 nm height for different diameters.

    图 3  (a) 超光栅结构的顶视图; (b) TM和(c) TE激励时, xoz平面的电场分布

    Fig. 3.  (a) Top view of the metagrating; (b) electric field distribution in the xoz plane for TM and (c) TE excitation.

    图 4  (a) 设计的超光栅在不同偏振方向下的传输效率与偏折效率; (b) TM和(c) TE平面波垂直入射时, 透射光强的远场分布

    Fig. 4.  (a) Transmission efficiency and deflection efficiency of the designed metagrating with different polarization directions; far-field profiles of transmitted light intensity at normal incidence of (b) TM and (c) TE plane wave.

    图 5  伴随方法示意图. 每次迭代都需要两次模拟(正向模拟和伴随模拟), 每个模拟激励源都以红色绘制

    Fig. 5.  Adjoint method schematic. Two simulations (the forward and the adjoint simulation) are needed for every iteration. Sources for each simulation are drawn in red.

    图 6  超光栅的拓扑优化过程: 绿光偏折效率与红光透过效率的演变, 以及拓扑形态的演变

    Fig. 6.  Topology optimization process of metagratings: the evolution of green light deflection efficiency and red light transmission efficiency, and the evolution of topology shapes in different iterations.

    图 7  (a) 拓扑优化后自由形状超光栅的顶视图; (b) TM和 (c) TE激励时xoz平面的电场分布

    Fig. 7.  (a) Top view of the topology-optimized freeform metagrating; electric field distribution in the xoz plane for (b) TM and (c) TE excitation.

    图 8  (a) 拓扑优化的超光栅在不同偏振方向下的传输效率与偏折效率; (b) TM和(c) TE平面波垂直入射时, 透射光强的远场分布

    Fig. 8.  (a) Transmission efficiency and deflection efficiency of the topology-optimized metagrating with different polarization directions; far-field profiles of transmitted light intensity at normal incidence of (b) TM and (c) TE plane wave.

    图 9  (a) 自由形状超光栅的优化演变过程; (b) 自由形状超光栅不同入射偏振的传输效率与偏折效率

    Fig. 9.  (a) Evolution of freeform metagrating; (b) transmission efficiency and deflection efficiency of the freeform metagrating with different polarization directions

    图 10  自由形状超表面的性能 (a)—(c) Py = 180 nm; (d) Py = 200 nm; (e) Py = 300 nm; (f) Py = 400 nm, 其中虚线表示正向设计的效率曲线

    Fig. 10.  Performance of freeform metasurface: (a)–(c) Py = 180 nm; (d) Py = 200 nm; (e) Py = 300 nm; (f) Py = 400 nm, where the dashed lines indicate the efficiency curves of the forward design.

    表 1  选取的不同直径TiO2圆柱的性能参数

    Table 1.  Performance parameters of selected TiO2 cylinders with different diameters.

    圆柱直径 /nm透过率相位/(º)
    510 nm852 nm510 nm852 nm
    640.9890.98845.022.6
    1060.9680.981163.469.4
    1300.9700.964285.2112.7
    下载: 导出CSV
    Baidu
  • [1]

    Yu N, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [2]

    Luo X 2019 Adv. Mater. 31 1804680Google Scholar

    [3]

    Yu Y F, Zhu A Y, Paniagua-Domínguez R, Fu Y H, Luk’yanchuk B, Kuznetsov A I 2015 Laser Photonics Rev. 9 412Google Scholar

    [4]

    Wang Y, Fan Q, Xu T 2021 Opto-Electron. Adv. 4 200008Google Scholar

    [5]

    Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H, Lin R M, Kuan C H, Li T, Wang Z, Zhu S, Tsai D P 2018 Nat. Nanotechnol. 13 227Google Scholar

    [6]

    Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar

    [7]

    Li X, Chen L, Li Y, Zhang X, Pu M, Zhao Z, Ma X, Wang Y, Hong M, Luo X 2016 Sci. Adv. 2 e1601102Google Scholar

    [8]

    Gao H, Fan X, Xiong W, Hong M 2021 Opto-Electron. Adv. 4 210030Google Scholar

    [9]

    Arbabi A, Horie Y, Bagheri M, Faraon A 2015 Nat. Nanotechnol. 10 937Google Scholar

    [10]

    Fan Q, Liu M, Zhang C, Zhu W, Wang Y, Lin P, Yan F, Chen L, Lezec H J, Lu Y, Agrawal A, Xu T 2020 Phys. Rev. Lett. 125 267402Google Scholar

    [11]

    Yue Z, Li J, Li J, Zheng C, Liu J, Wang G, Xu H, Chen M, Zhang Y, Zhang Y, Yao J 2022 Opto-Electron. Sci. 1 210014Google Scholar

    [12]

    Decker M, Staude I, Falkner M, Dominguez J, Neshev D N, Brener I, Pertsch T, Kivshar Y S 2015 Adv. Opt. Mater. 3 813Google Scholar

    [13]

    Shalaev M I, Sun J, Tsukernik A, Pandey A, Nikolskiy K, Litchinitser N M 2015 Nano Lett. 15 6261Google Scholar

    [14]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar

    [15]

    Lin D, Fan P, Hasman E, Brongersma M L 2014 Science 345 298Google Scholar

    [16]

    Xie X, Pu M, Jin J, Xu M, Guo Y, Li X, Gao P, Ma X, Luo X 2021 Phys. Rev. Lett. 126 183902Google Scholar

    [17]

    Lalanne P, Chavel P 2017 Laser Photonics Rev. 11 1600295Google Scholar

    [18]

    Khaidarov E, Hao H, Paniagua-Domínguez R, Yu Y F, Fu Y H, Valuckas V, Yap S L K, Toh Y T, Ng J S K, Kuznetsov A I 2017 Nano Lett. 17 6267Google Scholar

    [19]

    Paniagua-Domínguez R, Yu Y F, Khaidarov E, Choi S, Leong V, Bakker R M, Liang X, Fu Y H, Valuckas V, Krivitsky L A, Kuznetsov A I 2018 Nano Lett. 18 2124Google Scholar

    [20]

    Xu M, Pu M, Sang D, Zheng Y, Li X, Ma X, Guo Y, Zhang R, Luo X 2021 Opt. Express 29 10181Google Scholar

    [21]

    Xu M F, He Q, Pu M B, Zhang F, Li L, Sang D, Guo Y H, Zhang R Y, Li X, Ma X L, Luo X G 2022 Adv. Mater. 34 2108709Google Scholar

    [22]

    Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396Google Scholar

    [23]

    Molesky S, Lin Z, Piggott A Y, Jin W, Vuckovic J, Rodriguez A W 2018 Nat. Photonics 12 659Google Scholar

    [24]

    Elsawy M M R, Lanteri S, Duvigneau R, Fan J A, Genevet P 2020 Laser Photonics Rev. 14 1900445Google Scholar

    [25]

    Sell D, Yang J, Doshay S, Yang R, Fan J 2017 Nano Lett. 17 3752Google Scholar

    [26]

    Piggott A Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M, Vuckovic J 2015 Nat. Photonics 9 374Google Scholar

    [27]

    Shi Z, Zhu A Y, Li Z, Huang Y W, Chen W T, Qiu C W, Capasso F 2020 Sci. Adv. 6 eaba3367Google Scholar

    [28]

    Mansouree H K M, Arbabi E, Mcclung A, Faraon A, Arbabi A 2020 Optica 7 77Google Scholar

    [29]

    Zheng Y, Xu M, Pu M, Zhang F, Sang D, Guo Y, Li X, Ma X, Luo X 2022 Nanophotonics 11 2967Google Scholar

    [30]

    Chung Hand Miller O D 2020 Opt. Express 28 6945Google Scholar

    [31]

    Lalau-Keraly C M, Bhargava S, Miller O D, Yablonovitch E 2013 Opt. Express 21 21693Google Scholar

    [32]

    Luo X, Pu M, Zhang F, Xu M, Guo Y, Li X, Ma X 2022 J. Appl. Phys. 131 181101Google Scholar

    [33]

    付云起, 林沂, 武博, 安强, 刘燚 2022 电波科学学报 37 279Google Scholar

    Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Chin. J. Radio Sci. 37 279Google Scholar

    [34]

    林沂, 吴逢川, 毛瑞棋, 姚佳伟, 刘燚, 安强, 付云起 2022 71 170702Google Scholar

    Lin Y, Wu F C, Mao R Q, Yao J W, Liu Y, An Q, Fu Y Q 2022 Acta Phys. Sin. 71 170702Google Scholar

    [35]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [36]

    Mansouree M, McClung A, Samudrala S, Arbabi A 2021 ACS Photonics 8 455Google Scholar

    [37]

    Li L 1997 J. Opt. Soc. Am. A 14 2758Google Scholar

  • [1] 居学尉, 张林烽, 黄峰, 朱国锋, 李淑锦, 陈燕青, 王嘉勋, 钟舜聪, 陈盈, 王向峰. 数字型太赫兹带通滤波器的逆向设计及优化.  , 2024, 73(6): 060702. doi: 10.7498/aps.73.20231584
    [2] 刘金品, 王秉中, 陈传升, 王任. 基于深度物理启发神经网络的微波波导器件逆设计方法.  , 2023, 72(8): 080201. doi: 10.7498/aps.72.20230031
    [3] 张伊祎, 韦雪玲, 农洁, 马汉斯, 叶子阳, 徐文杰, 张振荣, 杨俊波. 基于直接二进制搜索算法设计的超紧凑In2Se3可调控功率分束器.  , 2023, 72(15): 154207. doi: 10.7498/aps.72.20230459
    [4] 史鹏飞, 马馨莹, 向川, 赵宏革, 李渊, 高仁璟, 刘书田. 幅值可控的逆反射和镜像反射双通道超表面结构拓扑优化设计.  , 2023, 72(24): 247801. doi: 10.7498/aps.72.20230775
    [5] 曹若琳, 彭清轩, 王金东, 陈勇杰, 黄云飞, 於亚飞, 魏正军, 张智明. 基于单光子计数反馈的低噪声光纤信道波分复用实时偏振补偿系统.  , 2022, 71(13): 130306. doi: 10.7498/aps.71.20220120
    [6] 柯航, 李培丽, 施伟华. 基于下山单纯形算法逆向设计二维光子晶体波导型1×5分束器.  , 2022, 71(14): 144204. doi: 10.7498/aps.71.20220328
    [7] 王志鹏, 王秉中, 刘金品, 王任. 实现散射场强整形的微散射体阵列逆向设计方法.  , 2021, 70(1): 010202. doi: 10.7498/aps.70.20200825
    [8] 王志鹏, 王秉中, 刘金品, 王任. 实现散射场强整形的微散射体阵列逆向设计方法.  , 2020, (): . doi: 10.7498/aps.69.20200825
    [9] 邱克鹏, 骆越, 张卫红. 新型手性电磁超材料非对称传输性能设计分析.  , 2020, 69(21): 214101. doi: 10.7498/aps.69.20200728
    [10] 应康, 桂有珍, 孙延光, 程楠, 熊晓锋, 王家亮, 杨飞, 蔡海文. 200 km沙漠链路高精度光纤时频传递关键技术研究.  , 2019, 68(6): 060602. doi: 10.7498/aps.68.20182000
    [11] 李含灵, 曹炳阳. 微纳尺度体点导热的拓扑优化.  , 2019, 68(20): 200201. doi: 10.7498/aps.68.20190923
    [12] 李宁, 吕晓静, 翁春生. 基于光强与吸收率非线性同步拟合的吸收光谱测量方法.  , 2018, 67(5): 057801. doi: 10.7498/aps.67.20171905
    [13] 莫漫漫, 马武伟, 庞永强, 陈润华, 张笑梅, 柳兆堂, 李想, 郭万涛. 基于拓扑优化设计的宽频吸波复合材料.  , 2018, 67(21): 217801. doi: 10.7498/aps.67.20181170
    [14] 崔璐, 唐义, 朱庆炜, 骆加彬, 胡珊珊. 多光谱可见光通信信道串扰分析.  , 2016, 65(9): 094208. doi: 10.7498/aps.65.094208
    [15] 罗小元, 李昊, 马巨海. 基于最小刚性图代数特性的无线网络拓扑优化算法.  , 2016, 65(24): 240201. doi: 10.7498/aps.65.240201
    [16] 李宝, 杜炳政, 朱京平. Bragg反射齿型平面凹面衍射光栅性能研究.  , 2015, 64(15): 154211. doi: 10.7498/aps.64.154211
    [17] 叶涛, 徐旭明. 高效异质结构四波长波分复用器的设计与优化.  , 2010, 59(9): 6273-6278. doi: 10.7498/aps.59.6273
    [18] 张建忠, 王安帮, 王云才. 混沌光通信与OC-48光纤通信的波分复用.  , 2009, 58(6): 3793-3798. doi: 10.7498/aps.58.3793
    [19] 李齐良, 孙丽丽, 陈均朗, 李庆山, 唐向宏, 钱 胜, 林理彬. 周期色散管理波分复用系统中交叉相位调制边带不稳定性理论分析.  , 2007, 56(2): 805-810. doi: 10.7498/aps.56.805
    [20] 秦小芸, 黄弼勤, 陈海星, 杨立功, 顾培夫. 多周期双啁啾镜结构的空间解波分复用器.  , 2004, 53(11): 3794-3799. doi: 10.7498/aps.53.3794
计量
  • 文章访问数:  4955
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-20
  • 修回日期:  2022-08-04
  • 上网日期:  2022-08-11
  • 刊出日期:  2022-11-20

/

返回文章
返回
Baidu
map