Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Facile synthesis and electrochemical properties of Na-rich anti-perovskite solid electrolytes

Peng Lin-Feng Zeng Zi-Qi Sun Yu-Long Jia Huan-Huan Xie Jia

Citation:

Facile synthesis and electrochemical properties of Na-rich anti-perovskite solid electrolytes

Peng Lin-Feng, Zeng Zi-Qi, Sun Yu-Long, Jia Huan-Huan, Xie Jia
PDF
HTML
Get Citation
  • All-solid-state sodium batteries are promising candidates in energy storage applications due to their high safety and low cost. A suitable solid electrolyte is a key component for high-performance all-solid-state sodium battery. Current inorganic solid electrolytes mainly include oxide- and sulfide-based electrolytes. However, the oxide-based electrolytes require to be sinetred above 1000 ℃ for high ionic conductivity, and most sulfide-based electrolytes can react with H2O torelease toxic H2S gas. These features will hinder the practical application of all-solid-state sodium batteries. In recent years, novel sodium ionic conductors have appeared successively. Among them, anti-perovskite type of Li/Na ionic conductor has received a lot of attention because of its high ionic conductivity and flexible structure design. Nevertheless, the synthesis of Na-rich anti-perovskite Na3OBrxI1–x (0 < x < 1) is complex, the ionic conductivity at room temperature is relatively low, and its electrochemical properties remain unknown. Here in this work, the phase-pure Na-rich anti-perovskite Na3OBrxI1–x is synthesized by a facile synthesis way. The X-ray diffraction patterns show that the anti-perovskite structure without any impurity phase is obtained. Alternating-current (AC) impedance spectrum is used for measuring ionic conductivity of electrolyte pellets after thermally being treated at around 100 ℃. The Na3OBr0.3I0.7 exhibits an ionic conductivity of 1.47 × 10–3 S/cm at 100 ℃. Unfortunately, the ionic conductivity experiences a sharp drop with the decrease of temperature, which may be related to the change of structural symmetry and Na sites in the structure revealed by solid state 23Na NMR. In particular, the ionic conductivities of Na3OBrxI1–x demonstrate the potential applications at medium temperature (40-80 ℃ in which the ionic conductivity of Na3OBrxI1–x is close to or higher than 10–4 S/cm) for all-solid-state sodium battery. Therefore, the compatibility against Na metal and the electrochemical performance in all-solid-state batteries have been evaluated. Since Na3OBrxI1–x is not “Na-philic”, the resistance in impedance of the Na/Na3OBr0.5I0.5/Na is very high. However, after modifying the interface by ionic liquid, the Na3OBr0.5I0.5 exhibits good compatibility against Na metal and tiny ionic liquid also leads to high initial discharge specific capacity of 190 mAh/g and excellent cycling stability (around 127 mAh/g after 10 cycles) in the TiS2/Na3OBr0.5I0.5/Na-Sn solid-state battery. The capacity decay maybe results from the inferior interfacial contact between the solid electrolyte and the electrode materials because the electrode materials in this system experience large volume change during cycling. The successful operation in solid-state sodium batteries indicates that the Na3OBrxI1–x is feasible to be used as a sodium solid electrolyte, which is of great importance for practical application of Na-rich anti-perovskite solid electrolytes.
      Corresponding author: Xie Jia, xiejia@hust.edu.cn
    • Funds: Project supported by the Program of Joint Funds of the National Natural Science Foundation of China (Grant No. U1966214), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51902116), and the China Postdoctoral Science Foundation (Grant No. 2019M652634)
    [1]

    Li M, Lu J, Chen Z, Amine K 2018 Adv. Mater. 30 e1800561Google Scholar

    [2]

    Service R F 2019 Science 366 292Google Scholar

    [3]

    Yabuuchi N, Kubota K, Dahbi M, Komaba S 2014 Chem. Rev. 114 11636Google Scholar

    [4]

    Lee J M, Singh G, Cha W, Kim S, Yi J, Hwang S J, Vinu A 2020 ACS Energy Lett. 5 1939Google Scholar

    [5]

    Yang C, Xin S, Mai L, You Y 2020 Adv. Energy Mater. 10.1002/aenm.202000974Google Scholar

    [6]

    Rajagopalan R, Tang Y, Jia C, Ji X, Wang H 2020 Energy Environ. Sci. 13 1568Google Scholar

    [7]

    Xiao Y H, Wang Y, Bo S H, Kim J C, Miara L J, Ceder G 2020 Nat. Rev. Mater. 5 105Google Scholar

    [8]

    Feng X, Ren D, He X, Ouyang M 2020 Joule 4 743Google Scholar

    [9]

    Chen R, Li Q, Yu X, Chen L, Li H 2019 Chem. Rev. 120 6820Google Scholar

    [10]

    Xu L, Li J, Deng W, Shuai H, Li S, Xu Z, Li J, Hou H, Peng H, Zou G, Ji X 2020 Adv. Energy Mater. 10.1002/aenm. 202000648Google Scholar

    [11]

    Lu Y, Li L, Zhang Q, Niu Z, Chen J 2018 Joule 2 1747Google Scholar

    [12]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nat. Mater. 10 682Google Scholar

    [13]

    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R 2016 Nat. Energy 1 16030Google Scholar

    [14]

    Zhang Z, Sun Y, Duan X, Peng L, Jia H, Zhang Y, Shan B, Xie J 2019 J. Mater. Chem. A 7 2717Google Scholar

    [15]

    Zhou L, Assoud A, Zhang Q, Wu X, Nazar L F 2019 J. Am. Chem. Soc. 141 19002Google Scholar

    [16]

    Wang C, Fu K, Kammampata S P, McOwen D W, Samson A J, Zhang L, Hitz G T, Nolan A M, Wachsman E D, Mo Y, Thangadurai V, Hu L 2020 Chem. Rev. 120 4257Google Scholar

    [17]

    Zhang Z, Zhang J, Jia H, Peng L, An T, Xie J 2020 J. Power Sources 450Google Scholar

    [18]

    Fuchs T, Culver S P, Till P, Zeier W G 2019 ACS Energy Lett. 5 146Google Scholar

    [19]

    Jia H, Sun Y, Zhang Z, Peng L, An T, Xie J 2019 Energy Storage Mater. 23 508Google Scholar

    [20]

    Hayashi A, Masuzawa N, Yubuchi S, Tsuji F, Hotehama C, Sakuda A, Tatsumisago M 2019 Nat. Commun. 10 5266Google Scholar

    [21]

    Jia H, Liang X, An T, Peng L, Feng J, Xie J 2020 Chem. Mater. 32 4065Google Scholar

    [22]

    Zheng F, Kotobuki M, Song S, Lai M O, Lu L 2018 J. Power Sources 389 198Google Scholar

    [23]

    Jia H, Peng L, Zhang Z, An T, Xie J 2020 J. Energy Chem. 48 102Google Scholar

    [24]

    Narayanan S, Reid S, Butler S, Thangadurai V 2019 Solid State Ionics 331 22Google Scholar

    [25]

    Zhao Y S, Daemen L L 2012 J. Am. Chem. Soc. 134 15042Google Scholar

    [26]

    Wang Y, Wang Q, Liu Z, Zhou Z, Li S, Zhu J, Zou R, Wang Y, Lin J, Zhao Y 2015 J. Power Sources 293 735Google Scholar

    [27]

    Fan S S, Lei M, Wu H, Hu J, Yin C L, Liang T X, Li C L 2020 Energy Storage Mater. 31 87Google Scholar

    [28]

    Yang Q F, Li C L 2018 Energy Storage Mater. 14 100Google Scholar

    [29]

    Nguyen H, Hy S, Wu E, Deng Z, Samiee M, Yersak T, Luo J, Ong S P, Meng Y S 2016 J. Electrochem. Soc. 163 A2165Google Scholar

    [30]

    Braga M H, Ferreira J A, Murchison A J, Goodenough J B 2016 J. Electrochem. Soc. 164 A207Google Scholar

    [31]

    Braga M H, Murchison A J, Ferreira J A, Singh P, Goodenough J B 2016 Energy Environ. Sci. 9 948Google Scholar

    [32]

    Sun Y, Wang Y, Liang X, Xia Y, Peng L, Jia H, Li H, Bai L, Feng J, Jiang H, Xie J 2019 J. Am. Chem. Soc. 141 5640Google Scholar

    [33]

    Wang Y, Wen T, Park C, Kenney B C, Pravica M, Yang W, Zhao Y 2016 J. Appl. Phys. 119 025901Google Scholar

    [34]

    Zhu J, Wang Y, Li S, Howard J W, Neuefeind J, Ren Y, Wang H, Liang C, Yang W, Zou R, Jin C, Zhao Y 2016 Inorg. Chem. 55 5993Google Scholar

    [35]

    Lv Z L, Cui H L, Wang H, Li X H, Ji G F 2017 Phys. Status Solidi B) 254 1700089Google Scholar

    [36]

    Dawson J A, Chen H, Islam M S 2018 J. Phys. Chem. C 122 23978Google Scholar

    [37]

    Pham T L, Samad A, Kim H J, Shin Y H 2018 J. Appl. Phys. 124 164106Google Scholar

    [38]

    Wan T H, Lu Z, Ciucci F 2018 J. Power Sources 390 61Google Scholar

    [39]

    Fang H, Jena P 2019 ACS Appl. Mater. Interfaces 11 963Google Scholar

    [40]

    Yu Y, Wang Z, Shao G 2019 J. Mater. Chem. A 7 21985Google Scholar

    [41]

    Hippler K, Sitta S, Vogt P, Sabrowsky H 1990 Acta Cryst. C 46 736

    [42]

    Hu J L, Yao Z G, Chen K Y, Li C L 2020 Energy Storage Mater. 28 37Google Scholar

  • 图 1  (a)合成的反钙钛矿Na3OBrxI1–x (x = 0.3, 0.5, 0.7)样品的XRD图谱; (b)图(a)的局部放大图

    Figure 1.  (a) The X-ray diffraction (XRD) patterns of synthezied anti-perovskites Na3OBrxI1–x (x = 0.3, 0.5, 0.7); (b) local zoom of Fig. (a).

    图 2  通过(a)冷压和(b)热压方法制备得到的Na3OBr0.5I0.5电解质片的SEM图; (c)不同温度下测得的热压Na3OBr0.5I0.5片的Nyquist曲线; (d) Na3OBrxI1–x (x = 0.3, 0.5, 0.7)的logσ与1000/T对应曲线

    Figure 2.  SEM images of (a) cold-pressed and (b) hot-pressed Na3OBr0.5I0.5 solid electrolyte pellets; (c) Nyquist plots of hot-pressed Na3OBr0.5I0.5 measured at different temperatures; (d) logσ versus 1000/T plots for Na3OBrxI1–x (x = 0.3, 0.5, 0.7).

    图 3  Na3OBr0.3I0.7在不同温度下的 (a)固态核磁图谱; (b)XRD图谱

    Figure 3.  (a) Solid state 23Na NMR spectra and (b) XRD patterns of Na3OBr0.3I0.7 at different temperature.

    图 4  (a) Na/Na3OBr0.5I0.5/Na对称电池的电化学阻抗谱; (b) 添加了离子液体的Na/IL/Na3OBr0.5I0.5/IL/Na对称电池的电化学阻抗谱; (c) Na/IL/Na3OBr0.5I0.5/IL/Na对称电池在不同电流密度下的充放电曲线; (d) TiS2/IL/Na3OBr0.5I0.5/IL/Na-Sn在50 ℃, 0.1 C条件下充放电曲线

    Figure 4.  (a) Electrochemical impedance plot of Na/Na3OBr0.5I0.5/Na symmetrical cell; (b) electrochemical impedance plot of Na/IL/Na3OBr0.5I0.5/IL/Na symmetrical cell with ionic liquid; (c) charge-discharge curves of Na/IL/Na3OBr0.5I0.5/IL/Na symmetrical cell at different current density; (d) charge-discharge curves of TiS2/IL/Na3OBr0.5I0.5/IL/Na-Sn operated at 50°C, 0.1 C.

    表 1  Na3OBr0.5I0.5在冷压和热压下的密度

    Table 1.  Density of hot- and cold-pressed Na3OBr0.5I0.5

    密度/ g·cm–3致密度
    冷压2.1169%
    热压2.5583%
    真实密度*3.06
    *真实密度基于XRD谱得到的晶格参数计算, 晶格参数计算基于简单的立方相[26], 忽略结构对称性破坏引起的细微变化.
    DownLoad: CSV

    表 2  Na3OBrxI1–x (x = 0.3, 0.5, 0.7)离子电导率

    Table 2.  Ionic conductivity of Na3OBrxI1–x (x = 0.3, 0.5, 0.7).

    温度/℃离子电导率/ S·cm–1
    Na3OBr0.7I0.3Na3OBr0.5I0.5Na3OBr0.3I0.7
    1301.67 × 10–3
    1108.96 × 10–41.32 × 10–35.55 × 10–3
    1004.50 × 10–46.56 × 10–41.47 × 10–3
    809.73 × 10–52.01 × 10–43.93 × 10–4
    601.22 × 10–56.78 × 10–52.05 × 10–4
    401.06 × 10–5
    DownLoad: CSV
    Baidu
  • [1]

    Li M, Lu J, Chen Z, Amine K 2018 Adv. Mater. 30 e1800561Google Scholar

    [2]

    Service R F 2019 Science 366 292Google Scholar

    [3]

    Yabuuchi N, Kubota K, Dahbi M, Komaba S 2014 Chem. Rev. 114 11636Google Scholar

    [4]

    Lee J M, Singh G, Cha W, Kim S, Yi J, Hwang S J, Vinu A 2020 ACS Energy Lett. 5 1939Google Scholar

    [5]

    Yang C, Xin S, Mai L, You Y 2020 Adv. Energy Mater. 10.1002/aenm.202000974Google Scholar

    [6]

    Rajagopalan R, Tang Y, Jia C, Ji X, Wang H 2020 Energy Environ. Sci. 13 1568Google Scholar

    [7]

    Xiao Y H, Wang Y, Bo S H, Kim J C, Miara L J, Ceder G 2020 Nat. Rev. Mater. 5 105Google Scholar

    [8]

    Feng X, Ren D, He X, Ouyang M 2020 Joule 4 743Google Scholar

    [9]

    Chen R, Li Q, Yu X, Chen L, Li H 2019 Chem. Rev. 120 6820Google Scholar

    [10]

    Xu L, Li J, Deng W, Shuai H, Li S, Xu Z, Li J, Hou H, Peng H, Zou G, Ji X 2020 Adv. Energy Mater. 10.1002/aenm. 202000648Google Scholar

    [11]

    Lu Y, Li L, Zhang Q, Niu Z, Chen J 2018 Joule 2 1747Google Scholar

    [12]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nat. Mater. 10 682Google Scholar

    [13]

    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R 2016 Nat. Energy 1 16030Google Scholar

    [14]

    Zhang Z, Sun Y, Duan X, Peng L, Jia H, Zhang Y, Shan B, Xie J 2019 J. Mater. Chem. A 7 2717Google Scholar

    [15]

    Zhou L, Assoud A, Zhang Q, Wu X, Nazar L F 2019 J. Am. Chem. Soc. 141 19002Google Scholar

    [16]

    Wang C, Fu K, Kammampata S P, McOwen D W, Samson A J, Zhang L, Hitz G T, Nolan A M, Wachsman E D, Mo Y, Thangadurai V, Hu L 2020 Chem. Rev. 120 4257Google Scholar

    [17]

    Zhang Z, Zhang J, Jia H, Peng L, An T, Xie J 2020 J. Power Sources 450Google Scholar

    [18]

    Fuchs T, Culver S P, Till P, Zeier W G 2019 ACS Energy Lett. 5 146Google Scholar

    [19]

    Jia H, Sun Y, Zhang Z, Peng L, An T, Xie J 2019 Energy Storage Mater. 23 508Google Scholar

    [20]

    Hayashi A, Masuzawa N, Yubuchi S, Tsuji F, Hotehama C, Sakuda A, Tatsumisago M 2019 Nat. Commun. 10 5266Google Scholar

    [21]

    Jia H, Liang X, An T, Peng L, Feng J, Xie J 2020 Chem. Mater. 32 4065Google Scholar

    [22]

    Zheng F, Kotobuki M, Song S, Lai M O, Lu L 2018 J. Power Sources 389 198Google Scholar

    [23]

    Jia H, Peng L, Zhang Z, An T, Xie J 2020 J. Energy Chem. 48 102Google Scholar

    [24]

    Narayanan S, Reid S, Butler S, Thangadurai V 2019 Solid State Ionics 331 22Google Scholar

    [25]

    Zhao Y S, Daemen L L 2012 J. Am. Chem. Soc. 134 15042Google Scholar

    [26]

    Wang Y, Wang Q, Liu Z, Zhou Z, Li S, Zhu J, Zou R, Wang Y, Lin J, Zhao Y 2015 J. Power Sources 293 735Google Scholar

    [27]

    Fan S S, Lei M, Wu H, Hu J, Yin C L, Liang T X, Li C L 2020 Energy Storage Mater. 31 87Google Scholar

    [28]

    Yang Q F, Li C L 2018 Energy Storage Mater. 14 100Google Scholar

    [29]

    Nguyen H, Hy S, Wu E, Deng Z, Samiee M, Yersak T, Luo J, Ong S P, Meng Y S 2016 J. Electrochem. Soc. 163 A2165Google Scholar

    [30]

    Braga M H, Ferreira J A, Murchison A J, Goodenough J B 2016 J. Electrochem. Soc. 164 A207Google Scholar

    [31]

    Braga M H, Murchison A J, Ferreira J A, Singh P, Goodenough J B 2016 Energy Environ. Sci. 9 948Google Scholar

    [32]

    Sun Y, Wang Y, Liang X, Xia Y, Peng L, Jia H, Li H, Bai L, Feng J, Jiang H, Xie J 2019 J. Am. Chem. Soc. 141 5640Google Scholar

    [33]

    Wang Y, Wen T, Park C, Kenney B C, Pravica M, Yang W, Zhao Y 2016 J. Appl. Phys. 119 025901Google Scholar

    [34]

    Zhu J, Wang Y, Li S, Howard J W, Neuefeind J, Ren Y, Wang H, Liang C, Yang W, Zou R, Jin C, Zhao Y 2016 Inorg. Chem. 55 5993Google Scholar

    [35]

    Lv Z L, Cui H L, Wang H, Li X H, Ji G F 2017 Phys. Status Solidi B) 254 1700089Google Scholar

    [36]

    Dawson J A, Chen H, Islam M S 2018 J. Phys. Chem. C 122 23978Google Scholar

    [37]

    Pham T L, Samad A, Kim H J, Shin Y H 2018 J. Appl. Phys. 124 164106Google Scholar

    [38]

    Wan T H, Lu Z, Ciucci F 2018 J. Power Sources 390 61Google Scholar

    [39]

    Fang H, Jena P 2019 ACS Appl. Mater. Interfaces 11 963Google Scholar

    [40]

    Yu Y, Wang Z, Shao G 2019 J. Mater. Chem. A 7 21985Google Scholar

    [41]

    Hippler K, Sitta S, Vogt P, Sabrowsky H 1990 Acta Cryst. C 46 736

    [42]

    Hu J L, Yao Z G, Chen K Y, Li C L 2020 Energy Storage Mater. 28 37Google Scholar

  • [1] Geng Xiao-Bin, Li Ding-Gen, Xu Bo. Mechanical stress-thermodynamic phase-field simulation of lithium dendrite growth in solid electrolyte battery. Acta Physica Sinica, 2023, 72(22): 220201. doi: 10.7498/aps.72.20230824
    [2] Jiang Mei-Yan, Wang Ping, Chen Ai-Sheng, Chen Cheng-Ke, Li Xiao, Lu Shao-Hua, Hu Xiao-Jun. Preparation and electrochemical properties of nano-diamond/vertical graphene composite three-dimensional electrodes. Acta Physica Sinica, 2022, 71(19): 198101. doi: 10.7498/aps.71.20220715
    [3] Zhang Yong-Quan, Yao An-Quan, Yang Liu, Zhu Kai, Cao Dian-Xue. Preparation and electrochemical performance of sodium manganese oxides as cathode materials for aqueous Mg-ion batteries. Acta Physica Sinica, 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [4] Yu Qi-Peng, Liu Qi, Wang Zi-Qiang, Li Bao-Hua. Anode interface in all-solid-state lithium-metal batteries: Challenges and strategies. Acta Physica Sinica, 2020, 69(22): 228805. doi: 10.7498/aps.69.20201218
    [5] Zhao Ning, Mu Shuang, Guo Xiang-Xin. Physical issues in solid garnet batteries. Acta Physica Sinica, 2020, 69(22): 228804. doi: 10.7498/aps.69.20201191
    [6] Zhang Qiao-Bao, Gong Zheng-Liang, Yang Yong. Advance in interface and characterizations of sulfide solid electrolyte materials. Acta Physica Sinica, 2020, 69(22): 228803. doi: 10.7498/aps.69.20201581
    [7] Jiang Mei-Yan, Zhu Zheng-Jie, Chen Cheng-Ke, Li Xiao, Hu Xiao-Jun. Microstructural and electrochemical properties of sulfur ion implanted nanocrystalline diamond films. Acta Physica Sinica, 2019, 68(14): 148101. doi: 10.7498/aps.68.20190394
    [8] Wang Gui-Qiang,  Liu Jie-Qiong,  Dong Wei-Nan,  Yan Chao,  Zhang Wei. Nitrogen/sulfur co-doped porous carbon nanosheets and its electrochemical performance. Acta Physica Sinica, 2018, 67(23): 238103. doi: 10.7498/aps.67.20181524
    [9] Yang Xiu-Tao, Liang Zhong-Guan, Yuan Yu-Jia, Yang Jun-Liang, Xia Hui. Preparation and electrochemical performance of porous carbon nanosphere. Acta Physica Sinica, 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [10] Chen Chang, Ru Qiang, Hu She-Jun, An Bo-Nan, Song Xiong. Preparation and electrochemical properties of Co2SnO4/graphene composites. Acta Physica Sinica, 2014, 63(19): 198201. doi: 10.7498/aps.63.198201
    [11] Wang Rui, Hu Xiao-Jun. The microstructural and electrochemical properties of oxygen ion implanted nanocrystalline diamond films. Acta Physica Sinica, 2014, 63(14): 148102. doi: 10.7498/aps.63.148102
    [12] Li Juan, Ru Qiang, Sun Da-Wei, Zhang Bei-Bei, Hu She-Jun, Hou Xian-Hua. The lithium intercalation properties of SnSb/MCMB core-shell composite as the anode material for lithium ion battery. Acta Physica Sinica, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [13] Hu Heng, Hu Xiao-Jun, Bai Bo-Wen, Chen Xiao-Hu. Effects of annealing time on the microstructural and electrochemical properties of B-doped nanocrystalline diamond films. Acta Physica Sinica, 2012, 61(14): 148101. doi: 10.7498/aps.61.148101
    [14] Huang Le-Xu, Chen Yuan-Fu, Li Ping-Jian, Huan Ran, He Jia-Rui, Wang Ze-Gao, Hao Xin, Liu Jing-Bo, Zhang Wan-Li, Li Yan-Rong. Effects of preparation temperature of graphite oxide on the structure of graphite and electrochemical properties of graphene-based lithium-ion batteries. Acta Physica Sinica, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [15] Bai Ying, Ding Ling-Hong, Zhang Wei-Feng. Investigation of electrochemical performances of ZnFe2O4 prepared by solid state and hydrothermal method. Acta Physica Sinica, 2011, 60(5): 058201. doi: 10.7498/aps.60.058201
    [16] Ding Lei, Wang Cong, Chu Li-Hua, Na Yuan-Yuan, Yan Jun. Comprehensive Survey for the Frontier Disciplines Progress in lattice, magnetic and electronic transport properties of antiperovskite Mn3AX. Acta Physica Sinica, 2011, 60(9): 097507. doi: 10.7498/aps.60.097507
    [17] Bai Ying, Wang Bei, Zhang Wei-Feng. Nano-LiNiO2 as cathode material for lithium ion battery synthesized by molten salt method. Acta Physica Sinica, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [18] Pan Jin-Ping, Hu Xiao-Jun, Lu Li-Ping, Yin Chi. Influence of annealing on the microstructure and electrochemical properties of B-doped nanocrystalline diamond films. Acta Physica Sinica, 2010, 59(10): 7410-7416. doi: 10.7498/aps.59.7410
    [19] Hou Xian-Hua, Hu She-Jun, Shi Lu. Preparation and properties of Sn-Ti alloy anode material for lithium ion batteries. Acta Physica Sinica, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [20] Hou Xian-Hua, Yu Hong-Wen, Hu She-Jun. preparation and properties of Sn-Al thin-film electrode material for lithium ion batteries. Acta Physica Sinica, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
Metrics
  • Abstract views:  9043
  • PDF Downloads:  374
  • Cited By: 0
Publishing process
  • Received Date:  31 July 2020
  • Accepted Date:  05 October 2020
  • Available Online:  18 November 2020
  • Published Online:  20 November 2020

/

返回文章
返回
Baidu
map