-
The volume-to-point (VP) heat conduction problem is one of the fundamental problems of cooling for electronic devices. The existed reports about the VP problem are mainly based on the Fourier’s law which works well at the macroscopic scale. However, the length scale of modern electronic devices has reduced to micro- and nano-scale, at which optimization methods that are capable of dealing with the non-Fourier heat conduction are desired now. In this paper, phonon Boltzmann transport equation (BTE) and solid isotropic material with penalization (SIMP) method are coupled to develop a topology optimization method for ballistic-diffusive heat conduction. Phonon BTE is transformed into equation of phonon radiative transport, which is solved by the discrete ordinate method. To realize the topology optimization, SIMP method is adopted to penalize the phonon extinction coefficient, which equals to the reciprocal of phonon mean-free-path, and an explicit constraint on the global gradient of the nominal material density is used to ensure the solutions being well-posed and mesh-independent. By using the developed topology optimization method, it is found that the optimal material distributions for the VP problem in ballistic-diffusive heat conduction significantly deviate from the traditional tree-like structure obtained in diffusive heat conduction, and the results vary with the Knudsen number (Kn). This is related to the different coefficient interpolation ways in the SIMP method and phonon ballistic transport. When Kn → 0, instead of converging to the conventional tree-like structure which fully stretches into the interior zone, the new method gradually produces the result obtained by the topology optimization which interpolates the reciprocal of the thermal conductivity in diffusive heat conduction. As Kn increases, the high thermal-conductive filling materials show a trend to gather around the low-temperature boundary, and there are more thick and strong trunk structures, less tiny and thin branch structures in the optimized material distributions. In addition, the ratio of the optimized average temperature to the value of the uniform material distribution
$\left( {T_{{\rm{ave}},{\rm{opt}}}^{\rm{*}}/T_{{\rm{ave}},{\rm{uni}}}^{\rm{*}}} \right)$ also increases. The dependence of the topology optimization results on Kn can be attributed to the size effect of the thermal conductivity caused by phonon ballistic transport. In the diffusive heat conduction, filling materials with different length scales have the same efficiency to build high thermal-conductive channels. However, with ballistic effect enhancing, size effect makes the effective thermal conductivities of the branch structure lower than those of the trunk structure, as the former is smaller than the latter. As a result, the branch structures are less efficient compared with the trunk structures in terms of building high thermal-conductive channels, and the optimal material distributions have more trunk structures and fewer branch structures. When the ballistic effect becomes significant enough, say at Kn = 0.1, the topology optimization gets a dough-like material distribution in which branches merge into trunks. The proposed topology optimization method have the potential to provide guidance in designing nanoscale electronic devices for improving the heat dissipation capability.-
Keywords:
- volume-to-point heat conduction problem /
- topology optimization /
- micro- and nano-scale /
- phonon Boltzmann transport equation
[1] Bagnall K R, Wang E N 2018 IEEE Trans. Comp. Pack. Man. 8 606
[2] Ahmed H E, Salman B H, Kherbeet A S, Ahmed M I 2018 Int. J. Heat Mass Transf. 118 129Google Scholar
[3] Narendran N, Gu Y, Freyssinier J P, Yu H, Deng L 2004 J. Cryst. Growth 268 449Google Scholar
[4] Pop E 2010 Nano Res. 3 147Google Scholar
[5] Garimella S V, Persoons T, Weibel J A, Gektin V 2017 IEEE Trans. Comp. Pack. Man. 7 1191
[6] Hua Y C, Li H L, Cao B Y 2019 IEEE Trans. Electron Dev. 66 3296
[7] Yang M, Cao B Y 2019 Appl. Therm. Eng. 159 113896Google Scholar
[8] Bejan A 1997 Int. J. Heat Mass Transf. 40 799Google Scholar
[9] Cheng X G, Li Z X, Guo Z Y 2003 Sci. China: Technol. Sci. 46 296
[10] Gersborg-Hansen A, Bendsøe M P, Sigmund O 2006 Struct. Multidiscip. O. 31 251Google Scholar
[11] Zhang Y C, Liu S T 2008 Heat Mass Transf. 44 1217Google Scholar
[12] Dirker J, Meyer J P 2013 J. Heat Transf. 135 111010Google Scholar
[13] Dbouk T 2017 Appl. Therm. Eng. 112 841Google Scholar
[14] Xu X H, Liang X G, Ren J X 2007 Int. J. Heat Mass Transf. 50 1675Google Scholar
[15] Sigmund O, Maute K 2013 Struct. Multidiscip. O. 48 1031Google Scholar
[16] Cahill D G, Braun P V, Chen G, Clarke D R, Fan S, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A 2014 Appl. Phys. Rev. 1 11305Google Scholar
[17] Volz S, Shiomi J, Nomura M, Miyazaki K 2016 J. Therm. Sci. Tech.-Jpn 11 T1Google Scholar
[18] Bao H, Chen J, Gu X K, Cao B Y 2018 ES Energy Environ. 1 16
[19] Xie G F, Ju Z F, Zhou K K, Wei X L, Guo Z X, Cai Y Q, Zhang G 2018 npj Comput. Mater. 4 21Google Scholar
[20] Guo Z Y 2018 ES Energy Environ. 1 4
[21] Lu Z X, Ruan X L 2019 ES Energy Environ. 4 5
[22] Yao W J, Cao B Y 2016 Phys. Lett. A 380 2105Google Scholar
[23] Ziman J M 2001 Electrons and Phonons: the Theory of Transport Phenomena in Solids (Oxford: Clarendon Press) pp1–51
[24] Chen G 2001 Phys. Rev. Lett. 86 2297Google Scholar
[25] Hua Y C, Cao B Y 2014 Int. J. Heat Mass Transf. 78 755Google Scholar
[26] Hua Y C, Cao B Y 2016 Int. J. Therm. Sci. 101 126Google Scholar
[27] Li H L, Cao B Y 2019 Nanoscale Microscale Thermophys. Eng. 23 10Google Scholar
[28] Li B W, Wang J 2003 Phys. Rev. Lett. 91 44301Google Scholar
[29] Schleeh J, Mateos J, Íñiguez-de-la-Torre I, Wadefalk N, Nilsson P A, Grahn J, Minnich A J 2014 Nat. Mater. 14 187
[30] Hua Y C, Cao B Y 2017 Nanoscale Microscale Thermophys. Eng. 3 159
[31] Li H L, Hua Y C, Cao B Y 2018 Int. J. Heat Mass Transf. 127 1014
[32] Luckyanova M N, Garg J, Esfarjani K, Jandl A, Bulsara M T, Schmidt A J, Minnich A J, Chen S, Dresselhaus M S, Ren Z 2012 Science 338 936Google Scholar
[33] Chen X K, Xie Z X, Zhou W X, Tang L M, Chen K Q 2016 Appl. Phys. Lett. 109 23101Google Scholar
[34] Chen X K, Liu J, Peng Z H, Du D, Chen K Q 2017 Appl. Phys. Lett. 110 91907Google Scholar
[35] Xie G F, Ding D, Zhang G 2018 Adv. Phys. X 3 1480417
[36] Kazan M, Guisbiers G, Pereira S, Correia M R, Masri P, Bruyant A, Volz S, Royer P 2010 J. Appl. Phys. 107 83503Google Scholar
[37] Ju Y S, Goodson K E 1999 Appl. Phys. Lett. 74 3005Google Scholar
[38] Evgrafov A, Maute K, Yang R G, Dunn M L 2009 Int. J. Numer. Meth. Eng. 77 285Google Scholar
[39] Murthy J Y, Mathur S R 2002 J. Heat Transf. 124 1176Google Scholar
[40] Narumanchi S V, Murthy J Y, Amon C H 2003 J. Heat Transf. 125 896Google Scholar
[41] Hamian S, Yamada T, Faghri M, Park K 2015 Int. J. Heat Mass Transf. 80 781Google Scholar
[42] Majumdar A 1993 J. Heat Transf. 115 7Google Scholar
[43] Chen G 1998 Phys. Rev. B 57 14958Google Scholar
[44] Sobolev S L 2018 Phys. Rev. E 97 22122Google Scholar
[45] 华钰超, 董源, 曹炳阳 2013 62 244401Google Scholar
Hua Y C, Dong Y, Cao B Y 2013 Acta Phys. Sin. 62 244401Google Scholar
[46] Hua Y C, Cao B Y 2016 Int. J. Heat Mass Transf. 92 995Google Scholar
[47] Peterson R B 1994 J. Heat Transf. 116 815Google Scholar
[48] 杜建镔 2015 结构优化及其在振动和声学设计中的应用 (北京: 清华大学出版社) 第115页
Du J B 2015 Structural Optimization and Its Applications in Vibration and Acoustic Designs (Beijing: Tsinghua University Press) p115 (in Chinese)
[49] Bendsøe M P 1989 Struct. Optimization 1 193Google Scholar
[50] Sigmund O, Petersson J 1998 Struct. Optimization 16 68Google Scholar
[51] Zhang Y C, Liu S T 2008 Prog. Nat. Sci. 18 665Google Scholar
[52] Petersson J, Sigmund O 1998 Int. J. Numer. Meth. Eng. 41 1417Google Scholar
[53] Bendsoe M P, Sigmund O 2004 Topology Optimization: Theory, Methods, and Applications (Berlin: Springer) p17
[54] Svanberg K 1987 Int. J. Numer. Meth. Eng. 24 359Google Scholar
[55] Hua Y C, Cao B Y 2018 J. Appl. Phys. 123 114304Google Scholar
[56] Alaili K, Ordonez-Miranda J, Ezzahri Y 2018 Int. J. Therm. Sci. 131 40Google Scholar
-
表 1 不同材料分布在不同努森数下对应的无量纲温度平均值
Table 1. The average dimensionless temperature of different material distributions at different Knudsen numbers.
Kn $T_{{\rm{ave}}}^*$(括号内数据为$T_{{\rm{ave}}}^*/T_{{\rm{ave}},{\rm{uni}}}^*$) 均匀分布 分布1 分布2 分布3 分布4 分布5 0.002 0.98(100.0%) 0.33 (33.7%) 0.21 (21.4%) 0.11 (11.2%) 0.12 (12.2%) 0.21 (21.4%) 0.01 1.07(100.0%) 0.57 (53.2%) 0.41(38.3%) 0.30 (28.0%) 0.29 (27.1%) 0.33 (30.8%) 0.1 2.29(100.0%) 1.97 (86.0%) 1.84 (80.3%) 1.64 (71.6%) 1.62 (70.7%) 1.60 (69.9%) 注: 分布1和2分别是扩散导热条件下插值k的拓扑优化结果、插值${k^{ - 1}}$的拓扑优化结果, 分布3—5分别是弹道-扩散导热条件下$Kn$为0.002, 0.01, 0.1时的拓扑优化结果. -
[1] Bagnall K R, Wang E N 2018 IEEE Trans. Comp. Pack. Man. 8 606
[2] Ahmed H E, Salman B H, Kherbeet A S, Ahmed M I 2018 Int. J. Heat Mass Transf. 118 129Google Scholar
[3] Narendran N, Gu Y, Freyssinier J P, Yu H, Deng L 2004 J. Cryst. Growth 268 449Google Scholar
[4] Pop E 2010 Nano Res. 3 147Google Scholar
[5] Garimella S V, Persoons T, Weibel J A, Gektin V 2017 IEEE Trans. Comp. Pack. Man. 7 1191
[6] Hua Y C, Li H L, Cao B Y 2019 IEEE Trans. Electron Dev. 66 3296
[7] Yang M, Cao B Y 2019 Appl. Therm. Eng. 159 113896Google Scholar
[8] Bejan A 1997 Int. J. Heat Mass Transf. 40 799Google Scholar
[9] Cheng X G, Li Z X, Guo Z Y 2003 Sci. China: Technol. Sci. 46 296
[10] Gersborg-Hansen A, Bendsøe M P, Sigmund O 2006 Struct. Multidiscip. O. 31 251Google Scholar
[11] Zhang Y C, Liu S T 2008 Heat Mass Transf. 44 1217Google Scholar
[12] Dirker J, Meyer J P 2013 J. Heat Transf. 135 111010Google Scholar
[13] Dbouk T 2017 Appl. Therm. Eng. 112 841Google Scholar
[14] Xu X H, Liang X G, Ren J X 2007 Int. J. Heat Mass Transf. 50 1675Google Scholar
[15] Sigmund O, Maute K 2013 Struct. Multidiscip. O. 48 1031Google Scholar
[16] Cahill D G, Braun P V, Chen G, Clarke D R, Fan S, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A 2014 Appl. Phys. Rev. 1 11305Google Scholar
[17] Volz S, Shiomi J, Nomura M, Miyazaki K 2016 J. Therm. Sci. Tech.-Jpn 11 T1Google Scholar
[18] Bao H, Chen J, Gu X K, Cao B Y 2018 ES Energy Environ. 1 16
[19] Xie G F, Ju Z F, Zhou K K, Wei X L, Guo Z X, Cai Y Q, Zhang G 2018 npj Comput. Mater. 4 21Google Scholar
[20] Guo Z Y 2018 ES Energy Environ. 1 4
[21] Lu Z X, Ruan X L 2019 ES Energy Environ. 4 5
[22] Yao W J, Cao B Y 2016 Phys. Lett. A 380 2105Google Scholar
[23] Ziman J M 2001 Electrons and Phonons: the Theory of Transport Phenomena in Solids (Oxford: Clarendon Press) pp1–51
[24] Chen G 2001 Phys. Rev. Lett. 86 2297Google Scholar
[25] Hua Y C, Cao B Y 2014 Int. J. Heat Mass Transf. 78 755Google Scholar
[26] Hua Y C, Cao B Y 2016 Int. J. Therm. Sci. 101 126Google Scholar
[27] Li H L, Cao B Y 2019 Nanoscale Microscale Thermophys. Eng. 23 10Google Scholar
[28] Li B W, Wang J 2003 Phys. Rev. Lett. 91 44301Google Scholar
[29] Schleeh J, Mateos J, Íñiguez-de-la-Torre I, Wadefalk N, Nilsson P A, Grahn J, Minnich A J 2014 Nat. Mater. 14 187
[30] Hua Y C, Cao B Y 2017 Nanoscale Microscale Thermophys. Eng. 3 159
[31] Li H L, Hua Y C, Cao B Y 2018 Int. J. Heat Mass Transf. 127 1014
[32] Luckyanova M N, Garg J, Esfarjani K, Jandl A, Bulsara M T, Schmidt A J, Minnich A J, Chen S, Dresselhaus M S, Ren Z 2012 Science 338 936Google Scholar
[33] Chen X K, Xie Z X, Zhou W X, Tang L M, Chen K Q 2016 Appl. Phys. Lett. 109 23101Google Scholar
[34] Chen X K, Liu J, Peng Z H, Du D, Chen K Q 2017 Appl. Phys. Lett. 110 91907Google Scholar
[35] Xie G F, Ding D, Zhang G 2018 Adv. Phys. X 3 1480417
[36] Kazan M, Guisbiers G, Pereira S, Correia M R, Masri P, Bruyant A, Volz S, Royer P 2010 J. Appl. Phys. 107 83503Google Scholar
[37] Ju Y S, Goodson K E 1999 Appl. Phys. Lett. 74 3005Google Scholar
[38] Evgrafov A, Maute K, Yang R G, Dunn M L 2009 Int. J. Numer. Meth. Eng. 77 285Google Scholar
[39] Murthy J Y, Mathur S R 2002 J. Heat Transf. 124 1176Google Scholar
[40] Narumanchi S V, Murthy J Y, Amon C H 2003 J. Heat Transf. 125 896Google Scholar
[41] Hamian S, Yamada T, Faghri M, Park K 2015 Int. J. Heat Mass Transf. 80 781Google Scholar
[42] Majumdar A 1993 J. Heat Transf. 115 7Google Scholar
[43] Chen G 1998 Phys. Rev. B 57 14958Google Scholar
[44] Sobolev S L 2018 Phys. Rev. E 97 22122Google Scholar
[45] 华钰超, 董源, 曹炳阳 2013 62 244401Google Scholar
Hua Y C, Dong Y, Cao B Y 2013 Acta Phys. Sin. 62 244401Google Scholar
[46] Hua Y C, Cao B Y 2016 Int. J. Heat Mass Transf. 92 995Google Scholar
[47] Peterson R B 1994 J. Heat Transf. 116 815Google Scholar
[48] 杜建镔 2015 结构优化及其在振动和声学设计中的应用 (北京: 清华大学出版社) 第115页
Du J B 2015 Structural Optimization and Its Applications in Vibration and Acoustic Designs (Beijing: Tsinghua University Press) p115 (in Chinese)
[49] Bendsøe M P 1989 Struct. Optimization 1 193Google Scholar
[50] Sigmund O, Petersson J 1998 Struct. Optimization 16 68Google Scholar
[51] Zhang Y C, Liu S T 2008 Prog. Nat. Sci. 18 665Google Scholar
[52] Petersson J, Sigmund O 1998 Int. J. Numer. Meth. Eng. 41 1417Google Scholar
[53] Bendsoe M P, Sigmund O 2004 Topology Optimization: Theory, Methods, and Applications (Berlin: Springer) p17
[54] Svanberg K 1987 Int. J. Numer. Meth. Eng. 24 359Google Scholar
[55] Hua Y C, Cao B Y 2018 J. Appl. Phys. 123 114304Google Scholar
[56] Alaili K, Ordonez-Miranda J, Ezzahri Y 2018 Int. J. Therm. Sci. 131 40Google Scholar
Catalog
Metrics
- Abstract views: 9781
- PDF Downloads: 179
- Cited By: 0