搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阳离子调控对卤化物固态电解质性能的改善

何兵 练宇翔 吴木生 罗文崴 杨慎博 欧阳楚英

引用本文:
Citation:

阳离子调控对卤化物固态电解质性能的改善

何兵, 练宇翔, 吴木生, 罗文崴, 杨慎博, 欧阳楚英

Improvement of performance of halide solid electrolyte by tuning cations

He Bing, Lian Yu-Xiang, Wu Mu-Sheng, Luo Wen-Wei, Yang Shen-Bo, Ouyang Chu-Ying
PDF
HTML
导出引用
  • 三元锂金属卤化物作为极具潜力的固体电解质材料受到人们的广泛关注. 本文利用基于密度泛函理论的第一性原理方法研究了一系列具有不同Li离子浓度的LixYCl3+x (x = 2.14, 3.00, 4.20)和LixYBr3+x (x = 1.8, 3.0, 5.0)材料的结构、电子性质和迁移特性. 研究结果表明, Li离子和Li空位浓度的变化对材料的性能有显著影响, 而且随着x值的增加, Li离子的含量增加, 相应的Li空位浓度降低, 结构的稳定性增强、带隙增大、离子迁移能垒降低, 从而可以调控该类材料的性能. 此外, 计算结果进一步表明, 在所有考虑的结构中, 具有最佳Li离子与Li空位平衡的Li3YCl6和Li3YBr6组分展现出最高的结构稳定性、最大的带隙和最低的迁移能垒. 本文为设计性能更好的卤化物固态电解质提供了一种新策略和新思路.
    Ternary lithium metal halides have attracted much attention as potential solid electrolytes. In this work, we study the structural, electronic and ionic diffusion properties of a series of LixYCl3+x (x = 2.14, 3.00, 4.20) and LixYBr3+x (x = 1.8, 3.0, 5.0) by using first-principles calculation based on density functional theory. The calculation results show that the Li-ion concentration has a significant effect on the properties of the materials, and with the increase of x value, Li-ion number becomes higher, structure turns more stable, band gap gets larger, and migration barrier lowers, thus the performance of the material can be tuned. In addition, the calculation results further show that Li3YCl6 and Li3YBr6 with the best balance between Li-ion carrier concentration and vacancy concentration exhibit the highest structural stability, the largest band gaps, and the lowest migration barriers in all similar structures. Our study provides a new strategy and idea for designing better-performance halide solid electrolytes.
      通信作者: 吴木生, smwu@jxnu.edu.cn ; 欧阳楚英, cyouyang@jxnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12064014, 51962010, 12174162, 12064015)和鸿之微项目资助的课题.
      Corresponding author: Wu Mu-Sheng, smwu@jxnu.edu.cn ; Ouyang Chu-Ying, cyouyang@jxnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12064014, 51962010, 12174162, 12064015) and the Program of HZWTECH, China.
    [1]

    Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Nat. Mater. 18 1278Google Scholar

    [2]

    Manthiram A, Yu X, Wang S 2017 Nat. Rev. Mater. 2 16103Google Scholar

    [3]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nat. Mater. 10 682Google Scholar

    [4]

    Kraft M A, Ohno S, Zinkevich T, Koerver R, Culver S P, Fuchs T, Senyshyn A, Indris S, Morgan B J, Zeier W. G 2018 J. Am. Chem. Soc. 140 16330Google Scholar

    [5]

    Zhou L, Assoud A, Zhang Q, Wu X, Nazar L F 2019 J. Am. Chem. Soc. 141 19002Google Scholar

    [6]

    Zhu Y Z, He X F, Mo Y F, 2015 ACS Appl. Mater. Interfaces 7 23685Google Scholar

    [7]

    Nolan A M, Zhu Y Z, He X F, Bai Q, Mo Y F 2018 Joule 2 2016Google Scholar

    [8]

    Li X, Liang J W, Yang X F, Adair K R, Wang C H, Zhao F P, Sun X L 2020 Energy Environ. Sci. 13 1429Google Scholar

    [9]

    Shannon R D, 1976 Acta Crystallogr. Sect. A:Found. Adv. 32 751Google Scholar

    [10]

    Pauling L 1960 The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry (New York: Cornell University Press) pp505–562

    [11]

    Lutz H D, Schmidt W, Haeuseler H 1981 J. Phys. Chem. Solids 42 287Google Scholar

    [12]

    Lutz H D, Kuske P, Wussow K 1988 Solid State Ionics 28 1282Google Scholar

    [13]

    Steiner H J, Lutz H D 1992 Z. Anorg. Allg. Chem. 613 26Google Scholar

    [14]

    Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S 2018 Adv. Mater. 30 1803075Google Scholar

    [15]

    Li X N, Liang J W, Luo J, et al. 2019 Energy Environ. Sci. 12 2665Google Scholar

    [16]

    Li X N, Liang J W, Chen N, et al. 2019 Angew. Chem. 131 16579Google Scholar

    [17]

    Wang S, Bai Q, Nolan A M, Liu Y S, Gong S, Sun Q, Mo Y F 2019 Angew. Chem. Int. Ed. 58 8039Google Scholar

    [18]

    Wang Y, Richards W D, Ong S P, Miara L J, Kim J C, Mo Y F, Ceder G 2015 Nat. Mater. 14 1026Google Scholar

    [19]

    Schlem R, Bernges T, Li C, Kraft M A, Minafra N, Zeier W G 2020 ACS Appl. Energy Mater. 3 3684Google Scholar

    [20]

    Wang K, Ren Q Y, Gu Z Q, Duan C M, Wang J Z, Zhu F, Fu Y Y, Hao J P, Zhu J F, He L H, Wang C W, Lu Y Y, Ma J, Ma C 2021 Nat. Commun. 12 4410Google Scholar

    [21]

    Liang J W, Li X N, Wang S, et al. 2020 J. Am. Chem. Soc. 142 7012Google Scholar

    [22]

    Schlem R, Muy S, Prinz N, Banik A, Shao-Horn Y, Zobel M, Zeier W G 2020 Adv. Energy Mater. 10 1903719Google Scholar

    [23]

    Liu Z T, Ma S, Liu J, Xiong S, Ma Y F, Chen H L 2021 ACS Energy Lett. 6 298Google Scholar

    [24]

    Li X N, Liang J W, Adair K R, et al. 2020 Nano Lett. 20 4384Google Scholar

    [25]

    He B, Chi S T, Ye A J, Mi P H, Zhang L W, Pu B W, Zou Z Y, Ran Y B, Zhao Q, Wang D, Zhang W Q, Zhao J T, Adams S, Avdeev M, Shi S Q 2020 Sci. Data 7 151Google Scholar

    [26]

    钟淑琳, 仇家豪, 罗文葳, 吴木生 2021 70 158203Google Scholar

    Zhong S L, Qiu J H, Luo W W, Wu M S 2021 Acta Phys. Sin. 70 158203Google Scholar

    [27]

    Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y, Xiao R J 2016 Chin. Phys. B 25 018212Google Scholar

    [28]

    Kresse G, Furthmüeller J 1996 Phys. Rev. B 54 11169Google Scholar

    [29]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [30]

    Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys. 105 9982Google Scholar

    [31]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [32]

    Stevanović V, Lany S, Zhang X W, Zunger A 2012 Phys. Rev. B 85 115104Google Scholar

    [33]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [34]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [35]

    郑路敏, 钟淑英, 徐波, 欧阳楚英 2019 68 138201Google Scholar

    Zheng L M, Zhong S Y, Xu B, Ouyang C Y 2019 Acta Phys. Sin. 68 138201Google Scholar

    [36]

    Ouyang C Y, Shi S Q, Wang Z X, Huang X J, Chen L Q 2004 Phys. Rev. B 69 104303Google Scholar

    [37]

    Wu M S, Xu B, Lei X L, Huang K L, Ouyang C Y 2018 J. Mater. Chem. A 6 1150Google Scholar

    [38]

    Wang Y C, Lü J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116Google Scholar

    [39]

    Wang Y C, Lü J, Zhu L, Ma Y M 2012 Comput. Phys. Commun. 183 2063Google Scholar

    [40]

    Hongzhiwei Technology 2021 Device Studio (Version 2021A) China

    [41]

    Sun W H, Dacek S T, Ong S P, Hautier G, Jain A, Richards W D, Gamst A C, Persson K A, Ceder G 2016 Sci. Adv. 2 e1600225Google Scholar

    [42]

    Bartel C J, Millican S L, Deml A M, Rumptz J R, Tumas W, Weimer A W, Lany S, Stevanović V, Musgrave C B, Holder A M 2018 Nat. Commun. 9 4168Google Scholar

    [43]

    Aykol M, Dwaraknath S S, Sun W H, Persson K A 2018 Sci. Adv. 4 eaaq0148Google Scholar

    [44]

    Zhao Q, Pan L, Li Y J, Chen L Q, Shi S Q 2018 Rare Met. 37 497Google Scholar

    [45]

    任元, 邹喆乂, 赵倩, 王达, 喻嘉, 施思齐 2020 69 226601Google Scholar

    Ren Y, Zou Z Y, Zhao Q, Wang D, Yu J, Shi S Q 2020 Acta Phys. Sin. 69 226601Google Scholar

    [46]

    Qiu J H, Wu M S, Luo W W, Xu B, Liu G, Ouyang C Y, 2021 J. Phys. Chem. C 125 23510Google Scholar

    [47]

    Pan L, Zhang L W, Ye A J, Chi S T, Zou Z Y, He B, Chen L L, Zhao Q, Wang D, Shi S Q 2019 J. Materiomics 5 688Google Scholar

    [48]

    He B, Mi P H, Ye A J, Chi S T, Jiao Y, Zhang L W, Pu B W, Zou Z Y, Zhang W Q, Avdeev M, Adams S, Zhao J T, Shi S Q 2021 Acta Mater. 203 116490Google Scholar

    [49]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272Google Scholar

    [50]

    Chen H, Adams S 2017 IUCrJ 4 614Google Scholar

  • 图 1  原子结构示意图 (a) Li12Y5Cl18; (b) Li7.5Y3.5Cl18; (c) Li9Y3Cl18; (d) Li10.5Y2.5Cl18 (黄色、蓝色和红色圆球分别代表Li, Y和Cl原子, 有部分白色的小球代表对应原子在该位置的部分占据)

    Fig. 1.  Schematic diagram of atomic structures: (a) Li12Y5Cl18; (b) Li7.5Y3.5Cl18; (c) Li9Y3Cl18; (d) Li10.5Y2.5Cl18 (The yellow, blue and red spheres represent Li, Y and Cl atoms, the spheres with a partially white indicate the partial occupancy of the corresponding atoms).

    图 2  原子结构示意图 (a) Li8Y4Br12; (b) Li4.5Y2.5Br12; (c) Li6Y2Br12; (d) Li7.5Y1.5Br12 (黄色、蓝色和咖啡色圆球分别代表Li, Y和Br原子, 有部分白色的小球代表对应原子在该位置的部分占据)

    Fig. 2.  Schematic diagram of atomic structures: (a) Li8Y4Br12; (b) Li4.5Y2.5Br12; (c) Li6Y2Br12; (d) Li7.5Y1.5Br12 (The yellow, blue and brown spheres represent Li, Y and Br atoms, the spheres with a partially white indicate the partial occupancy of the corresponding atoms).

    图 3  超胞中所有可能构型n的总能. 1×1×2超胞 (a) Li7.5Y3.5Cl18; (b) Li9Y3Cl18; (c) Li10.5Y2.5Cl18. 2×1×1超胞 (d) Li4.5Y2.5Br12; (e) Li6Y2Br12; (f) Li7.5Y1.5Br12

    Fig. 3.  The total energies of all possible configurations n. 1×1×2 supercell: (a) Li7.5Y3.5Cl18; (b) Li9Y3Cl18; (c) Li10.5Y2.5Cl18. 2×1×1 supercell: (d) Li4.5Y2.5Br12; (e) Li6Y2Br12; (f) Li7.5Y1.5Br12.

    图 4  DFT计算的不同构型的基态结构 (灰色小球代表Li空位, 黑色箭头代表虚线框中的Li离子向Li空位迁移的迁移路径) (a) Li15Y7Cl36; (b) Li18Y6Cl36; (c) Li21Y5Cl36

    Fig. 4.  Ground-state structures of different configurations calculated by DFT (The grey spheres represent Li vacancies, black arrows represent the migration paths of Li ions in the dashed box to Li vacancies): (a) Li15Y7Cl36; (b) Li18Y6Cl36; (c) Li21Y5Cl36.

    图 5  DFT计算的不同构型的基态结构 (红色箭头代表虚线框中的Li离子向Li空位迁移的迁移路径) (a) Li9Y5Br24; (b) Li12Y4Br24; (c) Li15Y3Br24

    Fig. 5.  Ground-state structures of different configurations calculated by DFT (Red arrows represent the migration paths of Li ions in the dashed box to Li vacancies): (a) Li9Y5Br24; (b) Li12Y4Br24; (c) Li15Y3Br24.

    图 6  所有组分的DOS图及带隙 (a) Li15Y7Cl36 (4.35 eV); (b) Li18Y6Cl36 (5.43 eV); (c) Li21Y5Cl36 (5.33 eV); (d) Li9Y5Br24 (3.58 eV); (e) Li12Y4Br24 (4.69 eV); (f) Li15Y3Br24 (4.00 eV)

    Fig. 6.  DOS plots and band gap results for all components: (a) Li15Y7Cl36 (4.35 eV); (b) Li18Y6Cl36 (5.43 eV); (c) Li21Y5Cl36 (5.33 eV); (d) Li9Y5Br24 (3.58 eV); (e) Li12Y4Br24 (4.69 eV); (f) Li15Y3Br24 (4.00 eV).

    图 7  (a) Li18Y6Cl36, (b) Li15Y7Cl36, (c) Li21Y5Cl36的晶体结构与BVSE计算的Li离子等位面势图的叠加图(黄色区域是Li离子的分布密度, 代表Li离子的传导通道)

    Fig. 7.  Crystal structures of (a) Li18Y6Cl36, (b) Li15Y7Cl36, (c) Li21Y5Cl36 superimposed with the Li-ion potential map calculated using BVSE (The yellow isosurfaces correspond to Li-ions probability density, indicating Li-ion conduction path).

    图 8  (a) Li12Y4Br24, (b) Li9Y5Br24, (c) Li15Y3Br24的晶体结构与BVSE计算的Li离子等位面势图的叠加图(黄色区域是Li离子的分布密度, 代表Li离子的传导通道)

    Fig. 8.  Crystal structures of (a) Li12Y4Br24, (b) Li9Y5Br24, (c) Li15Y3Br24 superimposed with the Li-ion potential map calculated using BVSE (The yellow isosurfaces correspond to Li-ions probability density, indicating Li-ion conduction path).

    图 9  所有组分的迁移能垒和局域结构示意图 (a) Li15Y7Cl36; (b) Li18Y6Cl36; (c) Li21Y5Cl36; (d) Li9Y5Br24; (e) Li12Y4Br24; (f) Li15Y3Br24    

    Fig. 9.  Li-ion energy barrier profiles and local structures: (a) Li15Y7Cl36; (b) Li18Y6Cl36; (c) Li21Y5Cl36; (d) Li9Y5Br24; (e) Li12Y4Br24; (f) Li15Y3Br24.

    图 10  (a) LixYCl3+x和(b) LixYBr3+x中迁移能垒和带隙随Li离子与Li空位(Li+/VLi)比例的变化关系

    Fig. 10.  Migration barriers and band gaps of (a) LixYCl3+x and (b) LixYBr3+x as a function of Li+/VLi ratio.

    表 1  LixYCl3+x和LixYBr3+x卤化物的形成能

    Table 1.  Formation energies of LixYCl3+x and LixYBr3+x halides.

    化学式空间群晶格常数/Å反应方程式Ef/(meV·atom–1)
    Li15Y7Cl36$p\bar{3}m1$a = 11.22
    c = 12.34
    15LiCl+7YCl3→Li15Y7Cl3632
    Li18Y6Cl3618LiCl+6YCl3→Li18Y6Cl3613
    Li21Y5Cl3621LiCl+5YCl3→Li21Y5Cl3619
    Li9Y5Br24C2/ma = 13.93
    b = 12.02
    c = 6.95
    9LiBr+5YBr3→Li9Y5Br2417
    Li12Y4Br2412LiBr+4YBr3→Li12Y4Br242
    Li15Y3Br2415LiBr+3YBr3→Li15Y3Br2430
    下载: 导出CSV
    Baidu
  • [1]

    Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Nat. Mater. 18 1278Google Scholar

    [2]

    Manthiram A, Yu X, Wang S 2017 Nat. Rev. Mater. 2 16103Google Scholar

    [3]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nat. Mater. 10 682Google Scholar

    [4]

    Kraft M A, Ohno S, Zinkevich T, Koerver R, Culver S P, Fuchs T, Senyshyn A, Indris S, Morgan B J, Zeier W. G 2018 J. Am. Chem. Soc. 140 16330Google Scholar

    [5]

    Zhou L, Assoud A, Zhang Q, Wu X, Nazar L F 2019 J. Am. Chem. Soc. 141 19002Google Scholar

    [6]

    Zhu Y Z, He X F, Mo Y F, 2015 ACS Appl. Mater. Interfaces 7 23685Google Scholar

    [7]

    Nolan A M, Zhu Y Z, He X F, Bai Q, Mo Y F 2018 Joule 2 2016Google Scholar

    [8]

    Li X, Liang J W, Yang X F, Adair K R, Wang C H, Zhao F P, Sun X L 2020 Energy Environ. Sci. 13 1429Google Scholar

    [9]

    Shannon R D, 1976 Acta Crystallogr. Sect. A:Found. Adv. 32 751Google Scholar

    [10]

    Pauling L 1960 The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry (New York: Cornell University Press) pp505–562

    [11]

    Lutz H D, Schmidt W, Haeuseler H 1981 J. Phys. Chem. Solids 42 287Google Scholar

    [12]

    Lutz H D, Kuske P, Wussow K 1988 Solid State Ionics 28 1282Google Scholar

    [13]

    Steiner H J, Lutz H D 1992 Z. Anorg. Allg. Chem. 613 26Google Scholar

    [14]

    Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S 2018 Adv. Mater. 30 1803075Google Scholar

    [15]

    Li X N, Liang J W, Luo J, et al. 2019 Energy Environ. Sci. 12 2665Google Scholar

    [16]

    Li X N, Liang J W, Chen N, et al. 2019 Angew. Chem. 131 16579Google Scholar

    [17]

    Wang S, Bai Q, Nolan A M, Liu Y S, Gong S, Sun Q, Mo Y F 2019 Angew. Chem. Int. Ed. 58 8039Google Scholar

    [18]

    Wang Y, Richards W D, Ong S P, Miara L J, Kim J C, Mo Y F, Ceder G 2015 Nat. Mater. 14 1026Google Scholar

    [19]

    Schlem R, Bernges T, Li C, Kraft M A, Minafra N, Zeier W G 2020 ACS Appl. Energy Mater. 3 3684Google Scholar

    [20]

    Wang K, Ren Q Y, Gu Z Q, Duan C M, Wang J Z, Zhu F, Fu Y Y, Hao J P, Zhu J F, He L H, Wang C W, Lu Y Y, Ma J, Ma C 2021 Nat. Commun. 12 4410Google Scholar

    [21]

    Liang J W, Li X N, Wang S, et al. 2020 J. Am. Chem. Soc. 142 7012Google Scholar

    [22]

    Schlem R, Muy S, Prinz N, Banik A, Shao-Horn Y, Zobel M, Zeier W G 2020 Adv. Energy Mater. 10 1903719Google Scholar

    [23]

    Liu Z T, Ma S, Liu J, Xiong S, Ma Y F, Chen H L 2021 ACS Energy Lett. 6 298Google Scholar

    [24]

    Li X N, Liang J W, Adair K R, et al. 2020 Nano Lett. 20 4384Google Scholar

    [25]

    He B, Chi S T, Ye A J, Mi P H, Zhang L W, Pu B W, Zou Z Y, Ran Y B, Zhao Q, Wang D, Zhang W Q, Zhao J T, Adams S, Avdeev M, Shi S Q 2020 Sci. Data 7 151Google Scholar

    [26]

    钟淑琳, 仇家豪, 罗文葳, 吴木生 2021 70 158203Google Scholar

    Zhong S L, Qiu J H, Luo W W, Wu M S 2021 Acta Phys. Sin. 70 158203Google Scholar

    [27]

    Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y, Xiao R J 2016 Chin. Phys. B 25 018212Google Scholar

    [28]

    Kresse G, Furthmüeller J 1996 Phys. Rev. B 54 11169Google Scholar

    [29]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [30]

    Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys. 105 9982Google Scholar

    [31]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [32]

    Stevanović V, Lany S, Zhang X W, Zunger A 2012 Phys. Rev. B 85 115104Google Scholar

    [33]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [34]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [35]

    郑路敏, 钟淑英, 徐波, 欧阳楚英 2019 68 138201Google Scholar

    Zheng L M, Zhong S Y, Xu B, Ouyang C Y 2019 Acta Phys. Sin. 68 138201Google Scholar

    [36]

    Ouyang C Y, Shi S Q, Wang Z X, Huang X J, Chen L Q 2004 Phys. Rev. B 69 104303Google Scholar

    [37]

    Wu M S, Xu B, Lei X L, Huang K L, Ouyang C Y 2018 J. Mater. Chem. A 6 1150Google Scholar

    [38]

    Wang Y C, Lü J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116Google Scholar

    [39]

    Wang Y C, Lü J, Zhu L, Ma Y M 2012 Comput. Phys. Commun. 183 2063Google Scholar

    [40]

    Hongzhiwei Technology 2021 Device Studio (Version 2021A) China

    [41]

    Sun W H, Dacek S T, Ong S P, Hautier G, Jain A, Richards W D, Gamst A C, Persson K A, Ceder G 2016 Sci. Adv. 2 e1600225Google Scholar

    [42]

    Bartel C J, Millican S L, Deml A M, Rumptz J R, Tumas W, Weimer A W, Lany S, Stevanović V, Musgrave C B, Holder A M 2018 Nat. Commun. 9 4168Google Scholar

    [43]

    Aykol M, Dwaraknath S S, Sun W H, Persson K A 2018 Sci. Adv. 4 eaaq0148Google Scholar

    [44]

    Zhao Q, Pan L, Li Y J, Chen L Q, Shi S Q 2018 Rare Met. 37 497Google Scholar

    [45]

    任元, 邹喆乂, 赵倩, 王达, 喻嘉, 施思齐 2020 69 226601Google Scholar

    Ren Y, Zou Z Y, Zhao Q, Wang D, Yu J, Shi S Q 2020 Acta Phys. Sin. 69 226601Google Scholar

    [46]

    Qiu J H, Wu M S, Luo W W, Xu B, Liu G, Ouyang C Y, 2021 J. Phys. Chem. C 125 23510Google Scholar

    [47]

    Pan L, Zhang L W, Ye A J, Chi S T, Zou Z Y, He B, Chen L L, Zhao Q, Wang D, Shi S Q 2019 J. Materiomics 5 688Google Scholar

    [48]

    He B, Mi P H, Ye A J, Chi S T, Jiao Y, Zhang L W, Pu B W, Zou Z Y, Zhang W Q, Avdeev M, Adams S, Zhao J T, Shi S Q 2021 Acta Mater. 203 116490Google Scholar

    [49]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272Google Scholar

    [50]

    Chen H, Adams S 2017 IUCrJ 4 614Google Scholar

  • [1] 郑鹏飞, 柳志旭, 王超, 刘卫芳. 基团替代调控无铅有机钙钛矿铁电体的极化和压电特性的第一性原理研究.  , 2024, 73(12): 126202. doi: 10.7498/aps.73.20240385
    [2] 华彪, 孙宝珍, 王靖轩, 石晶, 徐波. Li含量对Li3xLa(2/3)–x(1/3)–2xTiO3固态电解质表面稳定性、电子结构及Li离子输运性质的影响.  , 2023, 72(2): 028201. doi: 10.7498/aps.72.20221808
    [3] 丁莉洁, 张笑天, 郭欣宜, 薛阳, 林常青, 黄丹. SrSnO3作为透明导电氧化物的第一性原理研究.  , 2023, 72(1): 013101. doi: 10.7498/aps.72.20221544
    [4] 史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠. 锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算.  , 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [5] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究.  , 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [6] 吴成伟, 谢国锋, 周五星. 全固态锂离子电池内部热输运研究前沿.  , 2022, 71(2): 026501. doi: 10.7498/aps.71.20211887
    [7] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算.  , 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [8] 尹媛, 李玲, 尹万健. 太阳能电池材料缺陷的理论与计算研究.  , 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [9] 胡前库, 秦双红, 吴庆华, 李丹丹, 张斌, 袁文凤, 王李波, 周爱国. 三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究.  , 2020, 69(11): 116201. doi: 10.7498/aps.69.20200234
    [10] 范航, 何冠松, 杨志剑, 聂福德, 陈鹏万. 三氨基三硝基苯基高聚物粘结炸药热力学性质的理论计算研究.  , 2019, 68(10): 106201. doi: 10.7498/aps.68.20190075
    [11] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究.  , 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [12] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究.  , 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [13] 马爽, 乌仁图雅, 特古斯, 武晓霞, 管鹏飞, 那日苏. FeMnP1-xTx(T=Si,Ga,Ge)系列化合物机械性能的第一性原理研究.  , 2017, 66(12): 126301. doi: 10.7498/aps.66.126301
    [14] 杨天兴, 成强, 许红斌, 王渊旭. 几种三元过渡金属碳化物弹性及电子结构的第一性原理研究.  , 2010, 59(7): 4919-4924. doi: 10.7498/aps.59.4919
    [15] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算.  , 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [16] 胡方, 明星, 范厚刚, 陈岗, 王春忠, 魏英进, 黄祖飞. 梯形化合物NaV2O4F电子结构的第一性原理研究.  , 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [17] 宋庆功, 王延峰, 宋庆龙, 康建海, 褚 勇. 插层化合物Ag1/4TiSe2电子结构的第一性原理研究.  , 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [18] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究.  , 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [19] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算.  , 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [20] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究.  , 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
计量
  • 文章访问数:  5626
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-26
  • 修回日期:  2022-06-21
  • 上网日期:  2022-10-17
  • 刊出日期:  2022-10-20

/

返回文章
返回
Baidu
map