-
随着对能源存储设备输出和安全性能等方面需求的不断提升, 全固态电池展示了替代传统液态锂离子电池占据新能源市场的潜力. 石榴石型Li7La3Zr2O12固体电解质具有高离子导率且对于锂金属稳定, 是最受人瞩目的固体电解质材料之一. 但是, 固-固界面不良接触导致的巨大界面电阻以及由于锂的不均匀沉积和分解导致的锂枝晶生长等问题严重阻碍了全固态电池的发展. 本综述针对石榴石型全固态电池突出的界面问题, 详细论述了Li7La3Zr2O12表面碳酸锂问题的研究现状; 讨论了锂金属负极和固态电解质的界面浸润性以及锂枝晶生长问题, 给出了构建理想界面的关键因素; 阐述了优化正极与石榴石型固体电解质界面的具体方法以及改善界面润湿性的思路. 本文还展望了未来石榴石型全固态锂离子电池可能的发展方向, 为全固态锂离子电池的发展和应用提供了借鉴.With the increasing demand for storage devices with higher energy output and better safety performance, all-solid-state batteries show their potential to replace the traditional liquid-based Li-ion batteries in the future storage market. Garnet-type Li7La3Zr2O12 is one of the most attractive solid electrolyte materials because of its high ionic conductivity and stability to lithium metal. However, the large interfacial resistance originating from the insufficient solid-solid contact and the penetration of the lithium dendrite due to the inhomogeneous dissolution and deposition of lithium, hinder the all-solid-state batteries from developing. Focusing on the main interfacial problems in garnet-type all-solid battery, this review provides a fundamental understanding of the Li2CO3 issues in Li7La3Zr2O12 solid electrolyte and addresses the key factors influencing Li/ Li7La3Zr2O12/cathode interfacial wettability and the growth of Li dendrite, thus giving the key factors of constructing ideal interfaces. Finally, the possible research direction of garnet-type all-solid-state battery in the future is also prospected, which provides a guidance for developing and using all-solid-state batteries.
-
Keywords:
- Li7La3Zr2O12 /
- all-solid-state battery /
- interface modification /
- characterization technology
[1] Xu M, Fei L, Zhang W, Li T, Lu W, Zhang N, Lai Y, Zhang Z, Fang J, Zhang K, Li J, Huang H 2017 Nano. Lett. 17 1670Google Scholar
[2] Xu Q, Li J Y, Sun J K, Yin Y X, Wan L J, Guo Y G 2017 Adv. Energy Mater. 7 1601481Google Scholar
[3] Yang C P, Yin Y X, Zhang S F, Li N W, Guo Y G 2015 Nat. Commun. 6 8058Google Scholar
[4] Cheng X B, Zhang R, Zhao C Z, Zhang Q 2017 Chem. Rev. 117 10403Google Scholar
[5] Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu K K, Pastel G, Lin C F, Mo Y, Wachsman E D, Hu L 2017 Adv. Mater. 29Google Scholar
[6] Zhou F, Xin S, Liang H W, Song L T, Yu S H 2014 Angew. Chem. Int. Ed. Engl. 53 11552Google Scholar
[7] Xin S, You Y, Wang S, Gao H C, Yin Y X, Guo Y G 2017 ACS Energy Lett. 2 1385Google Scholar
[8] Yu B C, Park K, Jang J H, Goodenough J B 2016 ACS Energy Lett. 1 633Google Scholar
[9] Lin D, Zhuo D, Liu Y, Cui Y 2016 J. Am. Chem. Soc. 138 11044Google Scholar
[10] Zheng G, Wang C, Pei A, Lopez J, Shi F, Chen Z, Sendek A D, Lee H W, Lu Z, Schneider H, Safont-Sempere M M, Chu S, Bao Z, Cui Y 2016 ACS Energy Lett. 1 1247Google Scholar
[11] Sacci R L, Black J M, Balke N, Dudney N J, More K L, Unocic R R 2015 Nano Lett. 15 2011Google Scholar
[12] Chang H J, Ilott A J, Trease N M, Mohammadi M, Jerschow A, Grey C P 2015 J. Am. Chem. Soc. 137 15209Google Scholar
[13] Xu R C, Xia X H, Zhang S Z, Xie D, Wang X L, Tu J P 2018 Electrochim. Acta 284 177Google Scholar
[14] Liu J, Xu J, Lin Y, Li J, Lai Y, Yuan C, Zhang J, Zhu K 2013 Acta Chim. Sinica 71 869Google Scholar
[15] Kobayashi T, Imade Y, Shishihara D, Homma K, Nagao M, Watanabe R, Yokoi T, Yamada A, Kanno R, Tatsumi T 2008 J. Power Sources 182 621Google Scholar
[16] Kim H, Ding Y, Kohl P A 2012 J. Power Sources 198 281Google Scholar
[17] Anantharamulu N, Rao K K, Rambabu G, Kumar B V, Radha V, Vithal M 2011 J. Mater. Sci. 46 2821Google Scholar
[18] Bonanos N, Knight K, Ellis B 1995 Solid State Ionics 79 161Google Scholar
[19] Kanno R, Murayama M 2001 J. Electrochem. Soc. 148 A742Google Scholar
[20] Zhang Z, Zhang L, Liu Y, Yu C, Yan X, Xu B, Wang L M 2018 J. Alloys Compd. 747 227Google Scholar
[21] Senevirathne K, Day C S, Gross M D, Lachgar A, Holzwarth N 2013 Solid State Ionics 233 95Google Scholar
[22] Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M 2005 Adv. Mater. 17 918Google Scholar
[23] Ferraresi G, El Kazzi M, Czornomaz L, Tsai C L, Uhlenbruck S, Villevieille C 2018 ACS Energy Lett. 3 1006Google Scholar
[24] Murugan R, Thangadurai V, Weppner W 2007 Angew. Chem. Int. Ed. Engl. 46 7778Google Scholar
[25] Awaka J, Kijima N, Hayakawa H, Akimoto J 2009 J. Solid State Chem. 182 2046Google Scholar
[26] Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough J B 2016 J. Am. Chem. Soc. 138 9385Google Scholar
[27] Haruyama J, Sodeyama K, Tateyama Y 2017 ACS Appl. Mater. Interfaces 9 286Google Scholar
[28] Han X, Gong Y, Fu K K, He X, Hitz G T, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman E D, Hu L 2017 Nat. Mater. 16 572Google Scholar
[29] Porz L, Swamy T, Sheldon B W, Rettenwander D, Frömling T, Thaman H L, Berendts S, Uecker R, Carter W C, Chiang Y M 2017 Adv. Energy Mater. 7 1701003Google Scholar
[30] Sharafi A, Meyer H M, Nanda J, Wolfenstine J, Sakamoto J 2016 J. Power Sources 302 135Google Scholar
[31] Cheng L, Crumlin E J, Chen W, Qiao R, Hou H, Franz Lux S, Zorba V, Russo R, Kostecki R, Liu Z, Persson K, Yang W, Cabana J, Richardson T, Chen G, Doeff M 2014 Phys. Chem. Chem. Phys. 16 18294Google Scholar
[32] Sharafi A, Kazyak E, Davis A L, Yu S, Thompson T, Siegel D J, Dasgupta N P, Sakamoto J 2017 Chem. Mater. 29 7961Google Scholar
[33] Huo H, Luo J, Thangadurai V, Guo X, Nan C W, Sun X 2019 ACS Energy Lett. 5 252Google Scholar
[34] Xia W, Xu B, Duan H, Guo Y, Kang H, Li H, Liu H 2016 ACS Appl. Mater. Interfaces 8 5335Google Scholar
[35] Wagner R, Rettenwander D, Redhammer G J, Tippelt G, Sabathi G, Musso M E, Stanje B, Wilkening M, Suard E, Amthauer G 2016 Inorg. Chem. 55 12211Google Scholar
[36] Cheng L, Wu C H, Jarry A, Chen W, Ye Y, Zhu J, Kostecki R, Persson K, Guo J, Salmeron M, Chen G, Doeff M 2015 ACS Appl. Mater. Interfaces 7 17649Google Scholar
[37] Sharafi A, Yu S, Naguib M, Lee M, Ma C, Meyer H M, Nanda J, Chi M, Siegel D J, Sakamoto J 2017 J. Mater. Chem. A 5 13475Google Scholar
[38] Ma C, Rangasamy E, Liang C, Sakamoto J, More K L, Chi M 2015 Angew. Chem. Int. Ed. Engl. 54 129Google Scholar
[39] Truong L, Thangadurai V 2011 Chem. Mater. 23 3970Google Scholar
[40] Truong L, Thangadurai V 2012 Inorg. Chem. 51 1222Google Scholar
[41] Brugge R H, Hekselman A K O, Cavallaro A, Pesci F M, Chater R J, Kilner J A, Aguadero A 2018 Chem. Mater. 30 3704Google Scholar
[42] Liu X, Chen Y, Hood Z D, Ma C, Yu S, Sharafi A, Wang H, An K, Sakamoto J, Siegel D J, Cheng Y, Jalarvo N H, Chi M 2019 Energy Environ. Sci. 12 945Google Scholar
[43] Zhang N, Long X, Wang Z, Yu P, Han F, Fu J, Ren G, Wu Y, Zheng S, Huang W 2018 ACS Appl. Energy Mater. 1 5968Google Scholar
[44] Lan W J, Dong L, Lu R Z, Chen H Y 2019 Int. J. Electrochem. Sci. 14 9695Google Scholar
[45] Rao R P, Gu W, Sharma N, Peterson V K, Avdeev M, Adams S 2015 Chem. Mater. 27 2903Google Scholar
[46] Li Y, Chen X, Dolocan A, Cui Z, Xin S, Xue L, Xu H, Park K, Goodenough J B 2018 J. Am. Chem. Soc. 140 6448Google Scholar
[47] Cheng L, Liu M, Mehta A, Xin H, Lin F, Persson K, Chen G, Crumlin E J, Doeff M 2018 ACS Appl. Energy Mater. 1 7244Google Scholar
[48] Wang C, Xie H, Ping W, Dai J, Feng G, Yao Y, He S, Weaver J, Wang H, Gaskell K, Hu L 2019 Energy Storage Mater. 17 234Google Scholar
[49] Li Y, Xu B, Xu H, Duan H, Lu X, Xin S, Zhou W, Xue L, Fu G, Manthiram A, Goodenough J B 2017 Angew. Chem. Int. Ed. Engl. 56 753Google Scholar
[50] Xu B, Li W, Duan H, Wang H, Guo Y, Li H, Liu H 2017 J. Power Sources 354 68Google Scholar
[51] Wu J F, Pu B W, Wang D, Shi S Q, Zhao N, Guo X X, Guo X 2019 ACS Appl. Mater. Interfaces 11 898Google Scholar
[52] Huo H, Chen Y, Zhao N, Lin X, Luo J, Yang X, Liu Y, Guo X, Sun X 2019 Nano Energy 61 119Google Scholar
[53] Harry K J, Hallinan D T, Parkinson D Y, MacDowell A A, Balsara N P 2014 Nat. Mater. 13 69Google Scholar
[54] Ren Y, Shen Y, Lin Y, Nan C-W 2015 Electrochem. Commun. 57 27Google Scholar
[55] Tsai C L, Roddatis V, Chandran C V, Ma Q, Uhlenbruck S, Bram M, Heitjans P, Guillon O 2016 ACS Appl. Mater. Interfaces 8 10617Google Scholar
[56] Aguesse F, Manalastas W, Buannic L, Lopez Del Amo J M, Singh G, Llordes A, Kilner J 2017 ACS Appl Mater Interfaces 9 3808Google Scholar
[57] Wu B, Wang S, Lochala J, Desrochers D, Liu B, Zhang W, Yang J, Xiao J 2018 Energy Environ. Sci. 11 1803Google Scholar
[58] Han F, Westover A S, Yue J, Fan X, Wang F, Chi M, Leonard D N, Dudney N J, Wang H, Wang C 2019 Nat. Energy 4 187Google Scholar
[59] Chen Y T, Jena A, Pang W K, Peterson V K, Sheu H S, Chang H, Liu R S 2017 J.Phys. Chem. C 121 15565Google Scholar
[60] Wang S, Xu H, Li W, Dolocan A, Manthiram A 2018 J. Am. Chem. Soc. 140 250Google Scholar
[61] Fu J, Yu P, Zhang N, Ren G, Zheng S, Huang W, Long X, Li H, Liu X 2019 Energy Environ. Sci. 12 1404Google Scholar
[62] Chen Y, He M, Zhao N, Fu J, Huo H, Zhang T, Li Y, Xu F, Guo X 2019 J. Power Sources 420 15Google Scholar
[63] Huo H, Chen Y, Li R, Zhao N, Luo J, Pereira da Silva J G, Mücke R, Kaghazchi P, Guo X, Sun X 2020 Energy Environ. Sci. 13 127Google Scholar
[64] Miara L, Windmuller A, Tsai C L, Richards W D, Ma Q, Uhlenbruck S, Guillon O, Ceder G 2016 ACS Appl. Mater. Interfaces 8 26842Google Scholar
[65] Zhang W, Richter F H, Culver S P, Leichtweiss T, Lozano J G, Dietrich C, Bruce P G, Zeier W G, Janek J 2018 ACS Appl. Mater. Interfaces 10 22226Google Scholar
[66] Yamada H, Ito T, Hongahally Basappa R, Bekarevich R, Mitsuishi K 2017 J. Power Sources 368 97Google Scholar
[67] Bucci G, Swamy T, Chiang Y M, Carter W C 2017 J. Mater. Chem. A 5 19422Google Scholar
[68] Kim K H, Iriyama Y, Yamamoto K, Kumazaki S, Asaka T, Tanabe K, Fisher C A J, Hirayama T, Murugan R, Ogumi Z 2011 J. Power Sources 196 764Google Scholar
[69] Ohta S, Kobayashi T, Seki J, Asaoka T 2012 J. Power Sources 202 332Google Scholar
[70] Kato T, Hamanaka T, Yamamoto K, Hirayama T, Sagane F, Motoyama M, Iriyama Y 2014 J. Power Sources 260 292Google Scholar
[71] Ren Y, Liu T, Shen Y, Lin Y, Nan C W 2016 J. Materiomics 2 256Google Scholar
[72] Liu B, Fu K, Gong Y, Yang C, Yao Y, Wang Y, Wang C, Kuang Y, Pastel G, Xie H, Wachsman E D, Hu L 2017 Nano Lett. 17 4917Google Scholar
[73] Han F, Yue J, Chen C, Zhao N, Fan X, Ma Z, Gao T, Wang F, Guo X, Wang C 2018 Joule 2 497Google Scholar
[74] Salmeron M 2018 Top. Catal. 61 2044Google Scholar
[75] Liu X, Yang W, Liu Z 2014 Adv. Mater. 26 7710Google Scholar
[76] Cai J, Dong Q, Han Y, Mao B-H, Zhang H, Karlsson P G, Åhlund J, Tai R Z, Yu Y, Liu Z 2019 Nucl. Sci. Tech. 30 81
[77] Ren G, Zhang N, Feng X, Zhang H, Yu P, Zheng S, Zhou D, Tian Z, Liu X 2020 Chin. Phys. B 29 016101Google Scholar
[78] Chen L, Li Y, Li S P, Fan L Z, Nan C W, Goodenough J B 2018 Nano Energy 46 176Google Scholar
[79] Raj R, Wolfenstine J 2017 J. Power Sources 343 119Google Scholar
[80] Krauskopf T, Dippel R, Hartmann H, Peppler K, Mogwitz B, Richter F H, Zeier W G, Janek J 2019 Joule 3 2030Google Scholar
[81] Zhou G M, Tian H Z, Jin Y, Tao X Y, Liu B F, Zhang R F, Seh Z W, Zhuo D, Liu Y Y, Sun J, Zhao J, Zu C X, Wu D S, Zhang Q F, Cui Y 2017 PNAS 114 840Google Scholar
[82] Xu S, McOwen D W, Zhang L, Hitz G T, Wang C, Ma Z, Chen C, Luo W, Dai J, Kuang Y, Hitz E M, Fu K, Gong Y, Wachsman E D, Hu L 2018 Energy Storage Mater. 15 458Google Scholar
-
图 2 (a) 利用铂金坩埚代替传统Al2O3坩埚可以有效减少暴露空气后LLZO表面碳酸锂的形成[34]; (b) 利用快速热脉冲的处理方法可以有效去除碳酸锂, 并且使得锂损失最小化[48]; (c) 通过添加LiF, Li3PO4等疏水添加剂, 或者在表面制造缺锂层, 都可以有效抑制碳酸锂的形成[33,51]; (d) 通过快速酸处理可以除去表面碳酸锂, 得到稳定接触的界面[52]
Fig. 2. (a) Using Pt crucible instead of alumina crucible can effectively reduce the Li2CO3 formation on LLZO after exposed to air[34]; (b) the rapid thermal pulsing treatment can effectively remove the Li2CO3 impurity and minimize Li loss[48]; (c) adding inorganic additives such as LiF and Li3PO4, or creating Li-deficient compounds on the surface can eliminate Li2CO3 contaminants[33,51]; (d) improving Li/LLZO interface contact by removing Li2CO3 via rapid acid treatment[52].
图 3 (a) 利用Ge作为界面缓冲材料优化Li/LLZO界面[5]; (b) 中子深度分析装置示意图及LLZO原位探测结果[58]; (c) 利用MoS2作为界面缓冲材料优化Li/LLZO界面, 和界面转化反应及极化原理示意图[61]
Fig. 3. (a) Using Ge as buffer layer to modify Li/LLZO interface[5]; (b) schematic of the experimental set-up for operando Neutron depth profiling and the results for LLZO cell[58]; (c) schematic diagram of the conversion reaction and the chemical evolution of the MoS2-coating layer in the polarization process[61].
图 4 (a) 利用添加Nb缓冲层可以有效改善激光脉冲沉积过程中LiCoO2/LLZO界面稳定性[70]; (b) 利用快速热退火的方法将V2O5电极材料制备到LLZO片上[72]; (c) 利用Li2.3-xC0.7+xB0.3-xO3与碳酸锂反应生成LCBO改善LiCoO2/LLZO界面示意图以及全固态电池在常温下的循环特性[73]
Fig. 4. (a) Using Nb as buffer layer can modify the stability of LiCoO2/LLZO interface during Pulsed Laser Deposition (PLD) process[70]; (b) using rapid thermal annealing to melt V2O5 cathode onto LLZO pellet[72]; (c) schematics of the interphase-engineered all-ceramic cathode/electrolyte by using the reaction of Li2.3-xC0.7+xB0.3-xO3 with Li2CO3. The all sold battery can cycle well over 100 times at room temperature[73].
表 1 计算得到的在298.15 K下LLZO发生水合以及碳酸化反应所需的吉布斯自由能, 其中, 前4项是反应过程中有Li+/H+交换作用对应的能量, 后2项为直接反应对应的能量[37]
Table 1. Calculated Gibbs free energy for the hydration and carbonation of LLZO at 298.15 K. The first 4 reactions involve Li+/H+ ion exchange and the last 2 reactions assume direct hydration and carbonation of LLZO[37].
LLZO与空气中的水和二氧
化碳可能的反应过程吉布斯自由能
ΔG/kJ·mol–1Li56La24Zr16O96+H2O(g) →
Li55HLa24Zr16O96+LiOH–33 LiOH+1/2 CO2(g) →
1/2 Li2CO3+1/2 H2O(g)–33.6 Li56La24Zr16O96+CO2(g) →
Li54La24Zr16O95+Li2CO3+21.5 Li2O+CO2(g)→Li2CO3 –147.6 Li56La24Zr16O96+H2O(g) →
Li54La24Zr16O95+2 LiOH+82.8 Li56La24Zr16O96+CO2(g) →
Li54La24Zr16O95+Li2CO3+15.6 -
[1] Xu M, Fei L, Zhang W, Li T, Lu W, Zhang N, Lai Y, Zhang Z, Fang J, Zhang K, Li J, Huang H 2017 Nano. Lett. 17 1670Google Scholar
[2] Xu Q, Li J Y, Sun J K, Yin Y X, Wan L J, Guo Y G 2017 Adv. Energy Mater. 7 1601481Google Scholar
[3] Yang C P, Yin Y X, Zhang S F, Li N W, Guo Y G 2015 Nat. Commun. 6 8058Google Scholar
[4] Cheng X B, Zhang R, Zhao C Z, Zhang Q 2017 Chem. Rev. 117 10403Google Scholar
[5] Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu K K, Pastel G, Lin C F, Mo Y, Wachsman E D, Hu L 2017 Adv. Mater. 29Google Scholar
[6] Zhou F, Xin S, Liang H W, Song L T, Yu S H 2014 Angew. Chem. Int. Ed. Engl. 53 11552Google Scholar
[7] Xin S, You Y, Wang S, Gao H C, Yin Y X, Guo Y G 2017 ACS Energy Lett. 2 1385Google Scholar
[8] Yu B C, Park K, Jang J H, Goodenough J B 2016 ACS Energy Lett. 1 633Google Scholar
[9] Lin D, Zhuo D, Liu Y, Cui Y 2016 J. Am. Chem. Soc. 138 11044Google Scholar
[10] Zheng G, Wang C, Pei A, Lopez J, Shi F, Chen Z, Sendek A D, Lee H W, Lu Z, Schneider H, Safont-Sempere M M, Chu S, Bao Z, Cui Y 2016 ACS Energy Lett. 1 1247Google Scholar
[11] Sacci R L, Black J M, Balke N, Dudney N J, More K L, Unocic R R 2015 Nano Lett. 15 2011Google Scholar
[12] Chang H J, Ilott A J, Trease N M, Mohammadi M, Jerschow A, Grey C P 2015 J. Am. Chem. Soc. 137 15209Google Scholar
[13] Xu R C, Xia X H, Zhang S Z, Xie D, Wang X L, Tu J P 2018 Electrochim. Acta 284 177Google Scholar
[14] Liu J, Xu J, Lin Y, Li J, Lai Y, Yuan C, Zhang J, Zhu K 2013 Acta Chim. Sinica 71 869Google Scholar
[15] Kobayashi T, Imade Y, Shishihara D, Homma K, Nagao M, Watanabe R, Yokoi T, Yamada A, Kanno R, Tatsumi T 2008 J. Power Sources 182 621Google Scholar
[16] Kim H, Ding Y, Kohl P A 2012 J. Power Sources 198 281Google Scholar
[17] Anantharamulu N, Rao K K, Rambabu G, Kumar B V, Radha V, Vithal M 2011 J. Mater. Sci. 46 2821Google Scholar
[18] Bonanos N, Knight K, Ellis B 1995 Solid State Ionics 79 161Google Scholar
[19] Kanno R, Murayama M 2001 J. Electrochem. Soc. 148 A742Google Scholar
[20] Zhang Z, Zhang L, Liu Y, Yu C, Yan X, Xu B, Wang L M 2018 J. Alloys Compd. 747 227Google Scholar
[21] Senevirathne K, Day C S, Gross M D, Lachgar A, Holzwarth N 2013 Solid State Ionics 233 95Google Scholar
[22] Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M 2005 Adv. Mater. 17 918Google Scholar
[23] Ferraresi G, El Kazzi M, Czornomaz L, Tsai C L, Uhlenbruck S, Villevieille C 2018 ACS Energy Lett. 3 1006Google Scholar
[24] Murugan R, Thangadurai V, Weppner W 2007 Angew. Chem. Int. Ed. Engl. 46 7778Google Scholar
[25] Awaka J, Kijima N, Hayakawa H, Akimoto J 2009 J. Solid State Chem. 182 2046Google Scholar
[26] Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough J B 2016 J. Am. Chem. Soc. 138 9385Google Scholar
[27] Haruyama J, Sodeyama K, Tateyama Y 2017 ACS Appl. Mater. Interfaces 9 286Google Scholar
[28] Han X, Gong Y, Fu K K, He X, Hitz G T, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman E D, Hu L 2017 Nat. Mater. 16 572Google Scholar
[29] Porz L, Swamy T, Sheldon B W, Rettenwander D, Frömling T, Thaman H L, Berendts S, Uecker R, Carter W C, Chiang Y M 2017 Adv. Energy Mater. 7 1701003Google Scholar
[30] Sharafi A, Meyer H M, Nanda J, Wolfenstine J, Sakamoto J 2016 J. Power Sources 302 135Google Scholar
[31] Cheng L, Crumlin E J, Chen W, Qiao R, Hou H, Franz Lux S, Zorba V, Russo R, Kostecki R, Liu Z, Persson K, Yang W, Cabana J, Richardson T, Chen G, Doeff M 2014 Phys. Chem. Chem. Phys. 16 18294Google Scholar
[32] Sharafi A, Kazyak E, Davis A L, Yu S, Thompson T, Siegel D J, Dasgupta N P, Sakamoto J 2017 Chem. Mater. 29 7961Google Scholar
[33] Huo H, Luo J, Thangadurai V, Guo X, Nan C W, Sun X 2019 ACS Energy Lett. 5 252Google Scholar
[34] Xia W, Xu B, Duan H, Guo Y, Kang H, Li H, Liu H 2016 ACS Appl. Mater. Interfaces 8 5335Google Scholar
[35] Wagner R, Rettenwander D, Redhammer G J, Tippelt G, Sabathi G, Musso M E, Stanje B, Wilkening M, Suard E, Amthauer G 2016 Inorg. Chem. 55 12211Google Scholar
[36] Cheng L, Wu C H, Jarry A, Chen W, Ye Y, Zhu J, Kostecki R, Persson K, Guo J, Salmeron M, Chen G, Doeff M 2015 ACS Appl. Mater. Interfaces 7 17649Google Scholar
[37] Sharafi A, Yu S, Naguib M, Lee M, Ma C, Meyer H M, Nanda J, Chi M, Siegel D J, Sakamoto J 2017 J. Mater. Chem. A 5 13475Google Scholar
[38] Ma C, Rangasamy E, Liang C, Sakamoto J, More K L, Chi M 2015 Angew. Chem. Int. Ed. Engl. 54 129Google Scholar
[39] Truong L, Thangadurai V 2011 Chem. Mater. 23 3970Google Scholar
[40] Truong L, Thangadurai V 2012 Inorg. Chem. 51 1222Google Scholar
[41] Brugge R H, Hekselman A K O, Cavallaro A, Pesci F M, Chater R J, Kilner J A, Aguadero A 2018 Chem. Mater. 30 3704Google Scholar
[42] Liu X, Chen Y, Hood Z D, Ma C, Yu S, Sharafi A, Wang H, An K, Sakamoto J, Siegel D J, Cheng Y, Jalarvo N H, Chi M 2019 Energy Environ. Sci. 12 945Google Scholar
[43] Zhang N, Long X, Wang Z, Yu P, Han F, Fu J, Ren G, Wu Y, Zheng S, Huang W 2018 ACS Appl. Energy Mater. 1 5968Google Scholar
[44] Lan W J, Dong L, Lu R Z, Chen H Y 2019 Int. J. Electrochem. Sci. 14 9695Google Scholar
[45] Rao R P, Gu W, Sharma N, Peterson V K, Avdeev M, Adams S 2015 Chem. Mater. 27 2903Google Scholar
[46] Li Y, Chen X, Dolocan A, Cui Z, Xin S, Xue L, Xu H, Park K, Goodenough J B 2018 J. Am. Chem. Soc. 140 6448Google Scholar
[47] Cheng L, Liu M, Mehta A, Xin H, Lin F, Persson K, Chen G, Crumlin E J, Doeff M 2018 ACS Appl. Energy Mater. 1 7244Google Scholar
[48] Wang C, Xie H, Ping W, Dai J, Feng G, Yao Y, He S, Weaver J, Wang H, Gaskell K, Hu L 2019 Energy Storage Mater. 17 234Google Scholar
[49] Li Y, Xu B, Xu H, Duan H, Lu X, Xin S, Zhou W, Xue L, Fu G, Manthiram A, Goodenough J B 2017 Angew. Chem. Int. Ed. Engl. 56 753Google Scholar
[50] Xu B, Li W, Duan H, Wang H, Guo Y, Li H, Liu H 2017 J. Power Sources 354 68Google Scholar
[51] Wu J F, Pu B W, Wang D, Shi S Q, Zhao N, Guo X X, Guo X 2019 ACS Appl. Mater. Interfaces 11 898Google Scholar
[52] Huo H, Chen Y, Zhao N, Lin X, Luo J, Yang X, Liu Y, Guo X, Sun X 2019 Nano Energy 61 119Google Scholar
[53] Harry K J, Hallinan D T, Parkinson D Y, MacDowell A A, Balsara N P 2014 Nat. Mater. 13 69Google Scholar
[54] Ren Y, Shen Y, Lin Y, Nan C-W 2015 Electrochem. Commun. 57 27Google Scholar
[55] Tsai C L, Roddatis V, Chandran C V, Ma Q, Uhlenbruck S, Bram M, Heitjans P, Guillon O 2016 ACS Appl. Mater. Interfaces 8 10617Google Scholar
[56] Aguesse F, Manalastas W, Buannic L, Lopez Del Amo J M, Singh G, Llordes A, Kilner J 2017 ACS Appl Mater Interfaces 9 3808Google Scholar
[57] Wu B, Wang S, Lochala J, Desrochers D, Liu B, Zhang W, Yang J, Xiao J 2018 Energy Environ. Sci. 11 1803Google Scholar
[58] Han F, Westover A S, Yue J, Fan X, Wang F, Chi M, Leonard D N, Dudney N J, Wang H, Wang C 2019 Nat. Energy 4 187Google Scholar
[59] Chen Y T, Jena A, Pang W K, Peterson V K, Sheu H S, Chang H, Liu R S 2017 J.Phys. Chem. C 121 15565Google Scholar
[60] Wang S, Xu H, Li W, Dolocan A, Manthiram A 2018 J. Am. Chem. Soc. 140 250Google Scholar
[61] Fu J, Yu P, Zhang N, Ren G, Zheng S, Huang W, Long X, Li H, Liu X 2019 Energy Environ. Sci. 12 1404Google Scholar
[62] Chen Y, He M, Zhao N, Fu J, Huo H, Zhang T, Li Y, Xu F, Guo X 2019 J. Power Sources 420 15Google Scholar
[63] Huo H, Chen Y, Li R, Zhao N, Luo J, Pereira da Silva J G, Mücke R, Kaghazchi P, Guo X, Sun X 2020 Energy Environ. Sci. 13 127Google Scholar
[64] Miara L, Windmuller A, Tsai C L, Richards W D, Ma Q, Uhlenbruck S, Guillon O, Ceder G 2016 ACS Appl. Mater. Interfaces 8 26842Google Scholar
[65] Zhang W, Richter F H, Culver S P, Leichtweiss T, Lozano J G, Dietrich C, Bruce P G, Zeier W G, Janek J 2018 ACS Appl. Mater. Interfaces 10 22226Google Scholar
[66] Yamada H, Ito T, Hongahally Basappa R, Bekarevich R, Mitsuishi K 2017 J. Power Sources 368 97Google Scholar
[67] Bucci G, Swamy T, Chiang Y M, Carter W C 2017 J. Mater. Chem. A 5 19422Google Scholar
[68] Kim K H, Iriyama Y, Yamamoto K, Kumazaki S, Asaka T, Tanabe K, Fisher C A J, Hirayama T, Murugan R, Ogumi Z 2011 J. Power Sources 196 764Google Scholar
[69] Ohta S, Kobayashi T, Seki J, Asaoka T 2012 J. Power Sources 202 332Google Scholar
[70] Kato T, Hamanaka T, Yamamoto K, Hirayama T, Sagane F, Motoyama M, Iriyama Y 2014 J. Power Sources 260 292Google Scholar
[71] Ren Y, Liu T, Shen Y, Lin Y, Nan C W 2016 J. Materiomics 2 256Google Scholar
[72] Liu B, Fu K, Gong Y, Yang C, Yao Y, Wang Y, Wang C, Kuang Y, Pastel G, Xie H, Wachsman E D, Hu L 2017 Nano Lett. 17 4917Google Scholar
[73] Han F, Yue J, Chen C, Zhao N, Fan X, Ma Z, Gao T, Wang F, Guo X, Wang C 2018 Joule 2 497Google Scholar
[74] Salmeron M 2018 Top. Catal. 61 2044Google Scholar
[75] Liu X, Yang W, Liu Z 2014 Adv. Mater. 26 7710Google Scholar
[76] Cai J, Dong Q, Han Y, Mao B-H, Zhang H, Karlsson P G, Åhlund J, Tai R Z, Yu Y, Liu Z 2019 Nucl. Sci. Tech. 30 81
[77] Ren G, Zhang N, Feng X, Zhang H, Yu P, Zheng S, Zhou D, Tian Z, Liu X 2020 Chin. Phys. B 29 016101Google Scholar
[78] Chen L, Li Y, Li S P, Fan L Z, Nan C W, Goodenough J B 2018 Nano Energy 46 176Google Scholar
[79] Raj R, Wolfenstine J 2017 J. Power Sources 343 119Google Scholar
[80] Krauskopf T, Dippel R, Hartmann H, Peppler K, Mogwitz B, Richter F H, Zeier W G, Janek J 2019 Joule 3 2030Google Scholar
[81] Zhou G M, Tian H Z, Jin Y, Tao X Y, Liu B F, Zhang R F, Seh Z W, Zhuo D, Liu Y Y, Sun J, Zhao J, Zu C X, Wu D S, Zhang Q F, Cui Y 2017 PNAS 114 840Google Scholar
[82] Xu S, McOwen D W, Zhang L, Hitz G T, Wang C, Ma Z, Chen C, Luo W, Dai J, Kuang Y, Hitz E M, Fu K, Gong Y, Wachsman E D, Hu L 2018 Energy Storage Mater. 15 458Google Scholar
计量
- 文章访问数: 12419
- PDF下载量: 486
- 被引次数: 0