Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Stability of interphase between solid state electrolyte and electrode

Feng Wu-Liang Wang Fei Zhou Xing Ji Xiao Han Fu-Dong Wang Chun-Sheng

Citation:

Stability of interphase between solid state electrolyte and electrode

Feng Wu-Liang, Wang Fei, Zhou Xing, Ji Xiao, Han Fu-Dong, Wang Chun-Sheng
PDF
HTML
Get Citation
  • Compared with the lithium-ion battery based on the non-aqueous electrolyte, all-solid-state lithium battery has received much attention and been widely studied due to its superiority in both safety and energy density. The electrochemical window of solid electrolyte determines whether the electrolyte remains stable during the cycling of the high-voltage battery. Current solid electrolytes typically have narrow electrochemical windows, thereby limiting their coupling with high voltage cathodes and lithium metal anode. Therefore, the formation of the stable interphase determines the stabilities of the all-solid-state batteries. Here in this work, both the experimental and theoretical progress of the electrochemical stability window of solid-state electrolytes are summarized. Besides, the experimental achievements in improving the stability of the interphase are also mentioned. On this basis, the strategies of constructing dynamically stable interphase and preventing the lithium dendrite branch crystal from forming are put forward. The future research direction of the interphase construction in all-solid-state batteries is also presented.
      Corresponding author: Wang Fei, feiw@fudan.edu.cn ; Wang Chun-Sheng, cswang@umd.edu
    [1]

    Dunn B, Kamath H, Tarascon J M 2011 Nature 334 928Google Scholar

    [2]

    Janek J, Zeier W G 2016 Nat. Energy 1 1Google Scholar

    [3]

    Armand M, Tarascon J M 2008 Nature 451 652Google Scholar

    [4]

    Goodenough J B 2012 J. Solid State Electrochem. 16 2019Google Scholar

    [5]

    Soloveichik G L 2014 Nature 505 163

    [6]

    Qu X, Zhang X, Gao Y, Hu J, Gao M, Pan H, Liu Y 2019 ACS Sustainable. Chem. Eng. 7 19167Google Scholar

    [7]

    Pang Y, Wang X, Shi X, Xu F, Sun L, Yang J, Zheng S 2020 Adv. Energy Mater. 10 1809219Google Scholar

    [8]

    López-Aranguren P, Berti N, Dao A H, Zhang J, Cuevas F, Latroche M, Jordy C 2017 J. Power Sources 357 56Google Scholar

    [9]

    Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J G 2014 Energy Environ. Sci. 7 513Google Scholar

    [10]

    Zhang Z, Shao Y, Lotsch B, Hu Y S, Li H, Janek J, Nazar L F, Nan C W, Maier J, Armand M, Chen L 2018 Energy Environ. Sci. 11 1945Google Scholar

    [11]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nat. Mater. 10 682Google Scholar

    [12]

    Murugan R, Thangadurai V, Weppner W 2007 Angew. Chem. Int. Ed. Engl. 46 7778Google Scholar

    [13]

    Jena A, Meesala Y, Hu S F, Chang H, Liu R S 2018 ACS Energy Lett. 3 2775Google Scholar

    [14]

    Du M, Liao K, Lu Q, Shao Z 2019 Energy Environ. Sci. 12 1780Google Scholar

    [15]

    Schwietert T K, Arszelewska V A, Wang C, Yu C, Vasileiadis A, de Klerk N J J, Hageman J, Hupfer T, Kerkamm I, Xu Y, van der Maas E, Kelder E M, Ganapathy S, Wagemaker M 2020 Nat. Mater. 19 428Google Scholar

    [16]

    Nolan A M, Zhu Y, He X, Bai Q, Mo Y 2018 Joule 2 2016Google Scholar

    [17]

    Zhu Y, He X, Mo Y 2015 ACS Appl. Mater. Interfaces 7 23685Google Scholar

    [18]

    Rabenau A 1982 Solid State Ionics 6 277Google Scholar

    [19]

    Park K, Yu B C, Goodenough J B 2016 Adv. Energy Mater. 6 1502534Google Scholar

    [20]

    Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M 2014 Energy Environ. Sci. 7 627

    [21]

    Boulineau S, Courty M, Tarascon J M, Viallet V 2012 Solid State Ionics 221 1.1016/j.ssi.2012.06.008Google Scholar

    [22]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K 2011 Nature Materials 10 682

    [23]

    Han F, Gao T, Zhu Y, Gaskell K J, Wang C 2015 Adv. Mater. 27 3473Google Scholar

    [24]

    Ohta S , Tetsuro; Asaoka, Takahiko 2011 J. Power Sources 196 3342Google Scholar

    [25]

    Han F, Zhu Y, He X, Mo Y, Wang C 2016 Adv. Energy Mater. 6 1501590Google Scholar

    [26]

    Feng J K, Yan B G, Liu J C, Lai M O, Li L 2013 Mater. Technol. 28 276Google Scholar

    [27]

    Yu X, Bates J B, Jellison G E, Hart F X 1997 J. Electrochem. Soc. 144 524Google Scholar

    [28]

    Xu K 2014 Chem. Rev. 114 11503Google Scholar

    [29]

    Mo Y, Ong S P, Ceder G 2014 Chem. Mater. 26 5208Google Scholar

    [30]

    Vardar G, Bowman W J, Lu Q, Wang J, Chater R J, Aguadero A, Seibert R, Terry J, Hunt A, Waluyo I, Fong D D, Jarry A, Crumlin E J, Hellstrom S L, Chiang Y M, Yildiz B 2018 Chem. Mater. 30 6259Google Scholar

    [31]

    Li Y, Zhou W, Xin S, Li S, Zhu J, Lu X, Cui Z, Jia Q, Zhou J, Zhao Y, Goodenough J B 2016 Angew. Chem. Int. Ed. Engl. 128 10119Google Scholar

    [32]

    Swamy T, Chen X, Chiang Y M 2019 Chem. Mater. 31 707Google Scholar

    [33]

    Liu H, Ren Z, Zhang X, Hu J, Gao M, Pan H, Liu Y 2019 Chem. Mater. 32 2Google Scholar

    [34]

    Das S, Ngene P, Norby P, Vegge T, de Jongh P E, Blanchard D 2016 J. Electrochem. Soc. 163 A2029Google Scholar

    [35]

    Zhu Y, Connell J G, Tepavcevic S, Zapol P, Garcia‐Mendez R, Taylor N J, Sakamoto J, Ingram B J, Curtiss L A, Freeland J W, Fong D D, Markovic N M 2019 Adv. Energy Mater. 9Google Scholar

    [36]

    Yan K, Lee H W, Gao T, Zheng G, Yao H, Wang H, Lu Z, Zhou Y, Liang Z, Liu Z, Chu S, Cui Y 2014 Nano Lett. 14 6016Google Scholar

    [37]

    Cheng Q, Li A, Li N, Li S, Zangiabadi A, Li T D, Huang W, Li A C, Jin T, Song Q, Xu W, Ni N, Zhai H, Dontigny M, Zaghib K, Chuan X, Su D, Yan K, Yang Y 2019 Joule 3 1510Google Scholar

    [38]

    Zhao F, Sun Q, Yu C, Zhang S, Adair K, Wang S, Liu Y, Zhao Y, Liang J, Wang C, Li X, Li X, Xia W, Li R, Huang H, Zhang L, Zhao S, Lu S, Sun X 2020 ACS Energy Lett. 5 1035Google Scholar

    [39]

    Alexander G V, Patra S, Sobhan Raj S V, Sugumar M K, Ud Din M M, Murugan R 2018 J. Power Sources 396 764Google Scholar

    [40]

    Feng W, Dong X, Li P, Wang Y, Xia Y 2019 J. Power Sources 419 91Google Scholar

    [41]

    Luo W, Gong Y, Zhu Y, Fu K K, Dai J, Lacey S D, Wang C, Liu B, Han X, Mo Y, Wachsman E D, Hu L 2016 J. Am. Chem. Soc. 138 12258Google Scholar

    [42]

    Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu K K, Pastel G, Lin C F, Mo Y, Wachsman E D, Hu L 2017 Adv. Mater. 29 1606042Google Scholar

    [43]

    He M, Cui Z, Chen C, Li Y, Guo X 2018 J. Mater. Chem. A 6 24Google Scholar

    [44]

    Han X, Gong Y, Fu K K, He X, Hitz G T, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman E D, Hu L 2017 Nat. Mater. 16 572Google Scholar

    [45]

    Wang C, Gong Y, Liu B, Fu K, Yao Y, Hitz E, Li Y, Dai J, Xu S, Luo W, Wachsman E D, Hu L 2017 Nano Lett. 17 565Google Scholar

    [46]

    Lu Y, Huang X, Ruan Y, Wang Q, Kun R, Yang J, Wen Z 2018 J. Mater. Chem. A 6 18853Google Scholar

    [47]

    Duan J, Wu W, Nolan A M, Wang T, Wen J, Hu C, Mo Y, Luo W, Huang Y 2019 Adv. Mater. 31 1807243Google Scholar

    [48]

    Takano A, Oikawa I, Kamegawa A, Takamura H 2016 Solid State Ionics 285 90Google Scholar

    [49]

    Yoshida K, Suzuki S, Kawaji J, Unemoto A, Orimo S I 2016 Solid State Ionics 285 192Google Scholar

    [50]

    Xiang M, Zhang Y, Zhu Y, Guo X, Chen J, Li L 2018 Solid State Ionics 280 44Google Scholar

    [51]

    Takahashi K, Maekawa H, Takamura H 2014 Solid State Ionics 262 179Google Scholar

    [52]

    Fan X, Ji X, Han F, Yue J, Chen J, Chen L, Deng T, Jiang J, Wang C 2018 Sci. Adv. eaau92454Google Scholar

    [53]

    Xu H, Li Y, Zhou A, Wu N, Xin S, Li Z, Goodenough J B 2018 Nano Lett. 18 7414Google Scholar

    [54]

    Li Y, Xu B, Xu H, Duan H, Lu X, Xin S, Zhou W, Xue L, Fu G, Manthiram A, Goodenough J B 2017 Angew. Chem. Int. Ed. Engl. 129 771Google Scholar

    [55]

    Huo H, Chen Y, Li R, Zhao N, Luo J, Pereira da Silva J G, Mücke R, Kaghazchi P, Guo X, Sun X 2020 Energy Environ. Sci. 13 127Google Scholar

    [56]

    Hu B, Yu W, Xu B, Zhang X, Liu T, Shen Y, Lin Y H, Nan C W, Li L 2019 ACS Appl. Mater. Interfaces 11 34939Google Scholar

    [57]

    Fu J, Yu P, Zhang N, Ren G, Zheng S, Huang W, Long X, Li H, Liu X 2019 Energy Environ. Sci. 12 1404Google Scholar

    [58]

    Banerjee A, Tang H, Wang X, Cheng J H, Nguyen H, Zhang M, Tan D H S, Wynn T A, Wu E A, Doux J M, Wu T, Ma L, Sterbinsky G E, D'Souza M S, Ong S P, Meng Y S 2019 ACS Appl. Mater. Interfaces 11 43138Google Scholar

    [59]

    Zhang W, Leichtweiss T, Culver S P, Koerver R, Das D, Weber D A, Zeier W G, Janek J 2017 ACS Appl. Mater. Interfaces 9 35888Google Scholar

    [60]

    Auvergniot J, Cassel A, Ledeuil J-B, Viallet V, Seznec V, Dedryvère R 2017 Chem. Mater. 29 3883Google Scholar

    [61]

    Park K, Yu B-C, Jung J-W, Li Y, Zhou W, Gao H, Son S, Goodenough J B 2016 Chem. Mater. 28 21Google Scholar

    [62]

    Koerver R, Walther F, Aygün I, Sann J, Dietrich C, Zeier W G, Janek J 2017 J. Mater. Chem. A 5 22750Google Scholar

    [63]

    Dewald G F, Ohno S, Kraft M A, Koerver R, Till P, Vargas-Barbosa N M, Janek J, Zeier W G 2019 Chem. Mater. 31 8328Google Scholar

    [64]

    Maier J 1995 Prog. Solid State Chem. 23 171Google Scholar

    [65]

    Takada K, Ohno T, Ohta N, Ohnishi T, Tanaka Y 2017 ACS Energy Lett. 3 98Google Scholar

    [66]

    Cheng Z, Liu M, Ganapathy S, Li C, Li Z, Zhang X, He P, Zhou H, Wagemaker M 2020 Joule 4 1Google Scholar

    [67]

    de Klerk N J J, Wagemaker M 2018 ACS Appl. Energy Mater. 1 5609Google Scholar

    [68]

    Zhang W, Schröder D, Arlt T, Manke I, Koerver R, Pinedo R, Weber D A, Sann J, Zeier W G, Janek J 2017 J. Mater. Chem. A 5 9929Google Scholar

    [69]

    McGrogan F P S, Tushar B, S R, Eggleton E P L, Chen X W, Chiang Y M, Van V, Krystyn J 2017 Adv. Energy Mater. 7 1602011Google Scholar

    [70]

    Feng W, Lai Z, Dong X, Li P, Wang Y, Xia Y 2020 iScience 23 101071Google Scholar

    [71]

    Frank P McGrogan, Shilpa, N R, Yet-Ming Chiang, Krystyn J V V 2018 J. Electrochem. Soc. 165 A2458Google Scholar

    [72]

    Meethong N, Huang H Y S, Speakman S A, Carter W C, Chiang Y M 2007 Adv. Funct. Mater. 17 1115Google Scholar

    [73]

    Shao Y, Wang H, Gong Z, Wang D, Zheng B, Zhu J, Lu Y, Hu Y S, Guo X, Li H, Huang X, Yang Y, Nan C W, Chen L 2018 ACS Energy Lett. 3 1212Google Scholar

    [74]

    Schlem R, Muy S, Prinz N, Banik A, Shao H Y, Zobel M, Zeier W G 2019 Adv. Energy Mater. 10 1903719Google Scholar

    [75]

    Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S 2018 Adv. Mater. 30 1803075Google Scholar

    [76]

    Li X, Liang J, Luo J, Norouzi Banis M, Wang C, Li W, Deng S, Yu C, Zhao F, Hu Y, Sham T K, Zhang L, Zhao S, Lu S, Huang H, Li R, Adair K R, Sun X 2019 Energy Environ. Sci. 12 2665Google Scholar

    [77]

    Hansel C, Afyon S, Rupp J L 2016 Nanoscale 8 18412Google Scholar

    [78]

    Yan X, Li Z, Wen Z, Han W 2017 J. Phys. Chem. C 121 1431Google Scholar

    [79]

    Kim K H, Iriyama Y, Yamamoto K, Kumazaki S, Asaka T, Tanabe K, Fisher C A J, Hirayama T, Murugan R, Ogumi Z 2011 J. Power Sources 196 764Google Scholar

    [80]

    Miara L, Windmuller A, Tsai C L, Richards W D, Ma Q, Uhlenbruck S, Guillon O, Ceder G 2016 ACS Appl. Mater. Interfaces 8 26842Google Scholar

    [81]

    Ohta S, Komagata S, Seki J, Saeki T, Morishita S, Asaoka T 2013 J. Power Sources 238 53Google Scholar

    [82]

    Han F, Yue J, Chen C, Zhao N, Fan X, Ma Z, Gao T, Wang F, Guo X, Wang C 2018 Joule 2 497Google Scholar

    [83]

    Ohzuku T, Ueda A 1994 J. Electrochem. Soc. 141 A2972Google Scholar

    [84]

    Kasemchainan J, Zekoll S, Spencer J D, Ning Z, Hartley G O, Marrow J, Bruce P G 2019 Nat. Mater. 18 1105Google Scholar

    [85]

    Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C, Xiao R 2016 J. Chin. Phys. B 25 018212Google Scholar

    [86]

    Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M, Sasaki T 2007 Electrochem. Commun. 9 1486Google Scholar

    [87]

    Ito Y, Sakurai Y, Yubuchi S, Sakuda A, Hayashi A, Tatsumisago M 2015 J. Electrochem. Soc. 162 A1610Google Scholar

    [88]

    Jung S H, Oh K, Nam Y J, Oh D Y, Brüner P, Kang K, Jung Y S 2018 Chem. Mater. 30 8190Google Scholar

    [89]

    Woo J H, Trevey J E, Cavanagh A S, Choi Y S, Kim S C, George S M, Oh K H, Lee S H 2012 J. Electrochem. Soc. 159 A7Google Scholar

    [90]

    Wang C, Liang J, Jiang M, Li X, Mukherjee S, Adair K, Zheng M, Zhao Y, Zhao F, Zhang S, Li R, Huang H, Zhao S, Zhang L, Lu S, Singh C V, Sun X 2020 Nano Energy 76 105015Google Scholar

    [91]

    Wang C, Li X, Zhao Y, Banis M N, Liang J, Li X, Sun Y, Adair K R, Sun Q, Liu Y 2019 Small Methods 3 1900261Google Scholar

    [92]

    Sakuda A, Hayashi A, Ohtomo T, Hama S, Tatsumisago M 2010 Electrochem. Solid State Lett. 13 A73Google Scholar

    [93]

    Tan D H S, Wu E A, Nguyen H, Chen Z, Marple M A T, Doux J M, Wang X, Yang H, Banerjee A, Meng Y S 2019 ACS Energy Lett. 4 2418Google Scholar

  • 图 1  (a) 传统固体电解质的循环扫描伏安法测试装置示意图; (b) LGPS[22], (c) LLZO[24]以及(d) Li2OHCl[31]电解质传统CV测试曲线

    Figure 1.  (a) Schematic diagram of conventional cyclic scanning voltammetry device for solid-state electrolyte; CV testing curves for (b) LGPS[22], (c) LLZO[24] and Li2OHCl[31] solid-state electrolyte.

    图 2  电解质电化学窗口测试装置结构示意图

    Figure 2.  Schematic diagram of the testing device for the electrochemical stability window.

    图 3  三类电解质/电极界面化学稳定性示意图

    Figure 3.  Schematic diagram of chemical stability of the three kinds of electrolyte/electrode interfaces.

    图 4  (a) 氮化硼(BN)中间层稳定LATP/Li[37]与(b) LiF中间层稳定LPSCl/Li[38]界面示意图

    Figure 4.  Schematic diagram of the (a) LATP/Li interface stabilization by BN[37] and (b) LPSCl/Li interface stabilization by LiF[38], respectively.

    图 5  分别使用铟和固体电解质/C复合材料作为对电极和工作电极, 对Li10GeP2S12进行循环伏安(0.1 mV·s–1)测试图[62]

    Figure 5.  CV curve (0.1 mV·s–1) of Li10GeP2S12 with Indium counter electrode and solid electrolyte/C composites working electrode[62].

    图 6  (a) 活性物质循环过程中体积应变对正极界面接触的影响以及低杨氏模量中间层维持界面牢固接触示意图; (b) 负极界面锂剥离态导致间隙的产生以及加压或合金支架维持界面接触示意图.

    Figure 6.  (a) Schematic diagram of the effect of volume changes of the active materials during charge/discharge on the contact of cathode interface, and solid contact maintenance by low Young's modulus interlayer; (b) schematic diagram of the gap generated by Li stripping and solid contact maintenance by pressure or alloy frameworks.

    图 7  基于材料数据库的热力学计算 (a)相稳定性: 被研究的亚稳态γ相能量与同成分下热力学平衡相的能量差(energy above hull)是衡量γ相稳定性的重要指标之一; (b) 巨电势相图(grand potential phase diagram): 衡量相稳定性在不同环境(比如对锂电位)下的变化; (c) 界面稳定性: 两相在不同比例时的二元相图及其相应的热力学反应焓变

    Figure 7.  Schematic illustrations of thermodynamic calculations: (a) Schematic of an energy convex hull, indicating the energy above hull Ehull of a metastable γ phase and its decomposition reaction into the phase equilibria; (b) schematic of a GPPD, illustrating the evolution of phase equilibria under changing Li chemical potential mLi and an applied voltage 4; (c) mutual reaction energy versus composition of a pseudo-binary composed of LiCoO2 and Li3PS4. The star corresponds to the predicted phase equilibria with decomposition enthalpy DHD at the mixing ratio.

    表 1  各类固体电解质电化学窗口的理论计算值与报道值概括

    Table 1.  Summary of the theoretical calculations and the reported values of electrochemical windows for different solid-state electrolytes.

    电解质/SEI理论计算值/V实验值/V测试方法
    LiF0—6.36[16]
    Li2S0—2.01[17]
    Li3N0—0.44[18]0—0.9[19]Li/液体电解质/Li3N-C-PTFE
    70Li2S-30P2S52.28—2.31[17]0—5[20]Li/LPS/不锈钢
    Li6PS5Cl1.71—2.01[17]0—7[21]Li/LPS/不锈钢
    1.25—2.5[15]Li-In/ LPSC/LPSC-C
    Li10GeP2S121.71—2.14[17]0—5[22]Li/LGPS/Au
    1—2.7[23]Li/LGPS/LGPS-C/Pt
    Li7La3Zr2O120.05—2.91[17]0—6[24]Li/LLZO/Au
    0—4[25]Li/LLZO/LLZO-C/Pt
    Li1.5Al0.5Ge1.5(PO4)32.7—4.27[17]0—6[26]Li/LAGP/Pt
    LiPON0.68—2.63[17]0—5.5[27]Li/LiPON/Pt
    DownLoad: CSV

    表 2  常见固态电解质、正极材料以及界面修饰层的杨氏模量

    Table 2.  The Young’s modulus of the conventional solid-state electrolytes, cathodes and interface modification layers.

    LLZOLPSLi2OHClLiMn2O4LiFePO4石墨AlGeSiZnO
    E/GPa150[12]19[69]7.8[70]100[71]124[72]27[73]69[73]80[73]107[73]135[73]
    DownLoad: CSV
    Baidu
  • [1]

    Dunn B, Kamath H, Tarascon J M 2011 Nature 334 928Google Scholar

    [2]

    Janek J, Zeier W G 2016 Nat. Energy 1 1Google Scholar

    [3]

    Armand M, Tarascon J M 2008 Nature 451 652Google Scholar

    [4]

    Goodenough J B 2012 J. Solid State Electrochem. 16 2019Google Scholar

    [5]

    Soloveichik G L 2014 Nature 505 163

    [6]

    Qu X, Zhang X, Gao Y, Hu J, Gao M, Pan H, Liu Y 2019 ACS Sustainable. Chem. Eng. 7 19167Google Scholar

    [7]

    Pang Y, Wang X, Shi X, Xu F, Sun L, Yang J, Zheng S 2020 Adv. Energy Mater. 10 1809219Google Scholar

    [8]

    López-Aranguren P, Berti N, Dao A H, Zhang J, Cuevas F, Latroche M, Jordy C 2017 J. Power Sources 357 56Google Scholar

    [9]

    Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J G 2014 Energy Environ. Sci. 7 513Google Scholar

    [10]

    Zhang Z, Shao Y, Lotsch B, Hu Y S, Li H, Janek J, Nazar L F, Nan C W, Maier J, Armand M, Chen L 2018 Energy Environ. Sci. 11 1945Google Scholar

    [11]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nat. Mater. 10 682Google Scholar

    [12]

    Murugan R, Thangadurai V, Weppner W 2007 Angew. Chem. Int. Ed. Engl. 46 7778Google Scholar

    [13]

    Jena A, Meesala Y, Hu S F, Chang H, Liu R S 2018 ACS Energy Lett. 3 2775Google Scholar

    [14]

    Du M, Liao K, Lu Q, Shao Z 2019 Energy Environ. Sci. 12 1780Google Scholar

    [15]

    Schwietert T K, Arszelewska V A, Wang C, Yu C, Vasileiadis A, de Klerk N J J, Hageman J, Hupfer T, Kerkamm I, Xu Y, van der Maas E, Kelder E M, Ganapathy S, Wagemaker M 2020 Nat. Mater. 19 428Google Scholar

    [16]

    Nolan A M, Zhu Y, He X, Bai Q, Mo Y 2018 Joule 2 2016Google Scholar

    [17]

    Zhu Y, He X, Mo Y 2015 ACS Appl. Mater. Interfaces 7 23685Google Scholar

    [18]

    Rabenau A 1982 Solid State Ionics 6 277Google Scholar

    [19]

    Park K, Yu B C, Goodenough J B 2016 Adv. Energy Mater. 6 1502534Google Scholar

    [20]

    Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M 2014 Energy Environ. Sci. 7 627

    [21]

    Boulineau S, Courty M, Tarascon J M, Viallet V 2012 Solid State Ionics 221 1.1016/j.ssi.2012.06.008Google Scholar

    [22]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K 2011 Nature Materials 10 682

    [23]

    Han F, Gao T, Zhu Y, Gaskell K J, Wang C 2015 Adv. Mater. 27 3473Google Scholar

    [24]

    Ohta S , Tetsuro; Asaoka, Takahiko 2011 J. Power Sources 196 3342Google Scholar

    [25]

    Han F, Zhu Y, He X, Mo Y, Wang C 2016 Adv. Energy Mater. 6 1501590Google Scholar

    [26]

    Feng J K, Yan B G, Liu J C, Lai M O, Li L 2013 Mater. Technol. 28 276Google Scholar

    [27]

    Yu X, Bates J B, Jellison G E, Hart F X 1997 J. Electrochem. Soc. 144 524Google Scholar

    [28]

    Xu K 2014 Chem. Rev. 114 11503Google Scholar

    [29]

    Mo Y, Ong S P, Ceder G 2014 Chem. Mater. 26 5208Google Scholar

    [30]

    Vardar G, Bowman W J, Lu Q, Wang J, Chater R J, Aguadero A, Seibert R, Terry J, Hunt A, Waluyo I, Fong D D, Jarry A, Crumlin E J, Hellstrom S L, Chiang Y M, Yildiz B 2018 Chem. Mater. 30 6259Google Scholar

    [31]

    Li Y, Zhou W, Xin S, Li S, Zhu J, Lu X, Cui Z, Jia Q, Zhou J, Zhao Y, Goodenough J B 2016 Angew. Chem. Int. Ed. Engl. 128 10119Google Scholar

    [32]

    Swamy T, Chen X, Chiang Y M 2019 Chem. Mater. 31 707Google Scholar

    [33]

    Liu H, Ren Z, Zhang X, Hu J, Gao M, Pan H, Liu Y 2019 Chem. Mater. 32 2Google Scholar

    [34]

    Das S, Ngene P, Norby P, Vegge T, de Jongh P E, Blanchard D 2016 J. Electrochem. Soc. 163 A2029Google Scholar

    [35]

    Zhu Y, Connell J G, Tepavcevic S, Zapol P, Garcia‐Mendez R, Taylor N J, Sakamoto J, Ingram B J, Curtiss L A, Freeland J W, Fong D D, Markovic N M 2019 Adv. Energy Mater. 9Google Scholar

    [36]

    Yan K, Lee H W, Gao T, Zheng G, Yao H, Wang H, Lu Z, Zhou Y, Liang Z, Liu Z, Chu S, Cui Y 2014 Nano Lett. 14 6016Google Scholar

    [37]

    Cheng Q, Li A, Li N, Li S, Zangiabadi A, Li T D, Huang W, Li A C, Jin T, Song Q, Xu W, Ni N, Zhai H, Dontigny M, Zaghib K, Chuan X, Su D, Yan K, Yang Y 2019 Joule 3 1510Google Scholar

    [38]

    Zhao F, Sun Q, Yu C, Zhang S, Adair K, Wang S, Liu Y, Zhao Y, Liang J, Wang C, Li X, Li X, Xia W, Li R, Huang H, Zhang L, Zhao S, Lu S, Sun X 2020 ACS Energy Lett. 5 1035Google Scholar

    [39]

    Alexander G V, Patra S, Sobhan Raj S V, Sugumar M K, Ud Din M M, Murugan R 2018 J. Power Sources 396 764Google Scholar

    [40]

    Feng W, Dong X, Li P, Wang Y, Xia Y 2019 J. Power Sources 419 91Google Scholar

    [41]

    Luo W, Gong Y, Zhu Y, Fu K K, Dai J, Lacey S D, Wang C, Liu B, Han X, Mo Y, Wachsman E D, Hu L 2016 J. Am. Chem. Soc. 138 12258Google Scholar

    [42]

    Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu K K, Pastel G, Lin C F, Mo Y, Wachsman E D, Hu L 2017 Adv. Mater. 29 1606042Google Scholar

    [43]

    He M, Cui Z, Chen C, Li Y, Guo X 2018 J. Mater. Chem. A 6 24Google Scholar

    [44]

    Han X, Gong Y, Fu K K, He X, Hitz G T, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman E D, Hu L 2017 Nat. Mater. 16 572Google Scholar

    [45]

    Wang C, Gong Y, Liu B, Fu K, Yao Y, Hitz E, Li Y, Dai J, Xu S, Luo W, Wachsman E D, Hu L 2017 Nano Lett. 17 565Google Scholar

    [46]

    Lu Y, Huang X, Ruan Y, Wang Q, Kun R, Yang J, Wen Z 2018 J. Mater. Chem. A 6 18853Google Scholar

    [47]

    Duan J, Wu W, Nolan A M, Wang T, Wen J, Hu C, Mo Y, Luo W, Huang Y 2019 Adv. Mater. 31 1807243Google Scholar

    [48]

    Takano A, Oikawa I, Kamegawa A, Takamura H 2016 Solid State Ionics 285 90Google Scholar

    [49]

    Yoshida K, Suzuki S, Kawaji J, Unemoto A, Orimo S I 2016 Solid State Ionics 285 192Google Scholar

    [50]

    Xiang M, Zhang Y, Zhu Y, Guo X, Chen J, Li L 2018 Solid State Ionics 280 44Google Scholar

    [51]

    Takahashi K, Maekawa H, Takamura H 2014 Solid State Ionics 262 179Google Scholar

    [52]

    Fan X, Ji X, Han F, Yue J, Chen J, Chen L, Deng T, Jiang J, Wang C 2018 Sci. Adv. eaau92454Google Scholar

    [53]

    Xu H, Li Y, Zhou A, Wu N, Xin S, Li Z, Goodenough J B 2018 Nano Lett. 18 7414Google Scholar

    [54]

    Li Y, Xu B, Xu H, Duan H, Lu X, Xin S, Zhou W, Xue L, Fu G, Manthiram A, Goodenough J B 2017 Angew. Chem. Int. Ed. Engl. 129 771Google Scholar

    [55]

    Huo H, Chen Y, Li R, Zhao N, Luo J, Pereira da Silva J G, Mücke R, Kaghazchi P, Guo X, Sun X 2020 Energy Environ. Sci. 13 127Google Scholar

    [56]

    Hu B, Yu W, Xu B, Zhang X, Liu T, Shen Y, Lin Y H, Nan C W, Li L 2019 ACS Appl. Mater. Interfaces 11 34939Google Scholar

    [57]

    Fu J, Yu P, Zhang N, Ren G, Zheng S, Huang W, Long X, Li H, Liu X 2019 Energy Environ. Sci. 12 1404Google Scholar

    [58]

    Banerjee A, Tang H, Wang X, Cheng J H, Nguyen H, Zhang M, Tan D H S, Wynn T A, Wu E A, Doux J M, Wu T, Ma L, Sterbinsky G E, D'Souza M S, Ong S P, Meng Y S 2019 ACS Appl. Mater. Interfaces 11 43138Google Scholar

    [59]

    Zhang W, Leichtweiss T, Culver S P, Koerver R, Das D, Weber D A, Zeier W G, Janek J 2017 ACS Appl. Mater. Interfaces 9 35888Google Scholar

    [60]

    Auvergniot J, Cassel A, Ledeuil J-B, Viallet V, Seznec V, Dedryvère R 2017 Chem. Mater. 29 3883Google Scholar

    [61]

    Park K, Yu B-C, Jung J-W, Li Y, Zhou W, Gao H, Son S, Goodenough J B 2016 Chem. Mater. 28 21Google Scholar

    [62]

    Koerver R, Walther F, Aygün I, Sann J, Dietrich C, Zeier W G, Janek J 2017 J. Mater. Chem. A 5 22750Google Scholar

    [63]

    Dewald G F, Ohno S, Kraft M A, Koerver R, Till P, Vargas-Barbosa N M, Janek J, Zeier W G 2019 Chem. Mater. 31 8328Google Scholar

    [64]

    Maier J 1995 Prog. Solid State Chem. 23 171Google Scholar

    [65]

    Takada K, Ohno T, Ohta N, Ohnishi T, Tanaka Y 2017 ACS Energy Lett. 3 98Google Scholar

    [66]

    Cheng Z, Liu M, Ganapathy S, Li C, Li Z, Zhang X, He P, Zhou H, Wagemaker M 2020 Joule 4 1Google Scholar

    [67]

    de Klerk N J J, Wagemaker M 2018 ACS Appl. Energy Mater. 1 5609Google Scholar

    [68]

    Zhang W, Schröder D, Arlt T, Manke I, Koerver R, Pinedo R, Weber D A, Sann J, Zeier W G, Janek J 2017 J. Mater. Chem. A 5 9929Google Scholar

    [69]

    McGrogan F P S, Tushar B, S R, Eggleton E P L, Chen X W, Chiang Y M, Van V, Krystyn J 2017 Adv. Energy Mater. 7 1602011Google Scholar

    [70]

    Feng W, Lai Z, Dong X, Li P, Wang Y, Xia Y 2020 iScience 23 101071Google Scholar

    [71]

    Frank P McGrogan, Shilpa, N R, Yet-Ming Chiang, Krystyn J V V 2018 J. Electrochem. Soc. 165 A2458Google Scholar

    [72]

    Meethong N, Huang H Y S, Speakman S A, Carter W C, Chiang Y M 2007 Adv. Funct. Mater. 17 1115Google Scholar

    [73]

    Shao Y, Wang H, Gong Z, Wang D, Zheng B, Zhu J, Lu Y, Hu Y S, Guo X, Li H, Huang X, Yang Y, Nan C W, Chen L 2018 ACS Energy Lett. 3 1212Google Scholar

    [74]

    Schlem R, Muy S, Prinz N, Banik A, Shao H Y, Zobel M, Zeier W G 2019 Adv. Energy Mater. 10 1903719Google Scholar

    [75]

    Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S 2018 Adv. Mater. 30 1803075Google Scholar

    [76]

    Li X, Liang J, Luo J, Norouzi Banis M, Wang C, Li W, Deng S, Yu C, Zhao F, Hu Y, Sham T K, Zhang L, Zhao S, Lu S, Huang H, Li R, Adair K R, Sun X 2019 Energy Environ. Sci. 12 2665Google Scholar

    [77]

    Hansel C, Afyon S, Rupp J L 2016 Nanoscale 8 18412Google Scholar

    [78]

    Yan X, Li Z, Wen Z, Han W 2017 J. Phys. Chem. C 121 1431Google Scholar

    [79]

    Kim K H, Iriyama Y, Yamamoto K, Kumazaki S, Asaka T, Tanabe K, Fisher C A J, Hirayama T, Murugan R, Ogumi Z 2011 J. Power Sources 196 764Google Scholar

    [80]

    Miara L, Windmuller A, Tsai C L, Richards W D, Ma Q, Uhlenbruck S, Guillon O, Ceder G 2016 ACS Appl. Mater. Interfaces 8 26842Google Scholar

    [81]

    Ohta S, Komagata S, Seki J, Saeki T, Morishita S, Asaoka T 2013 J. Power Sources 238 53Google Scholar

    [82]

    Han F, Yue J, Chen C, Zhao N, Fan X, Ma Z, Gao T, Wang F, Guo X, Wang C 2018 Joule 2 497Google Scholar

    [83]

    Ohzuku T, Ueda A 1994 J. Electrochem. Soc. 141 A2972Google Scholar

    [84]

    Kasemchainan J, Zekoll S, Spencer J D, Ning Z, Hartley G O, Marrow J, Bruce P G 2019 Nat. Mater. 18 1105Google Scholar

    [85]

    Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C, Xiao R 2016 J. Chin. Phys. B 25 018212Google Scholar

    [86]

    Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M, Sasaki T 2007 Electrochem. Commun. 9 1486Google Scholar

    [87]

    Ito Y, Sakurai Y, Yubuchi S, Sakuda A, Hayashi A, Tatsumisago M 2015 J. Electrochem. Soc. 162 A1610Google Scholar

    [88]

    Jung S H, Oh K, Nam Y J, Oh D Y, Brüner P, Kang K, Jung Y S 2018 Chem. Mater. 30 8190Google Scholar

    [89]

    Woo J H, Trevey J E, Cavanagh A S, Choi Y S, Kim S C, George S M, Oh K H, Lee S H 2012 J. Electrochem. Soc. 159 A7Google Scholar

    [90]

    Wang C, Liang J, Jiang M, Li X, Mukherjee S, Adair K, Zheng M, Zhao Y, Zhao F, Zhang S, Li R, Huang H, Zhao S, Zhang L, Lu S, Singh C V, Sun X 2020 Nano Energy 76 105015Google Scholar

    [91]

    Wang C, Li X, Zhao Y, Banis M N, Liang J, Li X, Sun Y, Adair K R, Sun Q, Liu Y 2019 Small Methods 3 1900261Google Scholar

    [92]

    Sakuda A, Hayashi A, Ohtomo T, Hama S, Tatsumisago M 2010 Electrochem. Solid State Lett. 13 A73Google Scholar

    [93]

    Tan D H S, Wu E A, Nguyen H, Chen Z, Marple M A T, Doux J M, Wang X, Yang H, Banerjee A, Meng Y S 2019 ACS Energy Lett. 4 2418Google Scholar

  • [1] Li Mei, Zhong Shu-Ying, Hu Jun-Ping, Sun Bao-Zhen, Xu Bo. Migration properties of Li+ in Li1+x AlxTi2–x(PO4)3. Acta Physica Sinica, 2024, 73(13): 138201. doi: 10.7498/aps.73.20240044
    [2] Geng Xiao-Bin, Li Ding-Gen, Xu Bo. Mechanical stress-thermodynamic phase-field simulation of lithium dendrite growth in solid electrolyte battery. Acta Physica Sinica, 2023, 72(22): 220201. doi: 10.7498/aps.72.20230824
    [3] Yang Yuan, Hu Nai-Fang, Jin Yong-Cheng, Ma Jun, Cui Guang-Lei. Research advance of lithium-rich cathode materials in all-solid-state lithium batteries. Acta Physica Sinica, 2023, 72(11): 118801. doi: 10.7498/aps.72.20230258
    [4] Hua Biao, Sun Bao-Zhen, Wang Jing-Xuan, Shi Jing, Xu Bo. Effects of Li content on stability, electronic and Li-ion diffusion properties of Li3xLa(2/3)–x(1/3)–2xTiO3 surface. Acta Physica Sinica, 2023, 72(2): 028201. doi: 10.7498/aps.72.20221808
    [5] He Bing, Lian Yu-Xiang, Wu Mu-Sheng, Luo Wen-Wei, Yang Shen-Bo, Ouyang Chu-Ying. Improvement of performance of halide solid electrolyte by tuning cations. Acta Physica Sinica, 2022, 71(20): 208201. doi: 10.7498/aps.71.20221050
    [6] Wu Cheng-Wei, Xie Guo-Feng, Zhou Wu-Xing. Frontiers of investigation on thermal transport in all-solid-state lithium-ion battery. Acta Physica Sinica, 2022, 71(2): 026501. doi: 10.7498/aps.71.20211887
    [7] Lu Jing-Yu, Ke Cheng-Zhi, Gong Zheng-Liang, Li De-Ping, Ci Li-Jie, Zhang Li, Zhang Qiao-Bao. Application of in-situ characterization techniques in all-solid-state lithium batteries. Acta Physica Sinica, 2021, 70(19): 198102. doi: 10.7498/aps.70.20210531
    [8] You Yi-Wei, Cui Jian-Wen, Zhang Xiao-Feng, Zheng Feng, Wu Shun-Qing, Zhu Zi-Zhong. Properties of lithium phosphorus oxynitride (LiPON) solid electrolyte - Li anode interfaces. Acta Physica Sinica, 2021, 70(13): 136801. doi: 10.7498/aps.70.20202214
    [9] Xing Li-Dan, Xie Qi-Ming, Li Wei-Shan. Research progress on electrochemical properties of electrolyte and its interphase. Acta Physica Sinica, 2020, 69(22): 228205. doi: 10.7498/aps.69.20201553
    [10] Zhang Qiao-Bao, Gong Zheng-Liang, Yang Yong. Advance in interface and characterizations of sulfide solid electrolyte materials. Acta Physica Sinica, 2020, 69(22): 228803. doi: 10.7498/aps.69.20201581
    [11] Yu Qi-Peng, Liu Qi, Wang Zi-Qiang, Li Bao-Hua. Anode interface in all-solid-state lithium-metal batteries: Challenges and strategies. Acta Physica Sinica, 2020, 69(22): 228805. doi: 10.7498/aps.69.20201218
    [12] Peng Lin-Feng, Zeng Zi-Qi, Sun Yu-Long, Jia Huan-Huan, Xie Jia. Facile synthesis and electrochemical properties of Na-rich anti-perovskite solid electrolytes. Acta Physica Sinica, 2020, 69(22): 228201. doi: 10.7498/aps.69.20201227
    [13] Zhang Nian, Ren Guo-Xi, Zhang Hui, Zhou Deng, Liu Xiao-Song. Research progress of interface problems and optimization of garnet-type solid electrolyte. Acta Physica Sinica, 2020, 69(22): 228806. doi: 10.7498/aps.69.20201533
    [14] Gong Yue, Gu Lin. Structural evolution and matter transportation of the interface in all-solid-state battery. Acta Physica Sinica, 2020, 69(22): 226801. doi: 10.7498/aps.69.20201160
    [15] Guo Li-Qiang, Tao Jian, Wen Juan, Cheng Guang-Gui, Yuan Ning-Yi, Ding Jian-Ning. Corn starch solid electrolyte gated proton/electron hybrid synaptic transistor. Acta Physica Sinica, 2017, 66(16): 168501. doi: 10.7498/aps.66.168501
    [16] Guo Wen-Hao, Xiao Hui, Men Chuan-Ling. Effects of protons within SiO2 solid-state electrolyte on performances of oxide electric-double-layer thin film transistor. Acta Physica Sinica, 2015, 64(7): 077302. doi: 10.7498/aps.64.077302
    [17] Liu Wang, Wu Qi-Qi, Chen Shun-Li, Zhu Jing-Jun, An Zhu, Wang Yuan. Helium effect on the stability of the interface of Cu/W nanomultilayer. Acta Physica Sinica, 2012, 61(17): 176802. doi: 10.7498/aps.61.176802
    [18] Wang Zhi-Jun, Wang Jin-Cheng, Yang Gen-Cang. The asymptotic analysis of interfacial stability with surface tension anisotropy for directional solidification of alloys. Acta Physica Sinica, 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [19] Lin Xin, Li Tao, Wang Lin-Lin, Su Yun-Peng, Huang Wei-Dong. Time-dependent interface stability during directional solidification of a single phase alloy(Ⅰ) Theoritical. Acta Physica Sinica, 2004, 53(11): 3971-3977. doi: 10.7498/aps.53.3971
    [20] Huang Wei-Dong, Lin Xin, Li Tao, Wang Lin-Lin, Y. Inatomi. A time-dependent interface stability during directional solidification of a single phase alloy(Ⅱ)Comparison with experimental results. Acta Physica Sinica, 2004, 53(11): 3978-3983. doi: 10.7498/aps.53.3978
Metrics
  • Abstract views:  20767
  • PDF Downloads:  1141
  • Cited By: 0
Publishing process
  • Received Date:  18 September 2020
  • Accepted Date:  07 November 2020
  • Available Online:  23 November 2020
  • Published Online:  20 November 2020

/

返回文章
返回
Baidu
map