搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂磷氧氮(LiPON)固态电解质与Li负极界面特性

游逸玮 崔建文 张小锋 郑锋 吴顺情 朱梓忠

引用本文:
Citation:

锂磷氧氮(LiPON)固态电解质与Li负极界面特性

游逸玮, 崔建文, 张小锋, 郑锋, 吴顺情, 朱梓忠

Properties of lithium phosphorus oxynitride (LiPON) solid electrolyte - Li anode interfaces

You Yi-Wei, Cui Jian-Wen, Zhang Xiao-Feng, Zheng Feng, Wu Shun-Qing, Zhu Zi-Zhong
PDF
HTML
导出引用
  • 近年来, 全固态锂离子电池因其高安全性、高能量密度、简单的电池结构等优势成为研究热点. 然而电极与电解质的固固界面问题严重影响电池性能的进一步提升, 从而受到了广泛关注. 本文采用从头算分子动力学对LiPON/ Li界面进行了模拟. 研究发现, 界面处原子互扩散现象明显, 并形成薄界面层. 相比LiPON体相结构, 界面层以Li为中心原子的Li[O2N2], Li[O3N], Li[O4]四面体局域结构占比明显减少, 并且界面层Li-O, Li-N, P-O和P-N的平均配位数均有所减小. 由于界面层结构和配位数的变化使得Li受到O, N的离子键作用更弱, Li离子扩散过程中受到的阻碍更小. 这一点对于LiPON电解质在实际电池应用中的性能起到了积极促进作用.
    In recent years, all-solid-state thin-film batteries have been used to power low-energy devices such as microchips, smart cards, microelectromechanical systems, wireless sensors, and implantable medical devices. All-solid-state thin-film batteries have become an important research direction of rechargeable solid-state batteries (SSBs). However, the solid-solid interface between electrodes and electrolytes seriously affects the further improvement of battery performance, which has attracted extensive attention. Lithium phosphorus oxynitride (LiPON) was found to be a useful inorganic electrolyte in lithium batteries because of its favorable electrochemical properties. For instance, LiPON has good electrical and chemical stability, negligible electronic conductivity and excellent cyclability as well as ease of integration with thin film battery with an electrochemical stability window. The LiPON can present two states, i.e. amorphous state and crystalline state. Here, we adopt ab initio molecular dynamics to study amorphous-LiPON/Li(100) interface and crystalline-Li2PO2N(100)/Li(100) interface. Our results demonstrate that the atomic inter-diffusion occurs in the interfacial region, forming a thin interfacial layer, and the ionic conductivity is increased after the interface layer has formed. Meanwhile, comparing with the Lipon bulk phase structure, the proportion of Li[O2N2], Li[O3N], and Li[O4] tetrahedral local structure in the interface layer with Li atom as the center decrease obviously, and the average coordination number of Li-O, Li-N, P-O, and P-N in the interfacial layers also decrease in the LiPON/Li interface. Due to the change of structure and coordination number at the interface, the ionic bonds between Li and O, N are weaker, which explains the increase of ionic conductivity at the LiPON/Li interface. Previous experiments showed that element interdiffusion occurs at the LiPON/Li interface and the interface layer is formed, and found that the decrease in impedance of the interface layer can confirm that the ionic conductivity of the interface layer indeed increases. In addition, the tetrahedral structure of the interface layer will be decomposed into other smaller structures. Our computational results are consistent with the previous experimental results, which indicates the rationality and reliability of our conclusion. This feature plays a positive role in promoting the performance of LiPON electrolytes in practical battery applications.
      通信作者: 吴顺情, wsq@xmu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874307)和国家重点研发计划(批准号: 2016YFA0202601, 2016YFB0901502)资助的课题
      Corresponding author: Wu Shun-Qing, wsq@xmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11874307) and the National Key R&D Program of China (Grant Nos. 2016YFA0202601, 2016YFB0901502)
    [1]

    Bates J B, Dudney N J, Gruzalski G R, Zuhr R A, Choudhury A, Luck C F 1992 Solid State Ionics 53 647

    [2]

    Yu X, Bates J B, Jellison G E, Hart F X 1997 J. Electrochem. Soc. 144 524Google Scholar

    [3]

    Le Van-Jodin L, Ducroquet F, Sabary F, Chevalier I 2013 Solid State Ionics 253 151Google Scholar

    [4]

    Zhao S l, Wen J b, Zhu Y m, Qin Q 2008 J. Funct. Mater. 39 91

    [5]

    Nowak S, Berkemeier F, Schmitz G 2015 J. Power Sources 275 144Google Scholar

    [6]

    Kim H T, Mun T, Park C, Jin S W, Park H Y 2013 J. Power Sources 244 641Google Scholar

    [7]

    Nisula M, Shindo Y, Koga H, Karppinen M 2015 Chem. Mater. 27 6987Google Scholar

    [8]

    Du Y A, Holzwarth N A W 2010 Phys. Rev. B 81

    [9]

    Senevirathne K, Day C S, Gross M D, Lachgar A, Holzwarth N A W 2013 Solid State Ionics 233 95Google Scholar

    [10]

    Sagane F, Ikeda K I, Okita K, Sano H, Sakaebe H, Iriyama Y 2013 J. Power Sources 233 34Google Scholar

    [11]

    Schwöbel A, Hausbrand R, Jaegermann W 2015 Solid State Ionics 273 51Google Scholar

    [12]

    Sicolo S, Fingerle M, Hausbrand R, Albe K 2017 J. Power Sources 354 124Google Scholar

    [13]

    Albertus P, Babinec S, Litzelman S, Newman A 2017 Nat. Energy 3 16

    [14]

    Bates J B, Dudney N J, Gruzalski G R, Zuhr R A, Choudhury A, Luck C F 1993 J. Power Sources 43 103Google Scholar

    [15]

    Suzuki N, Inaba T, Shiga T 2012 Thin Solid Films 520 1821Google Scholar

    [16]

    Han F, Westover A S, Yue J, Fan X, Wang F, Chi M, Leonard D N, Dudney N J, Wang H, Wang C 2019 Nat. Energy 4 187Google Scholar

    [17]

    Su Y, Falgenhauer J, Polity A, Leichtweiß T, Kronenberger A, Obel J, Zhou S, Schlettwein D, Janek J, Meyer B K 2015 Solid State Ionics 282 63Google Scholar

    [18]

    Li G, Li M, Dong L, Li X, Li D 2014 Int. J. Hydrogen Energy 39 17466Google Scholar

    [19]

    Le Van-Jodin L, Claudel A, Secouard C, Sabary F, Barnes J P, Martin S 2018 Electrochim. Acta 259 742Google Scholar

    [20]

    Hamon Y, Douard A, Sabary F, Marcel C, Vinatier P, Pecquenard B, Levasseur A 2006 Solid State Ionics 177 257Google Scholar

    [21]

    Tian H K, Xu B, Qi Y 2018 J. Power Sources 392 79Google Scholar

    [22]

    Kresse G, Furthmiiller J 1998 Phys. Rev. B 59 1758

    [23]

    Kresse G, Furthmuller 1996 Comput. Mater. Sci. 6 15Google Scholar

    [24]

    Kresse G, Furthmuller 1996 Phys. Rev. B 54 11169Google Scholar

    [25]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [28]

    Martyna G J, Klein M L, Tuckerman M 1992 J. Chem. Phys. 97 2635Google Scholar

    [29]

    Cheng D, Wynn T A, Wang X, Wang S, Zhang M, Shimizu R, Bai S, Nguyen H, Fang C, Kim M C, Li W, Lu B, Kim S J, Meng Y S 2020 Joule 4 2484Google Scholar

    [30]

    Mani P D, Saraf S, Singh V, Real-Robert M, Vijayakumar A, Duranceau S J, Seal S, Coffey K R 2016 Solid State Ionics 287 48Google Scholar

    [31]

    Larfaillou S, Guy-Bouyssou D, le Cras F, Franger S 2016 J. Power Sources 319 139Google Scholar

  • 图 1  (a)−(c) 三种a-LiPON/Li(100)界面沿Z方向的Li原子互扩散图; (d), (e) 两种Li2PO2N(100)/Li(100)界面沿Z方向的Li原子互扩散图. 灰色虚线表示原始的界面位置. 结构图中的红色虚线框标注的是固定的末端原子, 蓝色虚线框标注的是形成的界面区域

    Fig. 1.  (a)−(c) Inter-diffusion of Li atoms along the Z direction of three a-LiPON/Li(100) interfaces; (d), (e) inter-diffusion of Li atoms along the Z direction of two Li2PO2N(100)/Li(100) interfaces. The gray dotted line indicates the original interface location. The red dotted frames in the structure diagram mark fixed terminal atoms, and the blue dotted frames mark the formed interface areas.

    图 2  (a)−(c)三种a-LiPON/Li(100)界面和(d) a-LiPON在不同高温下Li+的均方位移(MSD); (e) a-LiPON和三种a-LiPON/Li(100)界面体系中温度与Li+扩散系数(DLi)的关系. 图中灰色虚线为300 K对应的位置

    Fig. 2.  (a)−(c) the three a-LiPON /Li(100) and (d) a-LiPON MSD of Li+ at different temperatures, (e) Arrhenius plot of Li diffusivity (DLi) as a function of temperature in a-LiPON and three kinds of a-LiPON/Li (100). The corresponding positions of 300 K are presented by dotted lines.

    图 3  (a) Li2PO2N、(b), (c) Li2PO2N(100)/Li(100)界面在不同高温下的MSD; (d)两种Li2PO2N(100)/Li(100)界面体系中温度与Li+扩散系数(DLi)的关系. 图中灰色虚线为300 K对应的位置

    Fig. 3.  (a) Li2PO2N and (b), (c) Li2PO2N(100)/Li(100) MSD of Li+ at different temperatures. Arrhenius plot of Li diffusivity (DLi) as a function of temperature in two kinds of Li2PO2N(100)/Li(100). The corresponding positions of 300 K are presented by dotted lines.

    图 4  a-LiPON体系中各类原子之间的径向分布函数(RDF)

    Fig. 4.  Radial Distribution Functions of a-LiPON.

    图 5  (a) a-LiPON体系与a-LiPON/Li(100)界面、(b) Li2PO2N(100)/Li(100)界面, 以Li原子为中心的Li[OxNy]局域结构统计图

    Fig. 5.  Statistics of local structures (Li[OxNy]) of (a) a-LiPON and (b) a-LiPON/Li(100) interfaces.

    表 1  a-LiPON、三种a-LiPON/Li(100)界面和两种Li2PO2N(100)/Li(100)界面的室温Li+扩散系数(DLi)与电导率(σLi)

    Table 1.  Li+ diffusion coefficient (DLi) and electrical conductivity (σLi) of a-LiPON, three a-LiPON/Li(100) interfaces and two Li2PO2N(100)/Li(100) interfaces at room temperature.

    StructureDLi/(cm2·s–1)σLi/(S·cm–1)σLi/(S·cm–1) exp.
    a-LiPON2.18×10–95.56×10–51.8×10–6 exp.[30]
    a-Interface-14.67×10–89.69×10–3
    a-Interface-23.44×10–67.14×10–3
    a-Interface-32.23×10–64.63×10–3
    Li2PO2N8.8×10–7 exp.[10]
    c-Interface-11.19×10–83.19×10–3
    c-Interface-23.57×10–87.78×10–3
    下载: 导出CSV

    表 2  LiPON体相与LiPON/Li界面中原子间的平均配位数

    Table 2.  The average coordination number between atoms in LiPON bulk and LiPON/Li interface

    StructureLi-OLi-NP-OP-N
    a-LiPON2.490.502.430.51
    a-LiPON/Li (100)1.750.342.070.42
    Li2PO2N3122
    Li2PO2N (100)/Li (100)1.630.711.041.72
    下载: 导出CSV
    Baidu
  • [1]

    Bates J B, Dudney N J, Gruzalski G R, Zuhr R A, Choudhury A, Luck C F 1992 Solid State Ionics 53 647

    [2]

    Yu X, Bates J B, Jellison G E, Hart F X 1997 J. Electrochem. Soc. 144 524Google Scholar

    [3]

    Le Van-Jodin L, Ducroquet F, Sabary F, Chevalier I 2013 Solid State Ionics 253 151Google Scholar

    [4]

    Zhao S l, Wen J b, Zhu Y m, Qin Q 2008 J. Funct. Mater. 39 91

    [5]

    Nowak S, Berkemeier F, Schmitz G 2015 J. Power Sources 275 144Google Scholar

    [6]

    Kim H T, Mun T, Park C, Jin S W, Park H Y 2013 J. Power Sources 244 641Google Scholar

    [7]

    Nisula M, Shindo Y, Koga H, Karppinen M 2015 Chem. Mater. 27 6987Google Scholar

    [8]

    Du Y A, Holzwarth N A W 2010 Phys. Rev. B 81

    [9]

    Senevirathne K, Day C S, Gross M D, Lachgar A, Holzwarth N A W 2013 Solid State Ionics 233 95Google Scholar

    [10]

    Sagane F, Ikeda K I, Okita K, Sano H, Sakaebe H, Iriyama Y 2013 J. Power Sources 233 34Google Scholar

    [11]

    Schwöbel A, Hausbrand R, Jaegermann W 2015 Solid State Ionics 273 51Google Scholar

    [12]

    Sicolo S, Fingerle M, Hausbrand R, Albe K 2017 J. Power Sources 354 124Google Scholar

    [13]

    Albertus P, Babinec S, Litzelman S, Newman A 2017 Nat. Energy 3 16

    [14]

    Bates J B, Dudney N J, Gruzalski G R, Zuhr R A, Choudhury A, Luck C F 1993 J. Power Sources 43 103Google Scholar

    [15]

    Suzuki N, Inaba T, Shiga T 2012 Thin Solid Films 520 1821Google Scholar

    [16]

    Han F, Westover A S, Yue J, Fan X, Wang F, Chi M, Leonard D N, Dudney N J, Wang H, Wang C 2019 Nat. Energy 4 187Google Scholar

    [17]

    Su Y, Falgenhauer J, Polity A, Leichtweiß T, Kronenberger A, Obel J, Zhou S, Schlettwein D, Janek J, Meyer B K 2015 Solid State Ionics 282 63Google Scholar

    [18]

    Li G, Li M, Dong L, Li X, Li D 2014 Int. J. Hydrogen Energy 39 17466Google Scholar

    [19]

    Le Van-Jodin L, Claudel A, Secouard C, Sabary F, Barnes J P, Martin S 2018 Electrochim. Acta 259 742Google Scholar

    [20]

    Hamon Y, Douard A, Sabary F, Marcel C, Vinatier P, Pecquenard B, Levasseur A 2006 Solid State Ionics 177 257Google Scholar

    [21]

    Tian H K, Xu B, Qi Y 2018 J. Power Sources 392 79Google Scholar

    [22]

    Kresse G, Furthmiiller J 1998 Phys. Rev. B 59 1758

    [23]

    Kresse G, Furthmuller 1996 Comput. Mater. Sci. 6 15Google Scholar

    [24]

    Kresse G, Furthmuller 1996 Phys. Rev. B 54 11169Google Scholar

    [25]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [28]

    Martyna G J, Klein M L, Tuckerman M 1992 J. Chem. Phys. 97 2635Google Scholar

    [29]

    Cheng D, Wynn T A, Wang X, Wang S, Zhang M, Shimizu R, Bai S, Nguyen H, Fang C, Kim M C, Li W, Lu B, Kim S J, Meng Y S 2020 Joule 4 2484Google Scholar

    [30]

    Mani P D, Saraf S, Singh V, Real-Robert M, Vijayakumar A, Duranceau S J, Seal S, Coffey K R 2016 Solid State Ionics 287 48Google Scholar

    [31]

    Larfaillou S, Guy-Bouyssou D, le Cras F, Franger S 2016 J. Power Sources 319 139Google Scholar

  • [1] 刘乔, 黄家宸, 王昊, 邓亚骏. 前进接触线薄液膜结构与运移机制.  , 2024, 73(1): 016801. doi: 10.7498/aps.73.20231296
    [2] 李多多, 张嵩. 五氟吡啶激发态非绝热弛豫过程中的分子结构.  , 2024, 73(4): 043101. doi: 10.7498/aps.73.20231570
    [3] 韩帅, 郭秋卜, 陆雅翔, 陈立泉, 胡勇胜. 低温水系碱金属离子电池的研究进展.  , 2023, 72(7): 070702. doi: 10.7498/aps.72.20230024
    [4] 杨源, 胡乃方, 金永成, 马君, 崔光磊. 富锂正极材料在全固态锂电池中的研究进展.  , 2023, 72(11): 118801. doi: 10.7498/aps.72.20230258
    [5] 曹文卓, 李泉, 王胜彬, 李文俊, 李泓. 金属锂在固态电池中的沉积机理、策略及表征.  , 2020, 69(22): 228204. doi: 10.7498/aps.69.20201293
    [6] 余启鹏, 刘琦, 王自强, 李宝华. 全固态金属锂电池负极界面问题及解决策略.  , 2020, 69(22): 228805. doi: 10.7498/aps.69.20201218
    [7] 郑治秀, 张林. Fe基体中包含Cu团簇的Fe-Cu二元体系在升温过程中结构变化的原子尺度计算.  , 2017, 66(8): 086301. doi: 10.7498/aps.66.086301
    [8] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展.  , 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [9] 袁伟, 彭海波, 杜鑫, 律鹏, 沈扬皓, 赵彦, 陈亮, 王铁山. 分子动力学模拟钠硼硅酸盐玻璃电子辐照诱导的结构演化效应.  , 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [10] 嘉明珍, 王红艳, 陈元正, 马存良. Na+替位掺杂对Li2MnSiO4的电子结构以及Li+迁移过程的影响.  , 2016, 65(5): 057101. doi: 10.7498/aps.65.057101
    [11] 刘华艳, 范悦, 康振锋, 许彦彬, 薄青瑞, 丁铁柱. (Ce0.8Sm0.2O2-/Y2O3:ZrO2)N超晶格电解质薄膜的制备及表征.  , 2015, 64(23): 236801. doi: 10.7498/aps.64.236801
    [12] 徐波, 王树林, 李来强, 李生娟. 固体颗粒的结构演化与机械力化学效应.  , 2012, 61(9): 090201. doi: 10.7498/aps.61.090201
    [13] 王军国, 刘福生, 李永宏, 张明建, 张宁超, 薛学东. 在石英界面处液态水的冲击结构相变.  , 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [14] 吴洋, 段海明. 采用Lennard-Jones原子间势研究(C60)N分子团簇的结构演化行为.  , 2011, 60(7): 076102. doi: 10.7498/aps.60.076102
    [15] 夏庚培, 冯良桓, 蔡亚平, 黎兵, 张静全, 郑家贵, 卢铁城. 氧对于在Ar/O氛围下用近空间升华法制备的CdS薄膜的影响.  , 2009, 58(9): 6465-6470. doi: 10.7498/aps.58.6465
    [16] 刘贵立, 郭玉福, 李荣德. ZA27/CNT界面特性电子理论研究.  , 2007, 56(7): 4075-4078. doi: 10.7498/aps.56.4075
    [17] 唐远河, 解光勇, 刘汉臣, 邵建斌, 马 琦, 刘会平, 宁 辉, 杨 彧, 严成海. 基于粒子成像测速技术的水中气泡界面的光学性质研究.  , 2006, 55(5): 2257-2262. doi: 10.7498/aps.55.2257
    [18] 劳燕锋, 吴惠桢. 直接键合InP-GaAs结构界面的特性研究.  , 2005, 54(9): 4334-4339. doi: 10.7498/aps.54.4334
    [19] 郝万军, 李 畅, 魏英进, 陈 岗, 许 武. Li(AlxCo1-x)O2晶体中Co3+电子态的变化及对结构演化的影响.  , 2003, 52(4): 1023-1027. doi: 10.7498/aps.52.1023
    [20] 赵晓鹏, 高秀敏, 郜丹军, 钟鸿飞. 颗粒质量导致的电流变液结构演化特征.  , 2002, 51(5): 1075-1080. doi: 10.7498/aps.51.1075
计量
  • 文章访问数:  13282
  • PDF下载量:  344
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-28
  • 修回日期:  2021-01-28
  • 上网日期:  2021-07-01
  • 刊出日期:  2021-07-05

/

返回文章
返回
Baidu
map