Processing math: 100%

搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于力-热-电化学耦合下固态锂电池枝晶生长的相场模拟

侯鹏洋 谢佳苗 李京阳 张鹏 李兆凯 郝文乾 田佳 王哲 李福正

基于力-热-电化学耦合下固态锂电池枝晶生长的相场模拟

侯鹏洋, 谢佳苗, 李京阳, 张鹏, 李兆凯, 郝文乾, 田佳, 王哲, 李福正

Phase field simulation of dendrite growth in solid-state lithium batteries based on mechaincal-thermo-electrochemical coupling

HOU Pengyang, XIE Jiamiao, LI Jingyang, ZHANG Peng, LI Zhaokai, HAO Wenqian, TIAN Jia, WANG Zhe, LI Fuzheng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 固态电解质锂电池具有能量密度大、循环稳定性强、机械强度高、不易燃、安全性高、使用寿命长等优点, 广泛应用于航空航天、新能源汽车和移动设备等领域. 但是在锂电池的电极/电解质界面处存在的锂枝晶生长问题一直是制约其性能提升和安全应用的关键因素, 锂枝晶在电解质中生长不仅会降低电池的库仑效率, 而且可能刺穿电解质导致电池内部正负极短路. 本文针对固态锂电池中的锂枝晶生长问题, 基于相场理论进行数值模拟研究, 建立了耦合应力场、热场和电化学场的锂枝晶生长相场模型, 研究了环境温度、外压力以及该两种条件耦合作用下的锂枝晶生长形态以及演化规律. 研究结果表明, 在较高温度和较大外应力作用下, 锂枝晶生长缓慢, 侧枝数量减少, 表面更光滑, 电沉积较为均匀. 施加外压越大时, 锂枝晶纵向生长受到抑制, 呈压缩状态, 比表面积和致密度更高, 但机械不稳定性也会增强; 环境温度越高, 锂离子的扩散速率和反应速率越大, 锂枝晶生长速率和大小也受到抑制, 且二者耦合作用对枝晶生长有明显的抑制效果, 应力集中在根部, 使得枝晶更侧重于横向生长, 有利于形成平坦和密集的锂沉积.
    Solid-state lithium batteries possess numerous advantages, such as high energy density, excellent cycle stability, superior mechanical strength, non-flammability, enhanced safety, and extended service life. These characteristics make them highly suitable for applications in aerospace, new energy vehicles, and portable electronic devices. However, the growth of lithium dendrite at the electrode/electrolyte interface remains a critical challenge, limiting both performance and safety. The growth of lithium dendrites in the electrolyte not only reduces the Coulombic efficiency of the battery but also poses a risk of puncturing the electrolyte, leading to internal short circuits between the anode and cathode. This study is to solve the problem of lithium dendrite growth in solid-state lithium batteries by employing phase-field theory for numerical simulations. A phase-field model is developed by coupling the mechanical stress field, thermal field, and electrochemical field, to investigate the morphology and evolution of lithium dendrites under the condition of different ambient temperatures, external pressures, and their combined effects. The results indicate that higher temperature and greater external pressure significantly suppress lithium dendrite growth, leading to fewer side branches, smoother surfaces, and more uniform electrochemical deposition. Increased external pressure inhibits longitudinal dendrite growth, resulting in a compressed morphology with higher specific surface area and compactness, but at the cost of increased mechanical instability. Similarly, elevated ambient temperature enhances lithium-ion diffusion and reaction rate, which further suppress dendrite growth rate and size. The combined effect of temperature and pressure exhibits a pronounced inhibitory influence on dendrite growth, with stress concentrating at the dendrite roots. This stress distribution promotes lateral growth, facilitating the formation of flatter and denser lithium deposits.
      PACS:
  • 图 1  二维锂枝晶生长的有限元模型示意图

    Fig. 1.  Schematic diagram of the finite element model of two-dimensional lithium dendrite growth.

    图 2  有限元结果验证 (a) 有限元网格与初始形核点位置设置; (b) 当t = 40 s时当前模型的锂离子浓度; (c) 当t = 40 s时Yang等[31]得到的锂离子浓度

    Fig. 2.  Verification of finite element results: (a) Setting of finite element mesh and initial nucleation point; (b) lithium-ion concentration (mol/m3) of current model when t = 40 s; (c) lithium-ion concentration (mol/m3) morphology obtained by Yang et al. [31] when t = 40 s.

    图 3  锂枝晶生长演化结果 (a) 锂枝晶生长形貌; (b) 锂离子浓度(mol/m3); (c) 电势分布(V); (d) von Mises 应力分布(MPa)

    Fig. 3.  Evolution results of lithium dendrite growth: (a) Growth morphology of lithium dendrites; (b) lithium-ion concentration (mol/m3); (c) electric potential (V); (d) von Mises stress distribution (MPa).

    图 4  施加不同外压力时的锂枝晶生长演化结果 (a) 锂枝晶生长形貌; (b) von Mises应力分布 (MPa)

    Fig. 4.  Evolution results of lithium dendrite growth under different external pressures: (a) Growth morphology of lithium dendrites; (b) von Mises stress distribution (MPa).

    图 5  不同外压力下锂枝晶生长趋势结果 (a) 锂枝晶高度与宽度的比值(b/a)随时间的变化; (b) 锂枝晶宽度与高度的比值(a/b)随压力的变化

    Fig. 5.  Results of lithium dendrite growth trend under different external pressures: (a) The ratio of height to width (b/a) of lithium dendrite changes with time; (b) the ratio of width to height (a/b) of lithium dendrite changes with pressure.

    图 6  不同环境温度下的锂枝晶生长演化结果 (a) 锂枝晶生长形貌; (b) 锂离子浓度(mol/m3)

    Fig. 6.  Evolution results of lithium dendrite growth at different ambient temperatures: (a) Growth morphology of lithium dendrites; (b) lithium-ion concentration (mol/m3).

    图 7  不同环境温度下锂枝晶高度与宽度的比值(b/a)随时间的变化

    Fig. 7.  Ratio of height to width (b/a) of lithium dendrites changes with time at different ambient temperatures.

    图 8  不同环境温度和外压力耦合作用下锂枝晶生长演化结果 (a) 锂枝晶生长形貌; (b) von Mises应力分布(MPa); (c) 锂离子浓度(mol/m3)

    Fig. 8.  Evolution results of lithium dendrite growth under coupling of external pressure and ambient temperature: (a) Growth morphology of lithium dendrites; (b) von Mises stress (MPa); (c) lithium-ion concentration (mol/m3).

    图 9  在外压、环境温度以及这两种条件耦合作用下锂枝晶生长高度对比

    Fig. 9.  Comparison of lithium dendrite height under external pressure, ambient temperature and coupling of these two conditions.

    表 1  相场模拟的模型参数[16,17,30,31]

    Table 1.  Phase field simulation parameters[16,17,30,31]

    参数名参数符号数值
    界面迁移率Lσ/(m3·J–1·s–1)1×10–6
    化学反应常数Lη/s–10.5
    各向异性强度δ0.05
    各项异性模数ω4
    电极扩散系数De/(m2·s–1)1.7×10–15
    电解质扩散系数Ds/(m2·s–1)2×10–15
    电极电导率σe/(S·m–1)1×107
    电解质电导率σs/(S·m–1)0.1
    电荷转移系数α0.5
    势垒高度W/(J·m–3)105
    电解质初始浓度c0/(mol·m–3)1000
    电极初始浓度cs/(mol·m–3)7.69×104
    梯度能量系数k/(J·m–1)1×10–10
    电极杨氏模量Ee/GPa7.8
    电解质杨氏模量Es/GPa1
    电极泊松比Ve0.42
    电解质泊松比Vs0.3
    Vegard 应变系数λi–0.866×10–3
    –0.773×10–3
    –0.529×10–3
    电极比热容Cpe/(J·kg–1·K–1)1200
    电解质比热容Cps/(J·kg–1·K–1)133
    电极导热系数Re/(W·m–1·K–1)1.04
    电解质导热系数Rs/(W·m–1·K–1)0.45
    扩散势垒Ea,D+Li/eV0.34
    电化学反应势垒Ea,Lη/eV0.3
    下载: 导出CSV
    Baidu
  • [1]

    Goodenough J B, Singh P 2015 J. Electrochem. Soc. 162 A2387Google Scholar

    [2]

    Peters B K, Rodriguez K X, Reisberg S H, Beil S B, Hickey D P, Y Kawamata, Collins M, Starr J, Chen L, Udyavara S, Klunder K, Gorey T J, Anderson S L, Neurock M, Minteer S D, Baran P S 2019 Science. 363 838Google Scholar

    [3]

    耿晓彬, 李顶根, 徐波 2023 72 220201Google Scholar

    Geng X B, Li D G, Xu B 2023 Acta Phys. Sin. 72 220201Google Scholar

    [4]

    Viswanathan V, Epstein A H, Chiang Y M, Esther T, Bradley M, Langford J, Winter M 2022 Nature. 601 519Google Scholar

    [5]

    Lee M J, Han J, Lee K, Lee Y J, Kim B G, Jung K N, Kim B J, Lee S W 2022 Nature. 601 217Google Scholar

    [6]

    Hao F, Verma A, Mukherjee P P 2018 J. Mater. Chem. A 6 19664Google Scholar

    [7]

    Liu Z, Qi Y, Lin Y X, Chen L, Lu P, Chen L Q 2016 J. Electrochem. Soc. 163 A592Google Scholar

    [8]

    张更, 王巧, 沙立婷, 李亚捷, 王达, 施思齐 2020 69 226401Google Scholar

    Zhang G, Wang Q, Sha L T, Li Y J, Wang D, Shi S Q 2020 Acta Phys. Sin. 69 226401Google Scholar

    [9]

    Sripad S, Viswanathan V 2017 Electrochem. Soc. 164 E3635Google Scholar

    [10]

    Sripad S, Viswanathan V 2017 ACS Energy Lett. 2 1669Google Scholar

    [11]

    Guttenberg M, Sripad S, Viswanathan V 2017 ACS Energy Lett. 2 2642Google Scholar

    [12]

    Guyer J E, Boettinger W J, Warren J A, McFadden G B 2004 Phys. Rev. E 69 021603Google Scholar

    [13]

    Kobayashi R 1993 Physica D. 63 410Google Scholar

    [14]

    Liang L Y, Qi Y, Xue F, Bhattacharya S, Harris S J, Chen L Q 2012 Phys. Rev. E. 86 051609Google Scholar

    [15]

    Chen L, Zhang H W, Liang L Y, Liu Z, Qi Y, Lu P, Chen J, Chen L Q 2015 J. Power Sources. 300 376Google Scholar

    [16]

    Shen X, Zhang R, Shi P, Chen X, Zhang Q 2021 Adv. Energy Mater. 11 2003416Google Scholar

    [17]

    Yan H H, Bie Y H, Cui X Y, Xiong G P, Chen L 2018 Energy Convers Manag. 161 193Google Scholar

    [18]

    Hong Z J, Viswanathan V 2019 ACS Energy Lett. 4 1012Google Scholar

    [19]

    Yurkiv V, Foroozan T, Ramasubramanian A, Shahbazian-Yassar R, Mashayek F 2018 MRS Commun. 8 1285Google Scholar

    [20]

    Qi G Q, Liu X L, Dou R F, Wen Z, Zhou W N, Liu L 2024 J. Energy Storage 101 113899Google Scholar

    [21]

    Arguello M E, Labanda N A, Calo V M, Gumulya M, Utikar R, Derksen J 2022 J. Energy Storage 53 104892Google Scholar

    [22]

    Jiang W J, Wang Z H, Hu L Z, Wang Y, Ma Z S 2024 J. Energy Storage 86 111126Google Scholar

    [23]

    梁辰, 邢鹏飞, 吴孟武, 秦训鹏 2024 储能科学与技术 1125 2095

    Liang C, Xing P F, Wu M W, Qin X P 2024 Energy Storage Sci. Techn. 1125 2095

    [24]

    Cahn J W, Allen S M 1977 J. Phys. IV 38 C7

    [25]

    Allen S M, Cahn J W 1979 Acta Metall. 27 1085Google Scholar

    [26]

    梁宇皓, 范丽珍 2020 69 226201Google Scholar

    Liang Y H, Fan L Z 2020 Acta Phys. Sin. 69 226201Google Scholar

    [27]

    Wu W, Xiao X, Huang X S 2012 Electrochim. Acta 83 227Google Scholar

    [28]

    Doyle M, Newman J, Góźdź A S, Schmutz C, Tarascon J M 1996 J. Electrochem. Soc. 143 1890Google Scholar

    [29]

    Stewart S G, Newman J 2008 J. Electrochem. Soc. 155 F13Google Scholar

    [30]

    Zhang Y X, Li Y F, Shen W J, Li K, Lin Y X 2023 ACS Appl. Energy Mater. 6 1933Google Scholar

    [31]

    Yang H D, Wang Z J 2023 J. Solid State Electr. 27 2607Google Scholar

    [32]

    崔锦, 石川, 赵金保 2021 化工学报 72 3511Google Scholar

    Cui J, Shi C, Zhao J B 2021 CIESC J. 72 3511Google Scholar

    [33]

    Yin X S, Tang W, Jung I D, Phua K C, Adams S., Lee S W, Zheng G W 2018 Nano Energy 50 659Google Scholar

    [34]

    王其钰, 王朔, 周格, 张杰男, 郑杰允, 禹习谦, 李泓 2018 67 128501Google Scholar

    Wang Q Y, Wang S, Zhou G, Zhang J N, Zheng J Y, Yu X Q, Li H 2018 Acta Phys. Sin. 67 128501Google Scholar

    [35]

    乔东格, 刘训良, 温治, 豆瑞峰, 周文宁 2022 储能科学与技术 11 1008

    Qiao D G, Liu X L, Wen Z, Dou R F, Zhou W N 2022 ESST 11 1008

    [36]

    Yan K, Wang J Y, Zhao S Q, Zhou D, Sun B, Cui Y, Wang G X 2019 Angew Chem. Int. Edit. 58 11364Google Scholar

  • [1] 张袆柔, 曾晓淇, 李家星, 任怡茂, 吴伟雄. 锂离子电池颗粒尺度下电化学-热-力过充模型.  , doi: 10.7498/aps.74.20240984
    [2] 刘东昆, 王庆宇, 张田, 周羽, 王翔. 大晶粒UO2燃料裂变气体释放行为相场模拟研究.  , doi: 10.7498/aps.73.20231773
    [3] 杨源, 胡乃方, 金永成, 马君, 崔光磊. 富锂正极材料在全固态锂电池中的研究进展.  , doi: 10.7498/aps.72.20230258
    [4] 耿晓彬, 李顶根, 徐波. 固态电解质电池锂枝晶生长机械应力-热力学相场模拟研究.  , doi: 10.7498/aps.72.20230824
    [5] 王浩, 曹珊珊, 苏俊豪, 徐海涛, 王震, 郑加金, 韦玮. 基于双包层光纤布拉格光栅传感器的锂电池组温度场监控.  , doi: 10.7498/aps.71.20212302
    [6] 李晓杰, 喻云泰, 张志文, 董小瑞. 基于电化学老化衰退模型的锂离子动力电池外特性.  , doi: 10.7498/aps.71.20211401
    [7] 陆敬予, 柯承志, 龚正良, 李德平, 慈立杰, 张力, 张桥保. 原位表征技术在全固态锂电池中的应用.  , doi: 10.7498/aps.70.20210531
    [8] 李涛, 程夕明, 胡晨华. 锂离子电池电化学降阶模型性能对比.  , doi: 10.7498/aps.70.20201894
    [9] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化.  , doi: 10.7498/aps.70.20210455
    [10] 赵宁, 穆爽, 郭向欣. 石榴石型固态锂电池中的物理问题.  , doi: 10.7498/aps.69.20201191
    [11] 梁宇皓, 范丽珍. 固态锂电池中的机械力学失效及解决策略.  , doi: 10.7498/aps.69.20200713
    [12] 张更, 王巧, 沙立婷, 李亚捷, 王达, 施思齐. 相场模型及其在电化学储能材料中的应用.  , doi: 10.7498/aps.69.20201411
    [13] 刘征宇, 杨昆, 魏自红, 姚利阳. 包含液相扩散方程简化的锂离子电池电化学模型.  , doi: 10.7498/aps.68.20190159
    [14] 曾建邦, 郭雪莹, 刘立超, 沈祖英, 单丰武, 罗玉峰. 基于电化学-热耦合模型研究隔膜孔隙结构对锂离子电池性能的影响机制.  , doi: 10.7498/aps.68.20181726
    [15] 庞辉, 张旭. 一种基于简化电化学模型的锂电池互联状态观测器.  , doi: 10.7498/aps.67.20181429
    [16] 肖睿娟, 李泓, 陈立泉. 基于材料基因组方法的锂电池新材料开发.  , doi: 10.7498/aps.67.20180657
    [17] 庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法.  , doi: 10.7498/aps.66.238801
    [18] 陈振飞, 冯露, 赵洋, 齐红蕊. 力和扩散机理下外延形貌的演化分析.  , doi: 10.7498/aps.64.138103
    [19] 潘诗琰, 朱鸣芳. 双边扩散枝晶生长的定量相场模型.  , doi: 10.7498/aps.61.228102
    [20] 赵达文, 李金富. 相场模型模拟液固界面各向异性作用下自由枝晶生长.  , doi: 10.7498/aps.58.7094
计量
  • 文章访问数:  504
  • PDF下载量:  42
出版历程
  • 收稿日期:  2024-12-15
  • 修回日期:  2025-01-27
  • 上网日期:  2025-02-14

/

返回文章
返回
Baidu
map