-
NASICON型Li1+xAlxTi2-x(PO4)3(LATP)作为锂离子电池极具潜力的固态电解质而备受瞩目.本文采用第一性原理计算与分子动力学模拟相结合的方法对三种Al掺杂浓度(2AlTi,4AlTi,6AlTi)的LATP表面进行研究,深入探究Al含量对LATP表面的稳定性、电子导电性及Li+输运特性的影响.研究结果表明,Li-原子终端的(012)面为最稳定晶面;且LATP (012)表面随Al含量的增加而更为稳定.电子结构分析表明,LiTi2(PO4)3(LTP)表面保持与体相一致的半导体性质,而LATP表面则呈现出金属性,这是LATP表面锂枝晶生长的一个原因;Li+输运性质的研究果表明,对于LTP/LATP表面,高的势垒(大于2.00 eV)使得Li+不能从次表层迁移到最表层;在最表层中,Li+的最低迁移势垒为0.87 eV,明显高于其体相的最小值(0.34 eV).缓慢的Li+迁移速度是LATP表面锂枝晶生长的另一个重要原因.幸运地是,通过提高Al掺杂浓度,可降低Li+的迁移势垒,进而提高Li+在LATP表面的扩散性能.分子动力学模拟进一步揭示Li+在LATP表面的扩散行为主要受到Al含量、Li+占位以及环境温度这些因素的共同影响.因而,LATP表面的金属性和较高的Li+迁移势垒是其表面锂枝晶生长的两个重要原因.通过调控Al含量、Li+占位以及环境温度能够不同程度地缓解LATP表面的锂枝晶生长.NASICON-type Li1+xAlxTi2-x(PO4)3 (LATP) has garnered significant attention as a promising solid-state electrolyte for lithium-ion batteries due to its simple preparation method, low material cost, and good stability in water and air, but lithium dendrite’s formation greatly limits the applications. To elucidate the source of lithium dendrite’s formation, in this study, a combination of first-principles calculations and molecular dynamics simulations was utilized to investigate the effect of Al content on the stability, electronic and Li+mobility properties of the LATP surface with three Al doping concentrations (2AlTi, 4AlTi, 6AlTi). We also consider Li1+xAlxTi2-x(PO4)3(LTP) surface for comparison. The results indicate that the (012) surface terminated with Li atoms is the most stable facet. Further the surface energy of LATP(012) decreases from 0.68 J/m2 to 0.43 J/m2 with increasing Al content, suggesting Al doping can effectively improve the stability of the LATP(012) surface. Electronic structure analysis reveals that the surface of LTP(012) retains the semiconductor properties consistent with the bulk phase, whereas the LATP(012) surface exhibits metallicity, which provides an electron pathway for metallic Li formation. Consequently, the metallic character of the LATP(012) surface is one reason for its lithium dendrite growth. For the Li+ transport properties, two different migration modes, vacancy migration and interstitial migration, were included. When Li+ migrates within the outermost surface, the migration barrier via vacancy is 1.67/1.69 eV for the LTP/LATP (012) surface, while the migration barrier via interstitial is 1.16 eV for LTP(012) and decreases from 1.31 to 0.87 eV with the increase of Al content for LATP(012). Obviously, within the outermost surface, Al doping can decrease the migration barrier of Li+. When Al doping concentration is 6AlTi, the migration barrier is lowest (0.87 eV). Nevertheless, the lowest migration barrier (0.87 eV) for Li+ on the LATP surface is significantly higher than its bulk minimum value of 0.34 eV. When Li+ migrates from the subsurface layer to the outermost surface, the migration barrier is 2.76 eV for LTP(012) and 2.05 eV, 3.20 eV, and 3.06 eV for LATP(012) with 2AlTi, 4AlTi, and 6AlTicontents, respectively. All these migration barriers are greater than 2.00 eV, which prevents Li+ migration from the subsurface layer to the outermost surface for both LTP and LATP surfaces. Hence, the slow Li+ migration represents another important factor contributing to lithium dendrite growth on the LATP surface. Fortunately, increasing the Al doping concentration can reduce the migration barrier of Li+ and thus enhance its diffusion performance on the LATP surface. Molecular dynamics simulations further reveal that the diffusion behavior of Li+ on the LATP surface is influenced by a combination of factors, including Al content, Li+ occupancy, and ambient temperature. In particular, LATP(012)/6AlTi, LATP(012)/4AlTi, and LATP(012)/2AlTi possess the highest Li+ diffusion coefficient at 900 K, 1100 K, and 1300 K, respectively. Besides, Li+near the Al doping site is easier to diffuse on the LATP(012) surface. Thus, our study suggests that by varying Al content, Li+ occupancy positions, and the temperature, Li+ diffusion performance of LATP(012) can be favorably modified, and consequently inhibiting the formation of lithium dendrites on the LATP(012) surface.
-
Keywords:
- lithium-ion batteries /
- solid-state electrolyte /
- LATP surface /
- first-principles calculations /
- Al content
-
[1] Zhang S, Ma J, Dong S M, Cui G L 2023 Electrochem. Energy Rev. 6 40
[2] Manthiram A, Yu X W, Wang S F 2017 Nat. Rev. Mater. 2 16
[3] Bachman J C, Muy S, Grimaud A, Chang H H, Pour N, Lux S F, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y 2016 Chem. Rev. 116 140
[4] Fan L, Wei S Y, Li S Y, Li Q, Lu Y Y 2018 Adv. Energy Mater. 8 31
[5] Zhang Z Z, Shao Y J, Lotsch B, Hu Y S, Li H, Janek J, Nazar L F, Nan C W, Maier J, Armand M, Chen L Q 2018 Energy Environ. Sci. 11 1945
[6] Zheng F, Kotobuki M, Song S F, Lai M O, Lu L 2018 J. Power Sources 389 198
[7] Subramanian M, Subramanian R, Clearfield A 1986 Solid State Ion. 18 562
[8] Adachi G y, Imanaka N, Aono H 1996 Adv. Mater. 8 127
[9] Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G Y 1990 J. Electrochem. Soc. 137 1023
[10] Schroeder M, Glatthaar S, Binder J R 2011 Solid State Ion. 201 49
[11] Mariappan C R, Gellert M, Yada C, Rosciano F, Roling B 2012 Electrochem. Commun. 14 25
[12] Yin F S, Zhang Z J, Fang Y L, Sun C W 2023 J. Energy Storage 73 12
[13] Arbi K, Lazarraga M G, Chehimi D B, Ayadi-Trabelsi M, Rojo J M, Sanz J 2004 Chem. Mater. 16 255
[14] Arbi K, Hoelzel M, Kuhn A, García-Alvarado F, Sanz J 2013 Inorg. Chem. 52 9290
[15] Monchak M, Hupfer T, Senyshyn A, Boysen H, Chernyshov D, Hansen T, Schell K G, Bucharsky E C, Hoffmann M J, Ehrenberg H 2016 Chem. Mater. 55 2941
[16] Luo Y Y, Liu X Y, Wen C J, Ning T X, Jiang X X, Lu A X 2023 Appl. Phys. A 129 13
[17] Liang Y J, Peng C, Kamiike Y, Kuroda K, Okido M 2019 J. Alloy. Compd. 775 1147
[18] Tian H K, Jalem R, Gao B, Yamamoto Y, Muto S, Sakakura M, Iriyama Y, Tateyama Y 2020 ACS Appl. Mater. Interface 12 54752
[19] Wu P, Zhou W, Su X, Li J, Su M, Zhou X, Sheldon B W, Lu W 2023 Adv. Energy Mater. 13 2203440
[20] Stegmaier S, Schierholz R, Povstugar I, Barthel J, Rittmeyer S P, Yu S, Wengert S, Rostami S, Kungl H, Reuter K 2021 Adv. Energy Mater. 11 2100707
[21] Kresse G, Hafner J 1994 J. Phys.: Condens. Matter 6 8245
[22] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
[23] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
[24] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[25] Perdew J P, Ernzerhof M, Burke K 1996 Chem. Phys. 105 9982
[26] Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748
[27] Henkelman G, Uberuaga B P, Jónsson H 2000 Chem. Phys. 113 9901
[28] Nosé S 1984 J. Chem. Phys. 81 511
[29] Tian H K, Liu Z, Ji Y Z, Chen L Q, Qi Y 2019 Chem. Mater. 31 7351
[30] Li M, Zhong S Y, Hu J P, Sun B Z, Xu B 2024 Acta Phys. Sin. 73 362(in Chinese) [李梅,钟淑英,胡军平,孙宝珍,徐波2024 73 362]
[31] Han F D, Westover A S, Yue J, Fan X L, Wang F, Chi M F, Leonard D N, Dudney N J, Wang H, Wang C S 2019 Nat. Energy 4 187
[32] Lang B, Ziebarth B, Elsässer C 2015 Chem. Mater. 27 5040
[33] Yang K, Chen L K, Ma J B, He Y B, Kang F Y 2021 InfoMat. 3 1195
计量
- 文章访问数: 23
- PDF下载量: 0
- 被引次数: 0