搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Li含量对Li3xLa(2/3)–x(1/3)–2xTiO3固态电解质表面稳定性、电子结构及Li离子输运性质的影响

华彪 孙宝珍 王靖轩 石晶 徐波

引用本文:
Citation:

Li含量对Li3xLa(2/3)–x(1/3)–2xTiO3固态电解质表面稳定性、电子结构及Li离子输运性质的影响

华彪, 孙宝珍, 王靖轩, 石晶, 徐波

Effects of Li content on stability, electronic and Li-ion diffusion properties of Li3xLa(2/3)–x(1/3)–2xTiO3 surface

Hua Biao, Sun Bao-Zhen, Wang Jing-Xuan, Shi Jing, Xu Bo
PDF
HTML
导出引用
  • Li3xLa(2/3)–x(1/3)–2xTiO3 (LLTO)是一类颇具前景的锂离子电池固态电解质. 本文采用第一性原理结合分子动力学方法对贫锂相和富锂相两种类型的LLTO表面进行研究, 分析表面Li含量对其稳定性、电子结构及Li离子输运性质的影响. 结果表明, 具有La/O/Li-原子终端的(001)面为最稳定晶面. 对于LLTO (001)面, 当贫锂相/富锂相终端Li含量为0.17/0.33, 0.29/0.40, 0.38/0.45时, 其表面结构更为稳定. 电子结构分析表明, 随着Li含量的增大, 不论是贫锂相还是富锂相, 其(001)表面均发现金属至半导体的转变. Li离子输运性质的研究结果表明, 贫锂相和富锂相LLTO (001)表面均具有沿ab平面的二维扩散通道, 且当终端Li含量分别达到0.38和0.40时具有最大的Li离子扩散系数及最低的Li离子扩散能垒, 最低扩散能垒分别为0.42 eV和0.30 eV. 因而, 改变终端Li含量有利于提高LLTO(001)表面稳定性、打开表面带隙、改善Li离子迁移性能, 这有助于抑制LLTO表面锂枝晶的生长.
    Li3xLa(2/3)–x(1/3)–2xTiO3(LLTO) is a promising solid-state electrolyte for Li-ion batteries. We study the effect of Li content on the stability, electronic and Li-ion diffusion properties of LLTO surface based on first-principles and molecular dynamics simulations. We consider both Li-poor and Li-rich LLTO surfaces. The results show that La/O/Li-terminated LLTO (001) is the most stable crystal surface. Further, LLTO (001) surface gives better stability when Li content is 0.17, 0.29, and 0.38 for Li-poor phase, while 0.33, 0.40, and 0.45 for Li-rich phase . Electronic structure calculations infer that in both Li-poor and Li-rich LLTO(001) surfaces there occurs the transition from conductor to semiconductor with the increase of Li content. Besides, we find that Li-ion always keeps a two-dimensional diffusion path for different Li content. As Li content increases from 0.17 to 0.38 for Li-poor LLTO (001) surface, Li-ion diffusion coefficient increases gradually and Li-ion diffusion barrier decreases from 0.58 eV to 0.42 eV. Differently, when Li content increases from 0.33 to 0.45 for Li-rich LLTO(001) surface, it does not follow a monotonic trend for diffusion coefficient nor for diffusion barrier of Li-ion. In this case, Li-ion diffusion coefficient is the largest and Li-ion diffusion barrier is the lowest (0.30 eV) when Li content is 0.40. Thus, our study suggests that by varying Li content, the stability, band gap, and Li-ion diffusion performance of LLTO (001) can be changed favorably. These advantages can inhibit the formation of lithium dendrites on the LLTO (001) surface.
      通信作者: 孙宝珍, bzsun@jxnu.edu.cn ; 徐波, bxu4@mail.ustc.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 12064015, 12164019)和江西省自然科学基金 (批准号: 20212BAB201017)资助的课题.
      Corresponding author: Sun Bao-Zhen, bzsun@jxnu.edu.cn ; Xu Bo, bxu4@mail.ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12064015, 12164019) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20212BAB201017).
    [1]

    Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Nat. Mater. 18 1278Google Scholar

    [2]

    Manthiram A, Yu X W, Wang S F 2017 Nat. Rev. Mater. 2 1Google Scholar

    [3]

    Zhao Q, Stalin S, Zhao C-Z, Archer L A 2020 Nat. Rev. Mater. 5 229Google Scholar

    [4]

    Wu M S, Xu B, Lei X L, Huang K, Ouyang C Y 2018 J. Mater. Chem. A 6 1150Google Scholar

    [5]

    Yan S, Yim C H, Pankov V, Bauer M, Baranova E, Weck A, Merati A, Abu-Lebdeh Y 2021 Batteries 7 75Google Scholar

    [6]

    Sun Y D, Guan P Y, Liu Y J, Xu H L, Li S, Chu D W 2018 Crit. Rev. Solid State 44 265Google Scholar

    [7]

    Hua C, Fang X, Wang Z, Chen L 2013 Electrochem. Commun. 32 5Google Scholar

    [8]

    Stramare S, Thangadurai V, Weppner W 2003 Chem. Mater. 15 3974Google Scholar

    [9]

    Chen C H, Amine K 2001 Solid State Ion. 144 51Google Scholar

    [10]

    Inaguma o, Liquan C, Itoh M, Nakamura T 1993 Solid State Commun. 86 689Google Scholar

    [11]

    Han F D, Westover A S, Yue J, Fan X L, Wang F, Chi M F, Leonard D N, Dudney N, Wang H, Wang C S 2019 Nat. Energy 4 187Google Scholar

    [12]

    Wu B B, Wang S Y, Lochala J S, Desrochers D, Liu B, Zhang W Q, Yang J H, Xiao J 2018 Energy Environ. Sci. 11 1803Google Scholar

    [13]

    Cervantes J M, Pilo J, Rosas-Huerta J L, Antonio J E, Muñoz H, Oviedo-Roa R, Carvajal E 2021 J. Electrochem. Soc. 168 080516Google Scholar

    [14]

    Zhao Q S, Xue H T, Tang F L, Wei C D 2021 Solid State Ion. 373 115797Google Scholar

    [15]

    Cheng L, Chen W, Kunz M, Persson K, Tamura N, Chen G Y, Doeff M 2015 ACS Appl. Mater. Interface 7 2073Google Scholar

    [16]

    Belousov V V 2007 Russ. J. Phys. Chem. A 81 441Google Scholar

    [17]

    Wu M S, Xu B, Luo W W, Sun B Z, Shi J, Ouyang C Y 2020 Appl. Surf. Sci. 510 145394Google Scholar

    [18]

    Jung S C, Han Y K 2011 Phys. Chem. Chem. Phys. 13 21282Google Scholar

    [19]

    Nakayama M, Usui T, Uchimoto Y, Wakihara M, Yamamoto M 2005 J. Phys. Chem. B 109 4135Google Scholar

    [20]

    Inaguma Y, Itoh M 1996 Solid State Ion. 86-88 257

    [21]

    Maruyama Y, Ogawa H, Kamimura M, Kobayashi M 2006 J. Phys. Soc. Jpn. 75 064602Google Scholar

    [22]

    Ren Y Y, Shen Y, Lin Y H, Nan C W 2019 ACS Appl. Mater. Interface 11 5928Google Scholar

    [23]

    Catti M 2008 J. Phys. Chem. C 112 11068Google Scholar

    [24]

    Qian D N, Xu B, Cho H M, Hatsukade T, Carroll K J, Meng Y S 2012 Chem. Mater. 24 2744Google Scholar

    [25]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [26]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [28]

    Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys. 105 9982Google Scholar

    [29]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [30]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [31]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [32]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [33]

    Chen C H, Du J C, Chen L Q 2015 J. Am. Ceram. Soc. 98 534Google Scholar

    [34]

    Symington A R, Molinari M, Dawson J A, Statham J M, Purton J, Canepa P, Parker S C 2021 J. Mater. Chem. A 9 6487Google Scholar

    [35]

    Ono S, Seki Y, Kashida S, Kobayashi M 2006 Solid State Ion. 177 1145Google Scholar

    [36]

    Kim D H, Kim D H, Jeong Y C, Seo H I, Kim Y C 2012 Ceram. Int. 38 S S467

    [37]

    Bohnke O 2008 Solid State Ion. 179 9Google Scholar

  • 图 1  未优化的LLTO体相结构 (a) Li0.125La0.625TiO3; (b) Li0.35La0.55TiO3

    Fig. 1.  Unrelaxed bulk structures of LLTO: (a) Li0.125La0.625TiO3; (b) Li0.35La0.55TiO3.

    图 2  具有La/O/Li-终端的LLTO(001)表面结构图 (a), (b)分别为贫锂相和富锂相的侧视图; (c), (d) 分别为贫锂相和富锂相的俯视图

    Fig. 2.  La/O/Li-terminated LLTO(001) surfaces: (a), (b) The side views of Li-poor and Li-rich phases, respectively; (c), (d) the top views of Li-poor and Li-rich phases, respectively.

    图 3  不同Li含量下贫锂相和富锂相LLTO (001)面的表面能 (Esurf)

    Fig. 3.  Surface energy (Esurf) of Li-poor and Li-rich LLTO (001) surfaces at different Li contents.

    图 4  贫锂相和富锂相LLTO (001)面在极值点附近的总态密度

    Fig. 4.  Total density state (TDOS) of Li-poor and Li-rich LLTO (001) surfaces near the minimum point.

    图 5  Li在贫锂相和富锂相LLTO(001)表面的顺序吸附能(Eads). 蓝色字体代表Li吸附能

    Fig. 5.  The adsorption energies (Eads) per Li on the poor-Li and rich-Li LLTO(001) surfaces. The blue texts denote the values of Eads

    图 6  LLTO(001)表面的总态密度和投影态密度 (a) 贫锂相; (b)富锂相

    Fig. 6.  TDOS and PDOS of LLTO(001) surfaces: (a) Li-poor phase; (b) Li-rich phase.

    图 7  800 K温度下Li+沿不同轴向的MSD随时间的变化曲线图 (a1)—(a4)贫锂相; (b1)—(b4)富锂相. 插图代表Li+的运动轨迹

    Fig. 7.  The time dependence of MSDs for Li ions in a, b, and c directions: (a1)–(a4) Li-poor phase; (b1)–(b4)Li-rich phase. The inset shows the corresponding trajectories of Li+.

    图 8  LLTO体相及不同Li含量的LLTO(001)表面结构中Li+的扩散系数与温度关系

    Fig. 8.  Arrhenius plot of Li+ diffusion coefficient for the LLTO bulk and its (001) surface with different lithium contents.

    表 1  不同泛函计算所得贫锂相LLTO体相的晶格参数(a, b, c)及带隙 (Eg)

    Table 1.  The calculated lattice parameters (a, b, c) and band gap (Eg) of Li-poor LLTO bulk with different functional.

    FunctionalabcEg
    GGA+PBE7.8427.7717.8431.630
    GGA+PW917.8357.7687.8381.585
    LDA7.7057.6387.6971.624
    PBE+U (UTi = 2.3 eV)7.8927.8227.8711.861
    PBE+U (UTi = 2.5 eV)7.8977.8277.8341.851
    PBE+U (UTi = 4.0 eV)7.9357.8527.8991.853
    B3LYP[23]7.8287.8127.902
    PBE+U (ULa = 7.5 eV)[24]7.8287.7547.871
    下载: 导出CSV

    表 2  富锂相LLTO不同表面终端的表面能(Esurf)和化学式(SFs), 括号中的值对应贫锂相

    Table 2.  Surface energy (Esurf) and structural formulas (SFs) of Li-rich LLTO surfaces with different terminations. The data of Li-poor LLTO (001) is shown in parentheses.

    FacetsTerminationSFsEsurf/(J·m–2)
    (001)La/O-Li3La11Ti10O35 (Li2La14Ti16O52)2.89 (1.95)
    Ti/O-Li3La6Ti15O40 (LiLa9Ti16O44)1.40 (1.33)
    La/O/Li-Li10La12Ti20O65 (Li3La11Ti16O52)0.69 (0.78)
    Li/O-Li11La11Ti20O650.78
    (010)La/O-Li7La13Ti20O640.93
    Ti/O-Li7La11Ti24O680.87
    La/O/Li-Li9La13Ti20O640.82
    (100)La/O-Li7La13Ti20O641.05
    Ti/O-Li7La11Ti24O680.90
    La/O/Li-Li9La13Ti20O640.83
    (110)O-Li7La11Ti20O680.98
    Ti/La/O-Li7La13Ti24O643.40
    Ti/O/La/Li-Li9La14Ti24O721.21
    (111)La/O-Li9La13Ti24O722.21
    Ti/O-Li7La11Ti20O600.85
    Ti/O/La/Li-Li7La11Ti20O600.93
    下载: 导出CSV

    表 3  不同温度下贫锂相和富锂相LLTO(001)表面结构中全部Li+的最小(Dmin)和最大(Dmax)扩散系数

    Table 3.  The minimum (Dmin) and maximum (Dmax) Li+ diffusion coefficient of Li-poor and Li-rich LLTO(001) surfaces at different temperatures.

    T/KLi-poor phase/(cm2·S–1)Li-rich phase/(cm2·S–1)
    DminDmaxDminDmax
    5501.06×10–72.37×10–77.02×10–71.14×10–6
    6002.02×10–78.12×10–79.96×10–72.53×10–6
    6503.84×10–71.46×10–62.26×10–63.38×10–6
    7001.77×10–62.01×10–63.34×10–64.80×10–6
    7502.22×10–63.27×10–64.69×10–67.08×10–6
    8004.03×10–64.28×10–66.33×10–69.36×10–6
    下载: 导出CSV
    Baidu
  • [1]

    Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Nat. Mater. 18 1278Google Scholar

    [2]

    Manthiram A, Yu X W, Wang S F 2017 Nat. Rev. Mater. 2 1Google Scholar

    [3]

    Zhao Q, Stalin S, Zhao C-Z, Archer L A 2020 Nat. Rev. Mater. 5 229Google Scholar

    [4]

    Wu M S, Xu B, Lei X L, Huang K, Ouyang C Y 2018 J. Mater. Chem. A 6 1150Google Scholar

    [5]

    Yan S, Yim C H, Pankov V, Bauer M, Baranova E, Weck A, Merati A, Abu-Lebdeh Y 2021 Batteries 7 75Google Scholar

    [6]

    Sun Y D, Guan P Y, Liu Y J, Xu H L, Li S, Chu D W 2018 Crit. Rev. Solid State 44 265Google Scholar

    [7]

    Hua C, Fang X, Wang Z, Chen L 2013 Electrochem. Commun. 32 5Google Scholar

    [8]

    Stramare S, Thangadurai V, Weppner W 2003 Chem. Mater. 15 3974Google Scholar

    [9]

    Chen C H, Amine K 2001 Solid State Ion. 144 51Google Scholar

    [10]

    Inaguma o, Liquan C, Itoh M, Nakamura T 1993 Solid State Commun. 86 689Google Scholar

    [11]

    Han F D, Westover A S, Yue J, Fan X L, Wang F, Chi M F, Leonard D N, Dudney N, Wang H, Wang C S 2019 Nat. Energy 4 187Google Scholar

    [12]

    Wu B B, Wang S Y, Lochala J S, Desrochers D, Liu B, Zhang W Q, Yang J H, Xiao J 2018 Energy Environ. Sci. 11 1803Google Scholar

    [13]

    Cervantes J M, Pilo J, Rosas-Huerta J L, Antonio J E, Muñoz H, Oviedo-Roa R, Carvajal E 2021 J. Electrochem. Soc. 168 080516Google Scholar

    [14]

    Zhao Q S, Xue H T, Tang F L, Wei C D 2021 Solid State Ion. 373 115797Google Scholar

    [15]

    Cheng L, Chen W, Kunz M, Persson K, Tamura N, Chen G Y, Doeff M 2015 ACS Appl. Mater. Interface 7 2073Google Scholar

    [16]

    Belousov V V 2007 Russ. J. Phys. Chem. A 81 441Google Scholar

    [17]

    Wu M S, Xu B, Luo W W, Sun B Z, Shi J, Ouyang C Y 2020 Appl. Surf. Sci. 510 145394Google Scholar

    [18]

    Jung S C, Han Y K 2011 Phys. Chem. Chem. Phys. 13 21282Google Scholar

    [19]

    Nakayama M, Usui T, Uchimoto Y, Wakihara M, Yamamoto M 2005 J. Phys. Chem. B 109 4135Google Scholar

    [20]

    Inaguma Y, Itoh M 1996 Solid State Ion. 86-88 257

    [21]

    Maruyama Y, Ogawa H, Kamimura M, Kobayashi M 2006 J. Phys. Soc. Jpn. 75 064602Google Scholar

    [22]

    Ren Y Y, Shen Y, Lin Y H, Nan C W 2019 ACS Appl. Mater. Interface 11 5928Google Scholar

    [23]

    Catti M 2008 J. Phys. Chem. C 112 11068Google Scholar

    [24]

    Qian D N, Xu B, Cho H M, Hatsukade T, Carroll K J, Meng Y S 2012 Chem. Mater. 24 2744Google Scholar

    [25]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [26]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [28]

    Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys. 105 9982Google Scholar

    [29]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [30]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [31]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [32]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [33]

    Chen C H, Du J C, Chen L Q 2015 J. Am. Ceram. Soc. 98 534Google Scholar

    [34]

    Symington A R, Molinari M, Dawson J A, Statham J M, Purton J, Canepa P, Parker S C 2021 J. Mater. Chem. A 9 6487Google Scholar

    [35]

    Ono S, Seki Y, Kashida S, Kobayashi M 2006 Solid State Ion. 177 1145Google Scholar

    [36]

    Kim D H, Kim D H, Jeong Y C, Seo H I, Kim Y C 2012 Ceram. Int. 38 S S467

    [37]

    Bohnke O 2008 Solid State Ion. 179 9Google Scholar

  • [1] 周斌, 肖事成, 王一楠, 张晓毓, 钟雪, 马丹, 戴赢, 范志强, 唐贵平. VS2作为锂离子电池负极材料的第一性原理研究.  , 2024, 73(11): 113101. doi: 10.7498/aps.73.20231681
    [2] 李梅, 钟淑英, 胡军平, 孙宝珍, 徐波. 固态电解质Li1+xAlxTi2–x (PO4)3中 Li+的迁移特性.  , 2024, 73(13): 138201. doi: 10.7498/aps.73.20240044
    [3] 史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠. 锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算.  , 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [4] 杨源, 胡乃方, 金永成, 马君, 崔光磊. 富锂正极材料在全固态锂电池中的研究进展.  , 2023, 72(11): 118801. doi: 10.7498/aps.72.20230258
    [5] 何兵, 练宇翔, 吴木生, 罗文崴, 杨慎博, 欧阳楚英. 阳离子调控对卤化物固态电解质性能的改善.  , 2022, 71(20): 208201. doi: 10.7498/aps.71.20221050
    [6] 吴成伟, 谢国锋, 周五星. 全固态锂离子电池内部热输运研究前沿.  , 2022, 71(2): 026501. doi: 10.7498/aps.71.20211887
    [7] 周逸凡, 杨慕紫, 佘峰权, 龚力, 张晓琪, 陈建, 宋树芹, 谢方艳. X射线光电子能谱在固态锂离子电池界面研究中的应用.  , 2021, 70(17): 178801. doi: 10.7498/aps.70.20210180
    [8] 彭劼扬, 王家海, 沈斌, 李浩亮, 孙昊明. 纳米颗粒的表面效应和电极颗粒间挤压作用对锂离子电池电压迟滞的影响.  , 2019, 68(9): 090202. doi: 10.7498/aps.68.20182302
    [9] 林传金, 郑锋, 朱梓忠. 锂离子电池正极材料Li2FeO2的电子结构性质和Li扩散.  , 2019, 68(15): 157201. doi: 10.7498/aps.68.20190213
    [10] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究.  , 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [11] 宋旭, 陆勇俊, 石明亮, 赵翔, 王峰会. 集流体塑性变形对锂离子电池双层电极中锂扩散和应力的影响.  , 2018, 67(14): 140201. doi: 10.7498/aps.67.20180148
    [12] 史茂雷, 刘磊, 田芳慧, 王鹏飞, 李嘉俊, 马蕾. 无锂助熔剂B2O3对Li1.3Al0.3Ti1.7(PO4)3固体电解质离子电导率的影响.  , 2017, 66(20): 208201. doi: 10.7498/aps.66.208201
    [13] 马昊, 刘磊, 路雪森, 刘素平, 师建英. 锂离子电池正极材料Li2FeSiO4的电子结构与输运特性.  , 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [14] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究.  , 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [15] 彭薇, 岳敏, 梁奇, 胡社军, 侯贤华. 锂离子电池LiMn1-xFexPO4(0x<1)正极材料的制备及性能研究.  , 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [16] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2.  , 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [17] 胡国进, 欧阳楚英. 表面效应对锂离子电池正极材料LiMn2O4性能的影响.  , 2010, 59(8): 5863-5869. doi: 10.7498/aps.59.5863
    [18] 侯柱锋, 刘慧英, 朱梓忠, 黄美纯, 杨 勇. 锂离子电池负极材料CuSn的Li嵌入性质的研究.  , 2003, 52(4): 952-957. doi: 10.7498/aps.52.952
    [19] 叶红娟, 李 标, 李志锋, 熊光成, 王瑞兰, 李宏成, 刘 鹏. PrBa2Cu3O6+x(x=1,0.3)中Pr价态随氧含量的变化.  , 1998, 47(8): 1361-1368. doi: 10.7498/aps.47.1361
    [20] 苏昉, 陈立泉. 非晶态锂离子导体B2O3-0.7Li2O-0.7LiCl-xAl2O3.  , 1983, 32(11): 1376-1382. doi: 10.7498/aps.32.1376
计量
  • 文章访问数:  5013
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-16
  • 修回日期:  2022-10-15
  • 上网日期:  2022-10-27
  • 刊出日期:  2023-01-20

/

返回文章
返回
Baidu
map