Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Anode interface in all-solid-state lithium-metal batteries: Challenges and strategies

Yu Qi-Peng Liu Qi Wang Zi-Qiang Li Bao-Hua

Citation:

Anode interface in all-solid-state lithium-metal batteries: Challenges and strategies

Yu Qi-Peng, Liu Qi, Wang Zi-Qiang, Li Bao-Hua
PDF
HTML
Get Citation
  • The developing of all-solid-state lithium-metal batteries promises to improve safety and energy density. The challenges in the anode|electrolyte interface are crucial and divided into static and dynamic issues in this review. The static issues are mainly shown as the huge resistances appearing in the assembled batteries, while the dynamic issues are reflected in the rapid deterioration of cycling performance. The static issues are mainly due to the poor chemical stability and interfacial contact, while dendrite growth and void formation are contained in the dynamic issues. Solving dynamic issues on the basis of static issues can conduce to the construction of stable all-solid-state lithium-metal batteries.
      Corresponding author: Li Bao-Hua, libh@mail.sz.tsinghua.edu.cn
    • Funds: Project supported by the National Nature Science Foundation of China (Grant No. 51872157), the Department of Science and Technology of Guangdong Province, China (Grant No. 2017BT01N111), Bureau of Industrial and Information Technology of Shenzhen, China (Grant No. 20170428145209110) and the Science and Technology Innovation Committee of Shenzhen, China (Grants Nos. JCYJ20170817161753629, JCYJ20170412170911187)
    [1]

    王朔, 周格, 禹习谦, 李泓 2017 储能科学与技术 6 810Google Scholar

    Wang S, Zhou G, Yu X Q, Li H 2017 Energ. Stor. Sci. Technol. 6 810Google Scholar

    [2]

    缪平, 姚桢, 刘庆华, 王保国 2020 储能科学与技术 9 670

    Liao P, Yao Z, Liu Q H, Wang B G 2020 Energ. Stor. Sci. Technol. 9 670

    [3]

    王其钰, 王朔, 张杰男, 郑杰允, 禹习谦, 李泓 2017 储能科学与技术 6 1008Google Scholar

    Wang Q Y, Wang S, Zhang J N, Zheng J Y, Yu X Q, Li H 2017 Energ. Stor. Sci. Technol. 6 1008Google Scholar

    [4]

    王其钰, 王朔, 周格, 张杰男, 郑杰允, 禹习谦, 李泓 2018 67 128501Google Scholar

    Wang Q Y, Wang S, Zhou G, Zhang J N, Zheng J Y, Yu X Q, Li H 2018 Acta Phys. Sin. 67 128501Google Scholar

    [5]

    肖睿娟, 李泓, 陈立泉 2018 67 128801Google Scholar

    Xiao R J, Li H, Chen L Q 2018 Acta Phys. Sin. 67 128801Google Scholar

    [6]

    樊亚平, 晏莉琴, 简德超, 吕桃林, 俞梦, 王振宇, 张全生, 解晶莹 2019 储能科学与技术 8 1040

    Fan Y P, Yan L Q, Jian D C, Lv T L, Yu M, Wang Z Y, Zhang Q S, Xie J Y 2019 Energ. Stor. Sci. Technol. 8 1040

    [7]

    陈晓霞, 刘凯, 王保国 2020 储能科学与技术 9 583

    Chen X X, Liu K, Wang B G 2020 Energ. Stor. Sci. Technol. 9 583

    [8]

    Li M, Lu J, Chen Z, Amine K 2018 Adv. Mater. 30 1800561Google Scholar

    [9]

    高静, 任文锋, 陈剑 2017 储能科学与技术 6 557Google Scholar

    Gao J, Ren W F, Chen J 2017 Energ. Stor. Sci. Technol. 6 557Google Scholar

    [10]

    石凯, 安德成, 贺艳兵, 李宝华, 康飞宇 2017 储能科学与技术 6 479Google Scholar

    Shi K, An D C, He Y B, Li B H, Kang F Y 2017 Energ. Stor. Sci. Technol. 6 479Google Scholar

    [11]

    张涛, 张晓平, 温兆银 2016 储能科学与技术 5 702Google Scholar

    Zhang T, Zhang X P, Wen Z Y 2016 Energ. Stor. Sci. Technol. 5 702Google Scholar

    [12]

    吴娇杨, 刘品, 胡勇胜, 李泓 2016 储能科学与技术 5 443

    Wu J Y, Liu P, Hu Y S, Li H 2016 Energ. Stor. Sci. Technol. 5 443

    [13]

    Cheng X B, Zhang R, Zhao C Z, Zhang Q 2017 Chem. Rev. 117 10403Google Scholar

    [14]

    罗飞, 褚赓, 黄杰, 孙洋, 李泓 2014 储能科学与技术 3 146Google Scholar

    Luo F, Chu G, Huang J, Song Y, Li H 2014 Energ. Stor. Sci. Technol. 3 146Google Scholar

    [15]

    李杨, 丁飞, 桑林, 钟海, 刘兴江 2016 储能科学与技术 5 615Google Scholar

    Li Y, Ding F, Sang L, Zhong H, Liu X J 2016 Energ. Stor. Sci. Technol. 5 615Google Scholar

    [16]

    孙滢智, 黄佳琦, 张学强, 张强 2017 储能科学与技术 6 464Google Scholar

    Sun Y Z, Huang J Q, Zhang X Q, Zhang Q 2017 Energ. Stor. Sci. Technol. 6 464Google Scholar

    [17]

    吴敬华, 姚霞银 2020 储能科学与技术 9 501

    Wu J H, Yao X Y 2020 Stor. Sci. Technol. 9 501

    [18]

    杨建锋, 李林艳, 吴振岳, 王开学 2019 储能科学与技术 8 829

    Yang J F, Li L Y, Wu Z Y, Wang K X 2019 Energ. Stor. Sci. Technol. 8 829

    [19]

    张永龙, 夏会玲, 林久, 陈少杰, 许晓雄 2018 储能科学与技术 7 994Google Scholar

    Zhang Y L, Xia H L, Lin J, Chen S J, Xu X X 2018 Energ. Stor. Sci. Technol. 7 994Google Scholar

    [20]

    许晓雄, 李泓 2018 储能科学与技术 7 1Google Scholar

    Xu X, Li H 2018 Energ. Stor. Sci. Technol. 7 1Google Scholar

    [21]

    吴勇民, 吴晓萌, 朱蕾, 徐碇皓, 田文生, 汤卫平 2016 储能科学与技术 5 678Google Scholar

    Wu Y M, Wu X M, Zhu L, Xu D H, Tian W S, Tang W P 2016 Energ. Stor. Sci. Technol. 5 678Google Scholar

    [22]

    夏求应, 孙硕, 徐璟, 昝峰, 岳继礼, 夏晖 2018 储能科学与技术 7 565Google Scholar

    Xia Q, Sun S, Xu J, Zan F, Yue J L, Xia H 2018 Energ. Stor. Sci. Technol. 7 565Google Scholar

    [23]

    Zhao Q, Stalin S, Zhao C Z, Archer L A 2020 Nat. Rev. Mater. 5 229Google Scholar

    [24]

    李泓 2018 储能科学与技术 7 188

    Li H 2018 Energ. Stor. Sci. Technol. 7 188

    [25]

    Schlenker R, Stepien D, Koch P, Hupfer T, Indris S, Roling B, Miss V, Fuchs A, Wilhelmi M, Ehrenberg H 2020 ACS Appl. Mater. Interfaces 12 20012Google Scholar

    [26]

    Porz L, Swamy T, Sheldon B W, Rettenwander D, Frömling T, Thaman H L, Berendts S, Uecker R, Carter W C, Chiang Y M 2017 Adv. Energy Mater. 7 1701003Google Scholar

    [27]

    Hartmann P, Leichtweiss T, Busche M R, Schneider M, Reich M, Sann J, Adelhelm P, Janek J 2013 J. Phys. Chem. C 117 21064Google Scholar

    [28]

    Wang C, Gong Y, Liu B, Fu K, Yao Y, Hitz E, Li Y, Dai J, Xu S, Luo W 2017 Nano Lett. 17 565Google Scholar

    [29]

    Lee Y G, Fujiki S, Jung C, Suzuki N, Yashiro N, Omoda R, Ko D S, Shiratsuchi T, Sugimoto T, Ryu S 2020 Nat. Energy 5 299Google Scholar

    [30]

    Hatzell K B, Chen X C, Cobb C L, Dasgupta N P, Dixit M B, Marbella L E, McDowell M T, Mukherjee P P, Verma A, Viswanathan V 2020 ACS Energy Lett. 5 922Google Scholar

    [31]

    Albertus P, Babinec S, Litzelman S, Newman A 2018 Nat. Energy 3 16Google Scholar

    [32]

    Xu L, Tang S, Cheng Y, Wang K, Liang J, Liu C, Cao Y C, Wei F, Mai L 2018 Joule 2 1991Google Scholar

    [33]

    张强, 姚霞银, 张洪周, 张联齐, 许晓雄 2016 储能科学与技术 5 659Google Scholar

    Zhang Q, Yao X Y, Zhang H Z, Zhang L Q, Xu X X 2016 Energ. Stor. Sci. Technol. 5 659Google Scholar

    [34]

    Xiao Y, Wang Y, Bo S H, Kim J C, Miara L J, Ceder G 2010 Nat. Rev. Mater. 5 105

    [35]

    Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Nat. Mater. 18 1278Google Scholar

    [36]

    Lewis J A, Tippens J, Cortes F J Q, McDowell M T 2019 Trends in Chem. 1 845Google Scholar

    [37]

    Wang P, Qu W, Song W L, Chen H, Chen R, Fang D 2019 Adv. Funct. Mater. 29 1900950

    [38]

    Liu H, Cheng X B, Huang J Q, Yuan H, Lu Y, Yan C, Zhu G L, Xu R, Zhao C Z, Hou L P 2020 ACS Energy Lett. 5 833Google Scholar

    [39]

    黄晓, 吴林斌, 黄祯, 林久, 许晓雄 2020 储能科学与技术 9 479

    Huang X, Wu L B, Huang Z, Lin J, Xu X X 2020 Energ. Stor. Sci. Technol. 9 479

    [40]

    孙兴伟, 王龙龙, 姜丰, 马君, 周新红, 崔光磊 2019 储能科学与技术 8 1024

    Sun X W, Wang L L, Jiang F, Ma J, Zhou X H, Cui G L 2019 Energ. Stor. Sci. Technol. 8 1024

    [41]

    Wang C, Zhang H, Li J, Chai J, Dong S, Cui G 2018 J. Power Sources 397 157Google Scholar

    [42]

    Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J 2015 Solid State Ionics 278 98Google Scholar

    [43]

    Alpen U 1979 J. Solid State Chem. 29 379Google Scholar

    [44]

    Chung H, Kang B 2017 Chem. Mater. 29 8611Google Scholar

    [45]

    Wenzel S, Weber D A, Leichtweiss T, Busche M R, Sann J, Janek J 2016 Solid State Ionics 286 24Google Scholar

    [46]

    Wenzel S, Randau S, Leichtweiß T, Weber D A, Sann J, Zeier W G, Janek J 2016 Chem. Mater. 28 2400Google Scholar

    [47]

    Ma C, Cheng Y, Yin K, Luo J, Sharafi A, Sakamoto J, Li J, More K L, Dudney N J, Chi M 2016 Nano Lett. 16 7030Google Scholar

    [48]

    Rettenwander D, Wagner R, Reyer A, Bonta M, Cheng L, Doeff M M, Limbeck A, Wilkening M, Amthauer G 2018 J. Phys. Chem. C 122 3780

    [49]

    Kato A, Kowada H, Deguchi M, Hotehama C, Hayashi A, Tatsumisago M 2018 Solid State Ionics 322 1Google Scholar

    [50]

    Wood K N, Steirer K X, Hafner S E, et al. 2018 Nat. Commun. 9 1Google Scholar

    [51]

    Wenzel S, Sedlmaier S J, Dietrich C, Zeier W G, Janek J 2018 Solid State Ionics 318 102Google Scholar

    [52]

    Schwöbel A, Hausbrand R, Jaegermann W 2015 Solid State Ionics 273 51Google Scholar

    [53]

    Wolfenstine J, Rangasamy E, Allen J L, Sakamoto J 2012 J. Power Sources 208 193Google Scholar

    [54]

    Zhang X, Xiang Q, Tang S, Wang A, Liu X, Luo J 2020 Nano Lett. 20 2871Google Scholar

    [55]

    Fu K K, Gong Y, Liu B, Zhu Y, Xu S, Yao Y, Luo W, Wang C, Lacey S D, Dai J 2017 Sci. Adv. 3 e1601659Google Scholar

    [56]

    Eustathopoulos N, Voytovych R 2016 J. Mater. Sci. 51 425Google Scholar

    [57]

    Rangasamy E, Sahu G, Keum J K, Rondinone A J, Dudney N J, Liang C 2014 J. Mater. Chem. A 2 4111Google Scholar

    [58]

    Liu Z, Fu W, Payzant E A, Yu X, Wu Z, Dudney N J, Kiggans J, Hong K, Rondinone A J, Liang C 2013 J. Am. Chem. Soc. 135 975Google Scholar

    [59]

    Ishiguro K, Nakata Y, Matsui M, Uechi I, Takeda Y, Yamamoto O, Imanishi N 2013 J. Electrochem. Soc. 160 A1690Google Scholar

    [60]

    Ishiguro K, Nemori H, Sunahiro S, Nakata Y, Sudo R, Matsui M, Takeda Y, Yamamoto O, Imanishi N 2014 J. Electrochem. Soc. 161 A668Google Scholar

    [61]

    Wan Z, Lei D, Yang W, Liu C, Shi K, Hao X, Shen L, Lv W, Li B, Yang Q H 2019 Adv. Funct. Mater. 29 1805301Google Scholar

    [62]

    Han X, Gong Y, Fu K K, He X, Hitz G T, Dai J, Pearse A, Liu B, Wang H, Rubloff G 2017 Nat. Mater. 16 572Google Scholar

    [63]

    El Shinawi H, Janek J 2013 J. Power Sources 225 13Google Scholar

    [64]

    Thangadurai V, Weppner W 2005 Adv. Funct. Mater. 15 107Google Scholar

    [65]

    Buschmann H, Berendts S, Mogwitz B, Janek J 2012 J. Power Sources 206 236Google Scholar

    [66]

    Cheng L, Crumlin E J, Chen W, Qiao R, Hou H, Lux S F, Zorba V, Russo R, Kostecki R, Liu Z 2014 Phys. Chem. Chem. Phys. 16 18294Google Scholar

    [67]

    Duan H, Chen W P, Fan M, Wang W P, Yu L, Tan S J, Chen X, Zhang Q, Xin S, Wan L J 2020 Angew. Chem. 59 1491Google Scholar

    [68]

    Cheng L, Liu M, Mehta A, Xin H, Lin F, Persson K, Chen G, Crumlin E J, Doeff M 2018 ACS Appl. Energy Materials 1 7244Google Scholar

    [69]

    Huo H, Chen Y, Zhao N, Lin X, Luo J, Yang X, Liu Y, Guo X, Sun X 2019 Nano Energy 61 119Google Scholar

    [70]

    Tian H K, Xu B, Qi Y 2018 J. Power Sources 392 79Google Scholar

    [71]

    Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu K, Pastel G, Lin C F, Mo Y 2017 Adv. Mater. 29 1606042Google Scholar

    [72]

    Luo W, Gong Y, Zhu Y, Fu K K, Dai J, Lacey S D, Wang C, Liu B, Han X, Mo Y 2016 J. Am. Chem. Soc. 138 12258Google Scholar

    [73]

    Hasegawa S, Imanishi N, Zhang T, Xie J, Hirano A, Takeda Y, Yamamoto O 2009 J. Power Sources 189 371Google Scholar

    [74]

    Yu Q, Han D, Lu Q, He Y B, Li S, Liu Q, Han C, Kang F, Li B 2019 ACS Appl. Mater. Interfaces 11 9911Google Scholar

    [75]

    Sakuma M, Suzuki K, Hirayama M, Kanno R 2016 Solid State Ionics 285 101Google Scholar

    [76]

    Ogawa M, Kanda R, Yoshida K, Uemura T, Harada K 2012 J. Power Sources 205 487Google Scholar

    [77]

    Nagao M, Hayashi A, Tatsumisago M 2012 Electrochem. 80 734Google Scholar

    [78]

    Lin D, Liu Y, Cui Y 2017 Nat. Nanotechnol. 12 194Google Scholar

    [79]

    Takeda Y, Yamamoto O, Imanishi N 2016 Electrochem. 84 210Google Scholar

    [80]

    张建军, 董甜甜, 杨金凤, 张敏, 崔光磊 2018 储能科学与技术 7 861Google Scholar

    Zhang J J, Dong T T, Yang J F, Zhang M, Cui G L 2018 Energ. Stor. Sci. Technol. 7 861Google Scholar

    [81]

    Dollé M, Sannier L, Beaudoin B, Trentin M, Tarascon J M 2002 Electrochem. and Solid State Lett. 5 A286Google Scholar

    [82]

    Maslyn J A, Loo W S, McEntush K D, Oh H J, Harry K J, Parkinson D Y, Balsara N P 2018 J. Phys. Chem. C 122 26797Google Scholar

    [83]

    Monroe C, Newman J 2004 J. Electrochem. Soc. 151 A880Google Scholar

    [84]

    Monroe C, Newman J 2005 J. Electrochem. Soc. 152 A396Google Scholar

    [85]

    Samsonov G V 2012 Handbook of the Physicochemical Properties of the Elements (Berlin: Springer Science & Business Media) p394

    [86]

    Schauser N S, Harry K J, Parkinson D Y, Watanabe H, Balsara N P 2014 J. Electrochem. Soc. 162 A398

    [87]

    Stone G, Mullin S, Teran A, Hallinan D, Minor A, Hexemer A, Balsara N 2012 J. Electrochem. Soc. 159 A222Google Scholar

    [88]

    Harry K J, Hallinan D T, Parkinson D Y, MacDowell A A, Balsara N P 2014 Nat. Mater. 13 69Google Scholar

    [89]

    Harry K J, Higa K, Srinivasan V, Balsara N P 2016 J. Electrochem. Soc. 163 A2216Google Scholar

    [90]

    Golozar M, Hovington P, Paolella A, Bessette S P, Lagacé M, Bouchard P, Demers H, Gauvin R, Zaghib K 2018 Nano Lett. 18 7583Google Scholar

    [91]

    Brissot C, Rosso M, Chazalviel J N, Lascaud S 1999 J. Power Sources 81 925

    [92]

    Kerman K, Luntz A, Viswanathan V, Chiang Y M, Chen Z 2017 J. Electrochem. Soc. 164 A1731Google Scholar

    [93]

    Janek J, Zeier W G 2016 Nature Energy 1 1

    [94]

    周洪, 魏凤, 吴永庆 2020 储能科学与技术 9 1001

    Zhou H, Wei F, Wu Y Q 2020 Energ. Stor. Sci. Technol. 9 1001

    [95]

    Garcia Mendez R, Mizuno F, Zhang R, Arthur T S, Sakamoto J 2017 Electrochim. Acta 237 144Google Scholar

    [96]

    Han F, Yue J, Zhu X, Wang C 2018 Adv. Energy Mater. 8 1703644Google Scholar

    [97]

    Nagao M, Hayashi A, Tatsumisago M, Kanetsuku T, Tsuda T, Kuwabata S 2013 Phys. Chem. Chem. Phys. 15 18600Google Scholar

    [98]

    Aguesse F, Manalastas W, Buannic L, Lopez del Amo J M, Singh G, Llordés A, Kilner J 2017 ACS Appl. Mater. Interfaces 9 3808Google Scholar

    [99]

    Cheng L, Chen W, Kunz M, Persson K, Tamura N, Chen G, Doeff M 2015 ACS Appl. Mater. Interfaces 7 2073Google Scholar

    [100]

    Ren Y, Shen Y, Lin Y, Nan C W 2015 Electrochem. Commun. 57 27Google Scholar

    [101]

    Cheng E J, Sharafi A, Sakamoto J 2017 Electrochim. Acta 223 85Google Scholar

    [102]

    Sharafi A, Meyer H M, Nanda J, Wolfenstine J, Sakamoto J 2016 J. Power Sources 302 135Google Scholar

    [103]

    Swamy T, Park R, Sheldon B W, Rettenwander D, Porz L, Berendts S, Uecker R, Carter W C, Chiang Y M 2018 J. Electrochem. Soc. 165 A3648Google Scholar

    [104]

    Qian J, Henderson W A, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J G 2015 Nat. Commun. 6 1

    [105]

    Choudhury S, Archer L A 2016 Adv. Electron. Mater. 2 1500246Google Scholar

    [106]

    Han F, Westover A S, Yue J, Fan X, Wang F, Chi M, Leonard D N, Dudney N J, Wang H, Wang C 2019 Nat. Energy 4 187Google Scholar

    [107]

    Ahmad Z, Viswanathan V 2017 Phys. Rev. Lett. 119 056003Google Scholar

    [108]

    Raj R, Wolfenstine J 2017 J. Power Sources 343 119Google Scholar

    [109]

    Manalastas W, Rikarte J, Chater R J, Brugge R, Aguadero A, Buannic L, Llordés A, Aguesse F, Kilner J 2019 J. Power Sources 412 287Google Scholar

    [110]

    Wang C, Gong Y, Dai J, Zhang L, Xie H, Pastel G, Liu B, Wachsman E, Wang H, Hu L 2017 J. Am. Chem. Soc. 139 14257Google Scholar

    [111]

    Seitzman N, Guthrey H, Sulas D B, Platt H A, Al Jassim M, Pylypenko S 2018 J. Electrochem. Soc. 165 A3732Google Scholar

    [112]

    Marbella L E, Zekoll S, Kasemchainan J, Emge S P, Bruce P G, Grey C P 2019 Chem. Mater. 31 2762Google Scholar

    [113]

    Schmidt R D, Sakamoto J 2016 J. Power Sources 324 126Google Scholar

    [114]

    Kim S, Jung C, Kim H, Thomas Alyea K E, Yoon G, Kim B, Badding M E, Song Z, Chang J, Kim J, Im D, Kang K 2020 Adv. Energy Mater. 10 1903993Google Scholar

    [115]

    Kazyak E, Garcia Mendez R, LePage W S, Sharafi A, Davis A L, Sanchez A J, Chen K H, Haslam C, Sakamoto J, Dasgupta N P 2020 Matter 2 1025Google Scholar

    [116]

    Koshikawa H, Matsuda S, Kamiya K, Miyayama M, Kubo Y, Uosaki K, Hashimoto K, Nakanishi S 2018 J. Power Sources 376 147Google Scholar

    [117]

    Kasemchainan J, Zekoll S, Spencer Jolly D, Ning Z, Hartley G O, Marrow J, Bruce P G 2019 Nat. Mater. 18 1105Google Scholar

    [118]

    Yu S, Schmidt R D, Garcia Mendez R, Herbert E, Dudney N J, Wolfenstine J B, Sakamoto J, Siegel D J 2016 Chem. Mater. 28 197Google Scholar

    [119]

    Iriyama Y, Kako T, Yada C, Abe T, Ogumi Z 2005 Solid State Ionics 176 2371Google Scholar

    [120]

    Sharafi A, Kazyak E, Davis A L, Yu S, Thompson T, Siegel D J, Dasgupta N P, Sakamoto J 2017 Chem. Mater. 29 7961Google Scholar

    [121]

    Chen Y T, Jena A, Pang W K, Peterson V K, Sheu H S, Chang H, Liu R S 2017 J. Phys. Chem. C 121 15565Google Scholar

    [122]

    Han F, Zhu Y, He X, Mo Y, Wang C 2016 Adv. Energy Mater. 6 1501590Google Scholar

    [123]

    Doyle M, Fuller T F, Newman J 1994 Electrochim. Acta 39 2073Google Scholar

    [124]

    Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J 2010 J. Power Sources 195 6847Google Scholar

    [125]

    Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J 2010 J. Electrochem. Soc. 157 A1092Google Scholar

    [126]

    Zhang X, Wang S, Xue C, Xin C, Lin Y, Shen Y, Li L, Nan C W 2019 Adv. Mater. 31 e1806082Google Scholar

    [127]

    Frenck L, Maslyn J A, Loo W S, Parkinson D Y, Balsara N P 2019 ACS Appl. Mater. Interfaces 11 47878Google Scholar

    [128]

    Fu J, Yu P, Zhang N, Ren G, Zheng S, Huang W, Long X, Li H, Liu X 2019 Energy & Environ. Sci. 12 1404

    [129]

    Shao Y, Wang H, Gong Z, Wang D, Zheng B, Zhu J, Lu Y, Hu Y S, Guo X, Li H 2018 ACS Energy Lett. 3 1212Google Scholar

    [130]

    Song Y, Yang L, Zhao W, Wang Z, Zhao Y, Wang Z, Zhao Q, Liu H, Pan F 2019 Adv. Energy Mater. 9 1900671Google Scholar

    [131]

    Maslyn J A, Frenck L, Loo W S, Parkinson D Y, Balsara N P 2019 ACS Appl. Energy Mater. 2 8197Google Scholar

    [132]

    Hiratani M, Miyauchi K, Kudo T 1988 Solid State Ionics 28 1406

    [133]

    Okita K, Ikeda K i, Sano H, Iriyama Y, Sakaebe H 2011 J. Power Sources 196 2135Google Scholar

    [134]

    Krauskopf T, Mogwitz B, Rosenbach C, Zeier W G, Janek J 2019 Adv. Energy Mater. 9 1902568Google Scholar

    [135]

    Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough J B 2016 J. Am. Chem. Soc. 138 9385Google Scholar

    [136]

    Mai W, Yu Q, Han C, Kang F, Li B 2020 Adv. Funct. Mater. 190991 2

    [137]

    Liu Q, Zhou D, Shanmukaraj D, Li P, Kang F, Li B, Armand M, Wang G 2020 ACS Energy Lett. 5 1456Google Scholar

    [138]

    Li Q, Yi T, Wang X, Pan H, Quan B, Liang T, Guo X, Yu X, Wang H, Huang X 2019 Nano Energy 63 103895Google Scholar

    [139]

    Xu S, McOwen D W, Wang C, Zhang L, Luo W, Chen C, Li Y, Gong Y, Dai J, Kuang Y 2018 Nano Lett. 18 3926Google Scholar

    [140]

    Liu B, Zhang L, Xu S, McOwen D W, Gong Y, Yang C, Pastel G R, Xie H, Fu K, Dai J 2018 Energy Stor. Mater. 14 376Google Scholar

    [141]

    Chen Y, Wang Z, Li X, Yao X, Wang C, Li Y, Xue W, Yu D, Kim S Y, Yang F 2020 Nature 578 251Google Scholar

    [142]

    Herring C 1950 J. Appl. Phys. 21 437Google Scholar

    [143]

    Frost H J, Ashby M F 1982 Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Oxford: Pergamon press) p11

    [144]

    Sun J, He L, Lo Y C, Xu T, Bi H, Sun L, Zhang Z, Mao S X, Li J 2014 Nat. Mater. 13 1007Google Scholar

    [145]

    Tu K N 2007 Solder Joint Technology (Vol. 117) (Berlin: Springer) pp153−181

    [146]

    Tian L, Li J, Sun J, Ma E, Shan Z W 2013 Sci. Rep. 3 2113Google Scholar

    [147]

    Mali M, Roos J, Sonderegger M, Brinkmann D, Heitjans P 1988 J. of Phys. F: Metal Phys. 18 403Google Scholar

    [148]

    He Y, Lu C, Liu S, Zheng W, Luo J 2019 Adv. Energy Mater. 9 1901810Google Scholar

    [149]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K 2011 Nat. Mater. 10 682Google Scholar

  • 图 1  全固态金属锂电池中金属锂负极-固态电解质界面的静态问题及动态问题示意图[25-28]

    Figure 1.  Schema of static and dynamic challenges of anode|electrolyte interface in all-solid-state lithium-metal batteries[25-28].

    图 2  石榴石型LLZO固态电解质-金属锂界面的扫描电子显微镜(SEM)图像[54]

    Figure 2.  Scanning electron microscope (SEM) image of cross-section garnet-type Li7La3Zr2O12 (LLZO)|lithium metal interface[54].

    图 3  NH4F处理表面污染物转化为LiF包覆层示意图[67]

    Figure 3.  Schematic illustration showing the conversion from contaminated Li6.4La3Zr1.4Ta0.6O12 (LLZTO) to LiF-coated LLZTO by NH4F treatment, and the surface stability against air exposure and hostless evolution of Li metal[67].

    图 4  金属锂负极-固态电解质界面表征的研究历史[30]

    Figure 4.  Timeline of imaging and characterization of Li-metal anode|solid electrolyte interfaces[30].

    图 5  三种不同金属锂不规则沉积 空隙型的 (a) X射线断层扫描图, (b) 三维重构图, (c)生长机理示意图; 球状型的 (d) X射线断层扫描图, (e) 三维重构图, (f) 生长机理示意图; 非球型的 (g) X射线断层扫描图, (h) 三维重构图, (i) 生长机理示意图[82]

    Figure 5.  Three different irregular deposition of lithium metal: (a) X-ray tomography, (b) three-dimensional reconstruction, (c) schematic diagram of growth mechanism of void type; (d) X-ray tomography, (e) three-dimensional reconstruction, (f) schematic diagram of growth mechanism of globule type; (g) X-ray tomography, (h) three-dimensional reconstruction, (i) schematic diagram of growth mechanism of protruding nonglobular type[82].

    图 6  不同阶段锂枝晶生长的局部电流密度分布图 (a) 0−8.27 C/cm2; (b) 8.27−6.53 C/cm2; (c) 16.53−35.82 C/cm2; (d) 35.82−54.72 C/cm2[89]

    Figure 6.  Mapping of local current density for different stages during the growth of lithium globule: (a) 0−8.27 C/cm2; (b) 8.27−16.53 C/cm2; (c) 16.53−35.82 C/cm2; (d) 35.82−54.72 C/cm2[89].

    图 7  (a) 金属锂负极边缘上针状枝晶的SEM图; (b) 聚焦离子束(FIB)打磨后针状枝晶的SEM图; (c) (d) 纳米操纵器推动针状锂枝晶后弯折的SEM图; (e) (f) 纳米操纵器在金属锂表面刮擦的SEM图[90]

    Figure 7.  SEM images showing (a) dendrite on the edge of the anode; (b) milled dendrite using focused ion beam (FIB) showing hollow morphology; (c) the nanomanipulator shown by red circle before scratching the dendrite; (d) the nanomanipulator after scratching the dendrite showing the bent in the nanomanipulator; (e) the nanomanipulator before scratching metallic Li sheet; and (f) the nanomanipulator after scratching metallic Li sheet showing the accumulation of Li on the tip.

    图 8  (a)锂枝晶在固态电解质中的简化示意图, 其中枝晶顶部的箭头表示来自金属锂的施加压力, 沿着侧面的箭头表示由于沿该界面的摩擦而产生的剪切力; (b) 锂沉积过电势及裂纹拓展应力与缺陷尺寸的关系[26]

    Figure 8.  (a) Simplified schematic of a Li filament in a solid electrolyte matrix; (b) Inverse square root dependence of Li plating overpotential and crack-extension stress (σ0, max) on defect size. Curves for glassy LPS and LLZTO are shown[26].

    图 9  金属锂在含有缺陷的LLZO表面沉积行为示意图[114]

    Figure 9.  Schematic descriptions of uneven lithium-ion flux induced by surface morphological fluctuations and the corresponding inhomogeneous lithium deposition[114].

    图 10  金属锂在含有金界面层的LLZO表面沉积行为示意图[114]

    Figure 10.  Schematic description of lithium redistribution through the gold layer and lithium nucleation. [114].

    图 11  (a) LLCZN及 (b) LLCZN@LAO的金属锂对称电池的极化曲线; (c) 稳态电流与施加电压的关系图(插图: 电流与施加施加电压的时间关系图); (d)锂枝晶在电解质内部生长及抑制枝晶生长的示意图[130]

    Figure 11.  Lithium platting/stripping performance of (a) LLCZN and (b) LLCZN@LAO in Li symmetric cells at different current densities; (c) values of Is for LLCZN and LLCZN@LAO with different applied external voltages; chronoamperometry results of LLCZN and LLCZN@LAO with an applied external voltage of 1 V (inset); (d) schematic illustrations of Li formation within LLCZN and how to suppress it through surface coating [130].

    图 12  (a)“电化学过滤”法示意图; (b)“电化学过滤”法对应的电化学曲线; (c) 处理前的X射线断层扫描图; (d)和(e)“电化学过滤”法处理后的X射线断层扫描图[131]

    Figure 12.  (a) Schematic of the electrochemical filtering treatment; (b) Current density and voltage of one electrochemical filtering treatment over time; (c) Slice through a reconstructed volume of a symmetric cell after 14 conditioning cycles. No inhomogeneities were observed at the interfaces, (d) (e) Slices through a reconstructed volume of the symmetric cell in (c) after an electrochemical filtering treatment [131].

    图 13  基于LAGP高性能金属锂电池中自愈合界面的设计与构造: Li |LAGP| LMO电池在不同界面修饰层作用下循环过程中的界面演变行为示意图 (a) 无界面修饰层; (b) 凝胶电解质修饰层; (c) 自愈合界面修饰层[135]

    Figure 13.  Design and fabrication of the SHE Janus interfaces for high-performance LAGP-based lithium metal batteries. (a)−(c) Schematic illustrations of the interfacial evolution in Li|LAGP|LMO batteries without interface layers and with GPEs and SHEs as Janus interface layers during cycling, respectively[135].

    图 14  (a)原始金属锂电极和石榴石型固态电解质在剥离/沉积过程相互作用示意图; (b)金属锂-PDMS复合电极和石榴石型固态电解质在剥离/沉积过程相互作用示意图[54]

    Figure 14.  Schematic illustration of the (a) pristine lithium foil with garnet-type electrolyte; (b) stress self-adapted interface by using compressible PDMS/Li metal anode[54].

    图 15  (a)基于MIEC三维管状集流体的金属锂负极结构示意图; (b)金属锂在碳基小管内以单晶形式沉积的TEM图; (c)碳基小管在沉积金属锂前后的高分辨TEM图[141]

    Figure 15.  (a)Schematic process of creep-enabled Li deposition/stripping in an MIEC tubular matrix, where Coble creep dominates via interfacial diffusion along the MIEC/Libcc incoherent interface; (b) TEM images of the Li metal deposition inside the carbon tubule as a single crystal; (c) high-resolution TEM imaging of a tubule before plating [141].

    表 1  不同界面问题解决策略的优劣比较

    Table 1.  Comparison of advantages and disadvantages of different interfacial strategies.

    界面
    问题
    解决策略优点不足参考文献
    静态
    问题
    加热易实现、对聚合物电解质效果显著对疏锂的无机固态电解质无效、
    无法解决化学稳定性差问题
    [61,62]
    加压易实现、效果显著仅在装配前加压不能解决动态
    问题、电池运行加压实用性低、
    无法解决化学稳定性差问题
    [5760]
    掺杂对无机固态电解质有效、能一定
    程度解决化学稳定性差问题
    易降低离子电导率[6365]
    电解质纯化有望促使金属锂均匀沉积无法避免杂质再次形成[66,6870]
    NH4F预处理避免污染物再次形成、
    有望抑制锂枝晶
    需防范HF污染[67]
    界面修饰能同时解决两种静态问题薄膜制备工艺成本高、
    生产效率较低
    [28,55,62,7174]
    锂合金负极能同时解决两种静态问题、
    对动态问题也有帮助
    降低负极比能量密度[7577,132134]
    动态
    问题
    聚合物电解质改性综合提高固态电解质的
    离子电导率、机械强度等
    影响因素较多且效果相对有限[86,124127]
    引入反应界面层结合界面层与锂合金负极的优点薄膜制备工艺成本高、生产效率低[28,55,62,71,72,
    114,128,129]
    晶粒表面包覆降低固态电解质电子电
    导率抑制枝晶生长
    热处理时需要避免元素扩散[130]
    金属锂负极纯化有效避免金属锂的不均匀沉积及剥离亟需开发大规模、低成本的生产方法[131]
    聚合物复合界面有效解决静态问题及消除
    体积变化所带来的应力
    引入额外的界面阻碍电荷转移、
    制备超薄的聚合物界面层难度大
    [135,136]
    弹性集流体可逆地储存及释放应力降低金属负极的电子电导率[54]
    三维结构为金属锂沉积预留体积大规模制备具挑战[138141]
    DownLoad: CSV
    Baidu
  • [1]

    王朔, 周格, 禹习谦, 李泓 2017 储能科学与技术 6 810Google Scholar

    Wang S, Zhou G, Yu X Q, Li H 2017 Energ. Stor. Sci. Technol. 6 810Google Scholar

    [2]

    缪平, 姚桢, 刘庆华, 王保国 2020 储能科学与技术 9 670

    Liao P, Yao Z, Liu Q H, Wang B G 2020 Energ. Stor. Sci. Technol. 9 670

    [3]

    王其钰, 王朔, 张杰男, 郑杰允, 禹习谦, 李泓 2017 储能科学与技术 6 1008Google Scholar

    Wang Q Y, Wang S, Zhang J N, Zheng J Y, Yu X Q, Li H 2017 Energ. Stor. Sci. Technol. 6 1008Google Scholar

    [4]

    王其钰, 王朔, 周格, 张杰男, 郑杰允, 禹习谦, 李泓 2018 67 128501Google Scholar

    Wang Q Y, Wang S, Zhou G, Zhang J N, Zheng J Y, Yu X Q, Li H 2018 Acta Phys. Sin. 67 128501Google Scholar

    [5]

    肖睿娟, 李泓, 陈立泉 2018 67 128801Google Scholar

    Xiao R J, Li H, Chen L Q 2018 Acta Phys. Sin. 67 128801Google Scholar

    [6]

    樊亚平, 晏莉琴, 简德超, 吕桃林, 俞梦, 王振宇, 张全生, 解晶莹 2019 储能科学与技术 8 1040

    Fan Y P, Yan L Q, Jian D C, Lv T L, Yu M, Wang Z Y, Zhang Q S, Xie J Y 2019 Energ. Stor. Sci. Technol. 8 1040

    [7]

    陈晓霞, 刘凯, 王保国 2020 储能科学与技术 9 583

    Chen X X, Liu K, Wang B G 2020 Energ. Stor. Sci. Technol. 9 583

    [8]

    Li M, Lu J, Chen Z, Amine K 2018 Adv. Mater. 30 1800561Google Scholar

    [9]

    高静, 任文锋, 陈剑 2017 储能科学与技术 6 557Google Scholar

    Gao J, Ren W F, Chen J 2017 Energ. Stor. Sci. Technol. 6 557Google Scholar

    [10]

    石凯, 安德成, 贺艳兵, 李宝华, 康飞宇 2017 储能科学与技术 6 479Google Scholar

    Shi K, An D C, He Y B, Li B H, Kang F Y 2017 Energ. Stor. Sci. Technol. 6 479Google Scholar

    [11]

    张涛, 张晓平, 温兆银 2016 储能科学与技术 5 702Google Scholar

    Zhang T, Zhang X P, Wen Z Y 2016 Energ. Stor. Sci. Technol. 5 702Google Scholar

    [12]

    吴娇杨, 刘品, 胡勇胜, 李泓 2016 储能科学与技术 5 443

    Wu J Y, Liu P, Hu Y S, Li H 2016 Energ. Stor. Sci. Technol. 5 443

    [13]

    Cheng X B, Zhang R, Zhao C Z, Zhang Q 2017 Chem. Rev. 117 10403Google Scholar

    [14]

    罗飞, 褚赓, 黄杰, 孙洋, 李泓 2014 储能科学与技术 3 146Google Scholar

    Luo F, Chu G, Huang J, Song Y, Li H 2014 Energ. Stor. Sci. Technol. 3 146Google Scholar

    [15]

    李杨, 丁飞, 桑林, 钟海, 刘兴江 2016 储能科学与技术 5 615Google Scholar

    Li Y, Ding F, Sang L, Zhong H, Liu X J 2016 Energ. Stor. Sci. Technol. 5 615Google Scholar

    [16]

    孙滢智, 黄佳琦, 张学强, 张强 2017 储能科学与技术 6 464Google Scholar

    Sun Y Z, Huang J Q, Zhang X Q, Zhang Q 2017 Energ. Stor. Sci. Technol. 6 464Google Scholar

    [17]

    吴敬华, 姚霞银 2020 储能科学与技术 9 501

    Wu J H, Yao X Y 2020 Stor. Sci. Technol. 9 501

    [18]

    杨建锋, 李林艳, 吴振岳, 王开学 2019 储能科学与技术 8 829

    Yang J F, Li L Y, Wu Z Y, Wang K X 2019 Energ. Stor. Sci. Technol. 8 829

    [19]

    张永龙, 夏会玲, 林久, 陈少杰, 许晓雄 2018 储能科学与技术 7 994Google Scholar

    Zhang Y L, Xia H L, Lin J, Chen S J, Xu X X 2018 Energ. Stor. Sci. Technol. 7 994Google Scholar

    [20]

    许晓雄, 李泓 2018 储能科学与技术 7 1Google Scholar

    Xu X, Li H 2018 Energ. Stor. Sci. Technol. 7 1Google Scholar

    [21]

    吴勇民, 吴晓萌, 朱蕾, 徐碇皓, 田文生, 汤卫平 2016 储能科学与技术 5 678Google Scholar

    Wu Y M, Wu X M, Zhu L, Xu D H, Tian W S, Tang W P 2016 Energ. Stor. Sci. Technol. 5 678Google Scholar

    [22]

    夏求应, 孙硕, 徐璟, 昝峰, 岳继礼, 夏晖 2018 储能科学与技术 7 565Google Scholar

    Xia Q, Sun S, Xu J, Zan F, Yue J L, Xia H 2018 Energ. Stor. Sci. Technol. 7 565Google Scholar

    [23]

    Zhao Q, Stalin S, Zhao C Z, Archer L A 2020 Nat. Rev. Mater. 5 229Google Scholar

    [24]

    李泓 2018 储能科学与技术 7 188

    Li H 2018 Energ. Stor. Sci. Technol. 7 188

    [25]

    Schlenker R, Stepien D, Koch P, Hupfer T, Indris S, Roling B, Miss V, Fuchs A, Wilhelmi M, Ehrenberg H 2020 ACS Appl. Mater. Interfaces 12 20012Google Scholar

    [26]

    Porz L, Swamy T, Sheldon B W, Rettenwander D, Frömling T, Thaman H L, Berendts S, Uecker R, Carter W C, Chiang Y M 2017 Adv. Energy Mater. 7 1701003Google Scholar

    [27]

    Hartmann P, Leichtweiss T, Busche M R, Schneider M, Reich M, Sann J, Adelhelm P, Janek J 2013 J. Phys. Chem. C 117 21064Google Scholar

    [28]

    Wang C, Gong Y, Liu B, Fu K, Yao Y, Hitz E, Li Y, Dai J, Xu S, Luo W 2017 Nano Lett. 17 565Google Scholar

    [29]

    Lee Y G, Fujiki S, Jung C, Suzuki N, Yashiro N, Omoda R, Ko D S, Shiratsuchi T, Sugimoto T, Ryu S 2020 Nat. Energy 5 299Google Scholar

    [30]

    Hatzell K B, Chen X C, Cobb C L, Dasgupta N P, Dixit M B, Marbella L E, McDowell M T, Mukherjee P P, Verma A, Viswanathan V 2020 ACS Energy Lett. 5 922Google Scholar

    [31]

    Albertus P, Babinec S, Litzelman S, Newman A 2018 Nat. Energy 3 16Google Scholar

    [32]

    Xu L, Tang S, Cheng Y, Wang K, Liang J, Liu C, Cao Y C, Wei F, Mai L 2018 Joule 2 1991Google Scholar

    [33]

    张强, 姚霞银, 张洪周, 张联齐, 许晓雄 2016 储能科学与技术 5 659Google Scholar

    Zhang Q, Yao X Y, Zhang H Z, Zhang L Q, Xu X X 2016 Energ. Stor. Sci. Technol. 5 659Google Scholar

    [34]

    Xiao Y, Wang Y, Bo S H, Kim J C, Miara L J, Ceder G 2010 Nat. Rev. Mater. 5 105

    [35]

    Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Nat. Mater. 18 1278Google Scholar

    [36]

    Lewis J A, Tippens J, Cortes F J Q, McDowell M T 2019 Trends in Chem. 1 845Google Scholar

    [37]

    Wang P, Qu W, Song W L, Chen H, Chen R, Fang D 2019 Adv. Funct. Mater. 29 1900950

    [38]

    Liu H, Cheng X B, Huang J Q, Yuan H, Lu Y, Yan C, Zhu G L, Xu R, Zhao C Z, Hou L P 2020 ACS Energy Lett. 5 833Google Scholar

    [39]

    黄晓, 吴林斌, 黄祯, 林久, 许晓雄 2020 储能科学与技术 9 479

    Huang X, Wu L B, Huang Z, Lin J, Xu X X 2020 Energ. Stor. Sci. Technol. 9 479

    [40]

    孙兴伟, 王龙龙, 姜丰, 马君, 周新红, 崔光磊 2019 储能科学与技术 8 1024

    Sun X W, Wang L L, Jiang F, Ma J, Zhou X H, Cui G L 2019 Energ. Stor. Sci. Technol. 8 1024

    [41]

    Wang C, Zhang H, Li J, Chai J, Dong S, Cui G 2018 J. Power Sources 397 157Google Scholar

    [42]

    Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J 2015 Solid State Ionics 278 98Google Scholar

    [43]

    Alpen U 1979 J. Solid State Chem. 29 379Google Scholar

    [44]

    Chung H, Kang B 2017 Chem. Mater. 29 8611Google Scholar

    [45]

    Wenzel S, Weber D A, Leichtweiss T, Busche M R, Sann J, Janek J 2016 Solid State Ionics 286 24Google Scholar

    [46]

    Wenzel S, Randau S, Leichtweiß T, Weber D A, Sann J, Zeier W G, Janek J 2016 Chem. Mater. 28 2400Google Scholar

    [47]

    Ma C, Cheng Y, Yin K, Luo J, Sharafi A, Sakamoto J, Li J, More K L, Dudney N J, Chi M 2016 Nano Lett. 16 7030Google Scholar

    [48]

    Rettenwander D, Wagner R, Reyer A, Bonta M, Cheng L, Doeff M M, Limbeck A, Wilkening M, Amthauer G 2018 J. Phys. Chem. C 122 3780

    [49]

    Kato A, Kowada H, Deguchi M, Hotehama C, Hayashi A, Tatsumisago M 2018 Solid State Ionics 322 1Google Scholar

    [50]

    Wood K N, Steirer K X, Hafner S E, et al. 2018 Nat. Commun. 9 1Google Scholar

    [51]

    Wenzel S, Sedlmaier S J, Dietrich C, Zeier W G, Janek J 2018 Solid State Ionics 318 102Google Scholar

    [52]

    Schwöbel A, Hausbrand R, Jaegermann W 2015 Solid State Ionics 273 51Google Scholar

    [53]

    Wolfenstine J, Rangasamy E, Allen J L, Sakamoto J 2012 J. Power Sources 208 193Google Scholar

    [54]

    Zhang X, Xiang Q, Tang S, Wang A, Liu X, Luo J 2020 Nano Lett. 20 2871Google Scholar

    [55]

    Fu K K, Gong Y, Liu B, Zhu Y, Xu S, Yao Y, Luo W, Wang C, Lacey S D, Dai J 2017 Sci. Adv. 3 e1601659Google Scholar

    [56]

    Eustathopoulos N, Voytovych R 2016 J. Mater. Sci. 51 425Google Scholar

    [57]

    Rangasamy E, Sahu G, Keum J K, Rondinone A J, Dudney N J, Liang C 2014 J. Mater. Chem. A 2 4111Google Scholar

    [58]

    Liu Z, Fu W, Payzant E A, Yu X, Wu Z, Dudney N J, Kiggans J, Hong K, Rondinone A J, Liang C 2013 J. Am. Chem. Soc. 135 975Google Scholar

    [59]

    Ishiguro K, Nakata Y, Matsui M, Uechi I, Takeda Y, Yamamoto O, Imanishi N 2013 J. Electrochem. Soc. 160 A1690Google Scholar

    [60]

    Ishiguro K, Nemori H, Sunahiro S, Nakata Y, Sudo R, Matsui M, Takeda Y, Yamamoto O, Imanishi N 2014 J. Electrochem. Soc. 161 A668Google Scholar

    [61]

    Wan Z, Lei D, Yang W, Liu C, Shi K, Hao X, Shen L, Lv W, Li B, Yang Q H 2019 Adv. Funct. Mater. 29 1805301Google Scholar

    [62]

    Han X, Gong Y, Fu K K, He X, Hitz G T, Dai J, Pearse A, Liu B, Wang H, Rubloff G 2017 Nat. Mater. 16 572Google Scholar

    [63]

    El Shinawi H, Janek J 2013 J. Power Sources 225 13Google Scholar

    [64]

    Thangadurai V, Weppner W 2005 Adv. Funct. Mater. 15 107Google Scholar

    [65]

    Buschmann H, Berendts S, Mogwitz B, Janek J 2012 J. Power Sources 206 236Google Scholar

    [66]

    Cheng L, Crumlin E J, Chen W, Qiao R, Hou H, Lux S F, Zorba V, Russo R, Kostecki R, Liu Z 2014 Phys. Chem. Chem. Phys. 16 18294Google Scholar

    [67]

    Duan H, Chen W P, Fan M, Wang W P, Yu L, Tan S J, Chen X, Zhang Q, Xin S, Wan L J 2020 Angew. Chem. 59 1491Google Scholar

    [68]

    Cheng L, Liu M, Mehta A, Xin H, Lin F, Persson K, Chen G, Crumlin E J, Doeff M 2018 ACS Appl. Energy Materials 1 7244Google Scholar

    [69]

    Huo H, Chen Y, Zhao N, Lin X, Luo J, Yang X, Liu Y, Guo X, Sun X 2019 Nano Energy 61 119Google Scholar

    [70]

    Tian H K, Xu B, Qi Y 2018 J. Power Sources 392 79Google Scholar

    [71]

    Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu K, Pastel G, Lin C F, Mo Y 2017 Adv. Mater. 29 1606042Google Scholar

    [72]

    Luo W, Gong Y, Zhu Y, Fu K K, Dai J, Lacey S D, Wang C, Liu B, Han X, Mo Y 2016 J. Am. Chem. Soc. 138 12258Google Scholar

    [73]

    Hasegawa S, Imanishi N, Zhang T, Xie J, Hirano A, Takeda Y, Yamamoto O 2009 J. Power Sources 189 371Google Scholar

    [74]

    Yu Q, Han D, Lu Q, He Y B, Li S, Liu Q, Han C, Kang F, Li B 2019 ACS Appl. Mater. Interfaces 11 9911Google Scholar

    [75]

    Sakuma M, Suzuki K, Hirayama M, Kanno R 2016 Solid State Ionics 285 101Google Scholar

    [76]

    Ogawa M, Kanda R, Yoshida K, Uemura T, Harada K 2012 J. Power Sources 205 487Google Scholar

    [77]

    Nagao M, Hayashi A, Tatsumisago M 2012 Electrochem. 80 734Google Scholar

    [78]

    Lin D, Liu Y, Cui Y 2017 Nat. Nanotechnol. 12 194Google Scholar

    [79]

    Takeda Y, Yamamoto O, Imanishi N 2016 Electrochem. 84 210Google Scholar

    [80]

    张建军, 董甜甜, 杨金凤, 张敏, 崔光磊 2018 储能科学与技术 7 861Google Scholar

    Zhang J J, Dong T T, Yang J F, Zhang M, Cui G L 2018 Energ. Stor. Sci. Technol. 7 861Google Scholar

    [81]

    Dollé M, Sannier L, Beaudoin B, Trentin M, Tarascon J M 2002 Electrochem. and Solid State Lett. 5 A286Google Scholar

    [82]

    Maslyn J A, Loo W S, McEntush K D, Oh H J, Harry K J, Parkinson D Y, Balsara N P 2018 J. Phys. Chem. C 122 26797Google Scholar

    [83]

    Monroe C, Newman J 2004 J. Electrochem. Soc. 151 A880Google Scholar

    [84]

    Monroe C, Newman J 2005 J. Electrochem. Soc. 152 A396Google Scholar

    [85]

    Samsonov G V 2012 Handbook of the Physicochemical Properties of the Elements (Berlin: Springer Science & Business Media) p394

    [86]

    Schauser N S, Harry K J, Parkinson D Y, Watanabe H, Balsara N P 2014 J. Electrochem. Soc. 162 A398

    [87]

    Stone G, Mullin S, Teran A, Hallinan D, Minor A, Hexemer A, Balsara N 2012 J. Electrochem. Soc. 159 A222Google Scholar

    [88]

    Harry K J, Hallinan D T, Parkinson D Y, MacDowell A A, Balsara N P 2014 Nat. Mater. 13 69Google Scholar

    [89]

    Harry K J, Higa K, Srinivasan V, Balsara N P 2016 J. Electrochem. Soc. 163 A2216Google Scholar

    [90]

    Golozar M, Hovington P, Paolella A, Bessette S P, Lagacé M, Bouchard P, Demers H, Gauvin R, Zaghib K 2018 Nano Lett. 18 7583Google Scholar

    [91]

    Brissot C, Rosso M, Chazalviel J N, Lascaud S 1999 J. Power Sources 81 925

    [92]

    Kerman K, Luntz A, Viswanathan V, Chiang Y M, Chen Z 2017 J. Electrochem. Soc. 164 A1731Google Scholar

    [93]

    Janek J, Zeier W G 2016 Nature Energy 1 1

    [94]

    周洪, 魏凤, 吴永庆 2020 储能科学与技术 9 1001

    Zhou H, Wei F, Wu Y Q 2020 Energ. Stor. Sci. Technol. 9 1001

    [95]

    Garcia Mendez R, Mizuno F, Zhang R, Arthur T S, Sakamoto J 2017 Electrochim. Acta 237 144Google Scholar

    [96]

    Han F, Yue J, Zhu X, Wang C 2018 Adv. Energy Mater. 8 1703644Google Scholar

    [97]

    Nagao M, Hayashi A, Tatsumisago M, Kanetsuku T, Tsuda T, Kuwabata S 2013 Phys. Chem. Chem. Phys. 15 18600Google Scholar

    [98]

    Aguesse F, Manalastas W, Buannic L, Lopez del Amo J M, Singh G, Llordés A, Kilner J 2017 ACS Appl. Mater. Interfaces 9 3808Google Scholar

    [99]

    Cheng L, Chen W, Kunz M, Persson K, Tamura N, Chen G, Doeff M 2015 ACS Appl. Mater. Interfaces 7 2073Google Scholar

    [100]

    Ren Y, Shen Y, Lin Y, Nan C W 2015 Electrochem. Commun. 57 27Google Scholar

    [101]

    Cheng E J, Sharafi A, Sakamoto J 2017 Electrochim. Acta 223 85Google Scholar

    [102]

    Sharafi A, Meyer H M, Nanda J, Wolfenstine J, Sakamoto J 2016 J. Power Sources 302 135Google Scholar

    [103]

    Swamy T, Park R, Sheldon B W, Rettenwander D, Porz L, Berendts S, Uecker R, Carter W C, Chiang Y M 2018 J. Electrochem. Soc. 165 A3648Google Scholar

    [104]

    Qian J, Henderson W A, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J G 2015 Nat. Commun. 6 1

    [105]

    Choudhury S, Archer L A 2016 Adv. Electron. Mater. 2 1500246Google Scholar

    [106]

    Han F, Westover A S, Yue J, Fan X, Wang F, Chi M, Leonard D N, Dudney N J, Wang H, Wang C 2019 Nat. Energy 4 187Google Scholar

    [107]

    Ahmad Z, Viswanathan V 2017 Phys. Rev. Lett. 119 056003Google Scholar

    [108]

    Raj R, Wolfenstine J 2017 J. Power Sources 343 119Google Scholar

    [109]

    Manalastas W, Rikarte J, Chater R J, Brugge R, Aguadero A, Buannic L, Llordés A, Aguesse F, Kilner J 2019 J. Power Sources 412 287Google Scholar

    [110]

    Wang C, Gong Y, Dai J, Zhang L, Xie H, Pastel G, Liu B, Wachsman E, Wang H, Hu L 2017 J. Am. Chem. Soc. 139 14257Google Scholar

    [111]

    Seitzman N, Guthrey H, Sulas D B, Platt H A, Al Jassim M, Pylypenko S 2018 J. Electrochem. Soc. 165 A3732Google Scholar

    [112]

    Marbella L E, Zekoll S, Kasemchainan J, Emge S P, Bruce P G, Grey C P 2019 Chem. Mater. 31 2762Google Scholar

    [113]

    Schmidt R D, Sakamoto J 2016 J. Power Sources 324 126Google Scholar

    [114]

    Kim S, Jung C, Kim H, Thomas Alyea K E, Yoon G, Kim B, Badding M E, Song Z, Chang J, Kim J, Im D, Kang K 2020 Adv. Energy Mater. 10 1903993Google Scholar

    [115]

    Kazyak E, Garcia Mendez R, LePage W S, Sharafi A, Davis A L, Sanchez A J, Chen K H, Haslam C, Sakamoto J, Dasgupta N P 2020 Matter 2 1025Google Scholar

    [116]

    Koshikawa H, Matsuda S, Kamiya K, Miyayama M, Kubo Y, Uosaki K, Hashimoto K, Nakanishi S 2018 J. Power Sources 376 147Google Scholar

    [117]

    Kasemchainan J, Zekoll S, Spencer Jolly D, Ning Z, Hartley G O, Marrow J, Bruce P G 2019 Nat. Mater. 18 1105Google Scholar

    [118]

    Yu S, Schmidt R D, Garcia Mendez R, Herbert E, Dudney N J, Wolfenstine J B, Sakamoto J, Siegel D J 2016 Chem. Mater. 28 197Google Scholar

    [119]

    Iriyama Y, Kako T, Yada C, Abe T, Ogumi Z 2005 Solid State Ionics 176 2371Google Scholar

    [120]

    Sharafi A, Kazyak E, Davis A L, Yu S, Thompson T, Siegel D J, Dasgupta N P, Sakamoto J 2017 Chem. Mater. 29 7961Google Scholar

    [121]

    Chen Y T, Jena A, Pang W K, Peterson V K, Sheu H S, Chang H, Liu R S 2017 J. Phys. Chem. C 121 15565Google Scholar

    [122]

    Han F, Zhu Y, He X, Mo Y, Wang C 2016 Adv. Energy Mater. 6 1501590Google Scholar

    [123]

    Doyle M, Fuller T F, Newman J 1994 Electrochim. Acta 39 2073Google Scholar

    [124]

    Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J 2010 J. Power Sources 195 6847Google Scholar

    [125]

    Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J 2010 J. Electrochem. Soc. 157 A1092Google Scholar

    [126]

    Zhang X, Wang S, Xue C, Xin C, Lin Y, Shen Y, Li L, Nan C W 2019 Adv. Mater. 31 e1806082Google Scholar

    [127]

    Frenck L, Maslyn J A, Loo W S, Parkinson D Y, Balsara N P 2019 ACS Appl. Mater. Interfaces 11 47878Google Scholar

    [128]

    Fu J, Yu P, Zhang N, Ren G, Zheng S, Huang W, Long X, Li H, Liu X 2019 Energy & Environ. Sci. 12 1404

    [129]

    Shao Y, Wang H, Gong Z, Wang D, Zheng B, Zhu J, Lu Y, Hu Y S, Guo X, Li H 2018 ACS Energy Lett. 3 1212Google Scholar

    [130]

    Song Y, Yang L, Zhao W, Wang Z, Zhao Y, Wang Z, Zhao Q, Liu H, Pan F 2019 Adv. Energy Mater. 9 1900671Google Scholar

    [131]

    Maslyn J A, Frenck L, Loo W S, Parkinson D Y, Balsara N P 2019 ACS Appl. Energy Mater. 2 8197Google Scholar

    [132]

    Hiratani M, Miyauchi K, Kudo T 1988 Solid State Ionics 28 1406

    [133]

    Okita K, Ikeda K i, Sano H, Iriyama Y, Sakaebe H 2011 J. Power Sources 196 2135Google Scholar

    [134]

    Krauskopf T, Mogwitz B, Rosenbach C, Zeier W G, Janek J 2019 Adv. Energy Mater. 9 1902568Google Scholar

    [135]

    Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough J B 2016 J. Am. Chem. Soc. 138 9385Google Scholar

    [136]

    Mai W, Yu Q, Han C, Kang F, Li B 2020 Adv. Funct. Mater. 190991 2

    [137]

    Liu Q, Zhou D, Shanmukaraj D, Li P, Kang F, Li B, Armand M, Wang G 2020 ACS Energy Lett. 5 1456Google Scholar

    [138]

    Li Q, Yi T, Wang X, Pan H, Quan B, Liang T, Guo X, Yu X, Wang H, Huang X 2019 Nano Energy 63 103895Google Scholar

    [139]

    Xu S, McOwen D W, Wang C, Zhang L, Luo W, Chen C, Li Y, Gong Y, Dai J, Kuang Y 2018 Nano Lett. 18 3926Google Scholar

    [140]

    Liu B, Zhang L, Xu S, McOwen D W, Gong Y, Yang C, Pastel G R, Xie H, Fu K, Dai J 2018 Energy Stor. Mater. 14 376Google Scholar

    [141]

    Chen Y, Wang Z, Li X, Yao X, Wang C, Li Y, Xue W, Yu D, Kim S Y, Yang F 2020 Nature 578 251Google Scholar

    [142]

    Herring C 1950 J. Appl. Phys. 21 437Google Scholar

    [143]

    Frost H J, Ashby M F 1982 Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Oxford: Pergamon press) p11

    [144]

    Sun J, He L, Lo Y C, Xu T, Bi H, Sun L, Zhang Z, Mao S X, Li J 2014 Nat. Mater. 13 1007Google Scholar

    [145]

    Tu K N 2007 Solder Joint Technology (Vol. 117) (Berlin: Springer) pp153−181

    [146]

    Tian L, Li J, Sun J, Ma E, Shan Z W 2013 Sci. Rep. 3 2113Google Scholar

    [147]

    Mali M, Roos J, Sonderegger M, Brinkmann D, Heitjans P 1988 J. of Phys. F: Metal Phys. 18 403Google Scholar

    [148]

    He Y, Lu C, Liu S, Zheng W, Luo J 2019 Adv. Energy Mater. 9 1901810Google Scholar

    [149]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K 2011 Nat. Mater. 10 682Google Scholar

  • [1] Li Mei, Zhong Shu-Ying, Hu Jun-Ping, Sun Bao-Zhen, Xu Bo. Migration properties of Li+ in Li1+x AlxTi2–x(PO4)3. Acta Physica Sinica, 2024, 73(13): 138201. doi: 10.7498/aps.73.20240044
    [2] Hua Biao, Sun Bao-Zhen, Wang Jing-Xuan, Shi Jing, Xu Bo. Effects of Li content on stability, electronic and Li-ion diffusion properties of Li3xLa(2/3)–x(1/3)–2xTiO3 surface. Acta Physica Sinica, 2023, 72(2): 028201. doi: 10.7498/aps.72.20221808
    [3] Yang Yuan, Hu Nai-Fang, Jin Yong-Cheng, Ma Jun, Cui Guang-Lei. Research advance of lithium-rich cathode materials in all-solid-state lithium batteries. Acta Physica Sinica, 2023, 72(11): 118801. doi: 10.7498/aps.72.20230258
    [4] Geng Xiao-Bin, Li Ding-Gen, Xu Bo. Mechanical stress-thermodynamic phase-field simulation of lithium dendrite growth in solid electrolyte battery. Acta Physica Sinica, 2023, 72(22): 220201. doi: 10.7498/aps.72.20230824
    [5] He Bing, Lian Yu-Xiang, Wu Mu-Sheng, Luo Wen-Wei, Yang Shen-Bo, Ouyang Chu-Ying. Improvement of performance of halide solid electrolyte by tuning cations. Acta Physica Sinica, 2022, 71(20): 208201. doi: 10.7498/aps.71.20221050
    [6] You Yi-Wei, Cui Jian-Wen, Zhang Xiao-Feng, Zheng Feng, Wu Shun-Qing, Zhu Zi-Zhong. Properties of lithium phosphorus oxynitride (LiPON) solid electrolyte - Li anode interfaces. Acta Physica Sinica, 2021, 70(13): 136801. doi: 10.7498/aps.70.20202214
    [7] Shao Guang-Wei, Guo Shan-Shan, Yu Rui, Chen Nan-Liang, Ye Mei-Dan, Liu Xiang-Yang. Stretchable supercapacitors: Electrodes, electrolytes, and devices. Acta Physica Sinica, 2020, 69(17): 178801. doi: 10.7498/aps.69.20200881
    [8] Zhang Nian, Ren Guo-Xi, Zhang Hui, Zhou Deng, Liu Xiao-Song. Research progress of interface problems and optimization of garnet-type solid electrolyte. Acta Physica Sinica, 2020, 69(22): 228806. doi: 10.7498/aps.69.20201533
    [9] Feng Wu-Liang, Wang Fei, Zhou Xing, Ji Xiao, Han Fu-Dong, Wang Chun-Sheng. Stability of interphase between solid state electrolyte and electrode. Acta Physica Sinica, 2020, 69(22): 228206. doi: 10.7498/aps.69.20201554
    [10] Wang Xin-Meng, Shi Peng, Zhang Xue-Qiang, Chen Ai-Bing, Zhang Qiang. Failure mechanism of lithium metal anode under practical conditions. Acta Physica Sinica, 2020, 69(22): 228501. doi: 10.7498/aps.69.20200906
    [11] Zhao Ning, Mu Shuang, Guo Xiang-Xin. Physical issues in solid garnet batteries. Acta Physica Sinica, 2020, 69(22): 228804. doi: 10.7498/aps.69.20201191
    [12] Liu Yu-Long, Xin Ming-Yang, Cong Li-Na, Xie Hai-Ming. Recent research progress of interface for polyethylene oxide based solid state battery. Acta Physica Sinica, 2020, 69(22): 228202. doi: 10.7498/aps.69.20201588
    [13] Peng Lin-Feng, Zeng Zi-Qi, Sun Yu-Long, Jia Huan-Huan, Xie Jia. Facile synthesis and electrochemical properties of Na-rich anti-perovskite solid electrolytes. Acta Physica Sinica, 2020, 69(22): 228201. doi: 10.7498/aps.69.20201227
    [14] Zhang Qiao-Bao, Gong Zheng-Liang, Yang Yong. Advance in interface and characterizations of sulfide solid electrolyte materials. Acta Physica Sinica, 2020, 69(22): 228803. doi: 10.7498/aps.69.20201581
    [15] Cao Wen-Zhuo, Li Quan, Wang Sheng-Bin, Li Wen-Jun, Li Hong. Mechanism, strategies, and characterizations of Li plating in solid state batteries. Acta Physica Sinica, 2020, 69(22): 228204. doi: 10.7498/aps.69.20201293
    [16] Chen Qi, Shang Xue-Fu, Zhang Peng, Xu Peng, Wang Miao, Nobuyuki Imanishi. Li1.4Al0.4Ti1.6(PO4)3 high lithium ion conducting solid electrolyte prepared by tape casting and modified with epoxy resin. Acta Physica Sinica, 2017, 66(18): 188201. doi: 10.7498/aps.66.188201
    [17] Guo Li-Qiang, Tao Jian, Wen Juan, Cheng Guang-Gui, Yuan Ning-Yi, Ding Jian-Ning. Corn starch solid electrolyte gated proton/electron hybrid synaptic transistor. Acta Physica Sinica, 2017, 66(16): 168501. doi: 10.7498/aps.66.168501
    [18] Guo Li-Qiang, Wen Juan, Cheng Guang-Gui, Yuan Ning-Yi, Ding Jian-Ning. Dual in-plane-gate coupled IZO thin film transistor based on capacitive coupling effect in KH550-GO solid electrolyte. Acta Physica Sinica, 2016, 65(17): 178501. doi: 10.7498/aps.65.178501
    [19] Guo Wen-Hao, Xiao Hui, Men Chuan-Ling. Effects of protons within SiO2 solid-state electrolyte on performances of oxide electric-double-layer thin film transistor. Acta Physica Sinica, 2015, 64(7): 077302. doi: 10.7498/aps.64.077302
    [20] YU WEN-HAI, DING YI. FRACTAL MODEL OF THE INTERFACE BETWEEN ELECTROLYTE AND ELECTRODE AND ITS FREQUENCY RESPONSE. Acta Physica Sinica, 1989, 38(10): 1621-1627. doi: 10.7498/aps.38.1621
Metrics
  • Abstract views:  18222
  • PDF Downloads:  701
  • Cited By: 0
Publishing process
  • Received Date:  29 July 2020
  • Accepted Date:  04 September 2020
  • Available Online:  17 November 2020
  • Published Online:  20 November 2020

/

返回文章
返回
Baidu
map