搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al含量对Li1+xAlxTi2-x(PO4)3固态电解质表面稳定性、电子结构及Li离子输运性质的影响

李梅 严怡 蓝雯欣 孙宝珍 吴木生 徐波 欧阳楚英

引用本文:
Citation:

Al含量对Li1+xAlxTi2-x(PO4)3固态电解质表面稳定性、电子结构及Li离子输运性质的影响

李梅, 严怡, 蓝雯欣, 孙宝珍, 吴木生, 徐波, 欧阳楚英

Effects of Al content on stability, electronic and Li-ion diffusion properties of Li1+xAlxTi2-x(PO4)3 surface

Li Mei, Yan Yi, Lan Wenxin, Sun Baozhen, Wu Musheng, Xu Bo, Ouyang Chuying
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
导出引用
  • NASICON型Li1+xAlxTi2-x(PO4)3(LATP)作为锂离子电池极具潜力的固态电解质而备受瞩目.本文采用第一性原理计算与分子动力学模拟相结合的方法对三种Al掺杂浓度(2AlTi,4AlTi,6AlTi)的LATP表面进行研究,深入探究Al含量对LATP表面的稳定性、电子导电性及Li+输运特性的影响.研究结果表明,Li-原子终端的(012)面为最稳定晶面;且LATP (012)表面随Al含量的增加而更为稳定.电子结构分析表明,LiTi2(PO4)3(LTP)表面保持与体相一致的半导体性质,而LATP表面则呈现出金属性,这是LATP表面锂枝晶生长的一个原因;Li+输运性质的研究果表明,对于LTP/LATP表面,高的势垒(大于2.00 eV)使得Li+不能从次表层迁移到最表层;在最表层中,Li+的最低迁移势垒为0.87 eV,明显高于其体相的最小值(0.34 eV).缓慢的Li+迁移速度是LATP表面锂枝晶生长的另一个重要原因.幸运地是,通过提高Al掺杂浓度,可降低Li+的迁移势垒,进而提高Li+在LATP表面的扩散性能.分子动力学模拟进一步揭示Li+在LATP表面的扩散行为主要受到Al含量、Li+占位以及环境温度这些因素的共同影响.因而,LATP表面的金属性和较高的Li+迁移势垒是其表面锂枝晶生长的两个重要原因.通过调控Al含量、Li+占位以及环境温度能够不同程度地缓解LATP表面的锂枝晶生长.
    NASICON-type Li1+xAlxTi2-x(PO4)3 (LATP) has garnered significant attention as a promising solid-state electrolyte for lithium-ion batteries due to its simple preparation method, low material cost, and good stability in water and air, but lithium dendrite’s formation greatly limits the applications. To elucidate the source of lithium dendrite’s formation, in this study, a combination of first-principles calculations and molecular dynamics simulations was utilized to investigate the effect of Al content on the stability, electronic and Li+mobility properties of the LATP surface with three Al doping concentrations (2AlTi, 4AlTi, 6AlTi). We also consider Li1+xAlxTi2-x(PO4)3(LTP) surface for comparison. The results indicate that the (012) surface terminated with Li atoms is the most stable facet. Further the surface energy of LATP(012) decreases from 0.68 J/m2 to 0.43 J/m2 with increasing Al content, suggesting Al doping can effectively improve the stability of the LATP(012) surface. Electronic structure analysis reveals that the surface of LTP(012) retains the semiconductor properties consistent with the bulk phase, whereas the LATP(012) surface exhibits metallicity, which provides an electron pathway for metallic Li formation. Consequently, the metallic character of the LATP(012) surface is one reason for its lithium dendrite growth. For the Li+ transport properties, two different migration modes, vacancy migration and interstitial migration, were included. When Li+ migrates within the outermost surface, the migration barrier via vacancy is 1.67/1.69 eV for the LTP/LATP (012) surface, while the migration barrier via interstitial is 1.16 eV for LTP(012) and decreases from 1.31 to 0.87 eV with the increase of Al content for LATP(012). Obviously, within the outermost surface, Al doping can decrease the migration barrier of Li+. When Al doping concentration is 6AlTi, the migration barrier is lowest (0.87 eV). Nevertheless, the lowest migration barrier (0.87 eV) for Li+ on the LATP surface is significantly higher than its bulk minimum value of 0.34 eV. When Li+ migrates from the subsurface layer to the outermost surface, the migration barrier is 2.76 eV for LTP(012) and 2.05 eV, 3.20 eV, and 3.06 eV for LATP(012) with 2AlTi, 4AlTi, and 6AlTicontents, respectively. All these migration barriers are greater than 2.00 eV, which prevents Li+ migration from the subsurface layer to the outermost surface for both LTP and LATP surfaces. Hence, the slow Li+ migration represents another important factor contributing to lithium dendrite growth on the LATP surface. Fortunately, increasing the Al doping concentration can reduce the migration barrier of Li+ and thus enhance its diffusion performance on the LATP surface. Molecular dynamics simulations further reveal that the diffusion behavior of Li+ on the LATP surface is influenced by a combination of factors, including Al content, Li+ occupancy, and ambient temperature. In particular, LATP(012)/6AlTi, LATP(012)/4AlTi, and LATP(012)/2AlTi possess the highest Li+ diffusion coefficient at 900 K, 1100 K, and 1300 K, respectively. Besides, Li+near the Al doping site is easier to diffuse on the LATP(012) surface. Thus, our study suggests that by varying Al content, Li+ occupancy positions, and the temperature, Li+ diffusion performance of LATP(012) can be favorably modified, and consequently inhibiting the formation of lithium dendrites on the LATP(012) surface.
  • [1]

    Zhang S, Ma J, Dong S M, Cui G L 2023 Electrochem. Energy Rev. 6 40

    [2]

    Manthiram A, Yu X W, Wang S F 2017 Nat. Rev. Mater. 2 16

    [3]

    Bachman J C, Muy S, Grimaud A, Chang H H, Pour N, Lux S F, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y 2016 Chem. Rev. 116 140

    [4]

    Fan L, Wei S Y, Li S Y, Li Q, Lu Y Y 2018 Adv. Energy Mater. 8 31

    [5]

    Zhang Z Z, Shao Y J, Lotsch B, Hu Y S, Li H, Janek J, Nazar L F, Nan C W, Maier J, Armand M, Chen L Q 2018 Energy Environ. Sci. 11 1945

    [6]

    Zheng F, Kotobuki M, Song S F, Lai M O, Lu L 2018 J. Power Sources 389 198

    [7]

    Subramanian M, Subramanian R, Clearfield A 1986 Solid State Ion. 18 562

    [8]

    Adachi G y, Imanaka N, Aono H 1996 Adv. Mater. 8 127

    [9]

    Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G Y 1990 J. Electrochem. Soc. 137 1023

    [10]

    Schroeder M, Glatthaar S, Binder J R 2011 Solid State Ion. 201 49

    [11]

    Mariappan C R, Gellert M, Yada C, Rosciano F, Roling B 2012 Electrochem. Commun. 14 25

    [12]

    Yin F S, Zhang Z J, Fang Y L, Sun C W 2023 J. Energy Storage 73 12

    [13]

    Arbi K, Lazarraga M G, Chehimi D B, Ayadi-Trabelsi M, Rojo J M, Sanz J 2004 Chem. Mater. 16 255

    [14]

    Arbi K, Hoelzel M, Kuhn A, García-Alvarado F, Sanz J 2013 Inorg. Chem. 52 9290

    [15]

    Monchak M, Hupfer T, Senyshyn A, Boysen H, Chernyshov D, Hansen T, Schell K G, Bucharsky E C, Hoffmann M J, Ehrenberg H 2016 Chem. Mater. 55 2941

    [16]

    Luo Y Y, Liu X Y, Wen C J, Ning T X, Jiang X X, Lu A X 2023 Appl. Phys. A 129 13

    [17]

    Liang Y J, Peng C, Kamiike Y, Kuroda K, Okido M 2019 J. Alloy. Compd. 775 1147

    [18]

    Tian H K, Jalem R, Gao B, Yamamoto Y, Muto S, Sakakura M, Iriyama Y, Tateyama Y 2020 ACS Appl. Mater. Interface 12 54752

    [19]

    Wu P, Zhou W, Su X, Li J, Su M, Zhou X, Sheldon B W, Lu W 2023 Adv. Energy Mater. 13 2203440

    [20]

    Stegmaier S, Schierholz R, Povstugar I, Barthel J, Rittmeyer S P, Yu S, Wengert S, Rostami S, Kungl H, Reuter K 2021 Adv. Energy Mater. 11 2100707

    [21]

    Kresse G, Hafner J 1994 J. Phys.: Condens. Matter 6 8245

    [22]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [23]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Perdew J P, Ernzerhof M, Burke K 1996 Chem. Phys. 105 9982

    [26]

    Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748

    [27]

    Henkelman G, Uberuaga B P, Jónsson H 2000 Chem. Phys. 113 9901

    [28]

    Nosé S 1984 J. Chem. Phys. 81 511

    [29]

    Tian H K, Liu Z, Ji Y Z, Chen L Q, Qi Y 2019 Chem. Mater. 31 7351

    [30]

    Li M, Zhong S Y, Hu J P, Sun B Z, Xu B 2024 Acta Phys. Sin. 73 362(in Chinese) [李梅,钟淑英,胡军平,孙宝珍,徐波2024 73 362]

    [31]

    Han F D, Westover A S, Yue J, Fan X L, Wang F, Chi M F, Leonard D N, Dudney N J, Wang H, Wang C S 2019 Nat. Energy 4 187

    [32]

    Lang B, Ziebarth B, Elsässer C 2015 Chem. Mater. 27 5040

    [33]

    Yang K, Chen L K, Ma J B, He Y B, Kang F Y 2021 InfoMat. 3 1195

  • [1] 张妮妮, 任娟, 罗澜茜, 刘平平. Be掺杂石墨双炔作为锂离子电池负极材料的第一性原理研究.  , doi: 10.7498/aps.73.20240996
    [2] 周斌, 肖事成, 王一楠, 张晓毓, 钟雪, 马丹, 戴赢, 范志强, 唐贵平. VS2作为锂离子电池负极材料的第一性原理研究.  , doi: 10.7498/aps.73.20231681
    [3] 杨源, 胡乃方, 金永成, 马君, 崔光磊. 富锂正极材料在全固态锂电池中的研究进展.  , doi: 10.7498/aps.72.20230258
    [4] 何兵, 练宇翔, 吴木生, 罗文崴, 杨慎博, 欧阳楚英. 阳离子调控对卤化物固态电解质性能的改善.  , doi: 10.7498/aps.71.20221050
    [5] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法.  , doi: 10.7498/aps.71.20211619
    [6] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算.  , doi: 10.7498/aps.70.20210268
    [7] 游逸玮, 崔建文, 张小锋, 郑锋, 吴顺情, 朱梓忠. 锂磷氧氮(LiPON)固态电解质与Li负极界面特性.  , doi: 10.7498/aps.70.20202214
    [8] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法.  , doi: 10.7498/aps.70.20211619
    [9] 钟淑琳, 仇家豪, 罗文崴, 吴木生. 稀土掺杂对LiFePO4性能影响的第一性原理研究.  , doi: 10.7498/aps.70.20210227
    [10] 余启鹏, 刘琦, 王自强, 李宝华. 全固态金属锂电池负极界面问题及解决策略.  , doi: 10.7498/aps.69.20201218
    [11] 曹文卓, 李泉, 王胜彬, 李文俊, 李泓. 金属锂在固态电池中的沉积机理、策略及表征.  , doi: 10.7498/aps.69.20201293
    [12] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究.  , doi: 10.7498/aps.68.20190503
    [13] 彭劼扬, 王家海, 沈斌, 李浩亮, 孙昊明. 纳米颗粒的表面效应和电极颗粒间挤压作用对锂离子电池电压迟滞的影响.  , doi: 10.7498/aps.68.20182302
    [14] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究.  , doi: 10.7498/aps.68.20190509
    [15] 姜平国, 汪正兵, 闫永播, 刘文杰. W20O58(010)表面氢吸附机理的第一性原理研究.  , doi: 10.7498/aps.66.246801
    [16] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质.  , doi: 10.7498/aps.60.077104
    [17] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究.  , doi: 10.7498/aps.59.8226
    [18] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算.  , doi: 10.7498/aps.57.4428
    [19] 周正存, 韩福生. Al含量对Fe-Al合金Zener弛豫的影响.  , doi: 10.7498/aps.54.251
    [20] 于 洋, 徐力方, 顾长志. 氢吸附金刚石(001)表面的第一性原理研究.  , doi: 10.7498/aps.53.2710
计量
  • 文章访问数:  23
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-21

/

返回文章
返回
Baidu
map