Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Properties of lithium phosphorus oxynitride (LiPON) solid electrolyte - Li anode interfaces

You Yi-Wei Cui Jian-Wen Zhang Xiao-Feng Zheng Feng Wu Shun-Qing Zhu Zi-Zhong

Citation:

Properties of lithium phosphorus oxynitride (LiPON) solid electrolyte - Li anode interfaces

You Yi-Wei, Cui Jian-Wen, Zhang Xiao-Feng, Zheng Feng, Wu Shun-Qing, Zhu Zi-Zhong
PDF
HTML
Get Citation
  • In recent years, all-solid-state thin-film batteries have been used to power low-energy devices such as microchips, smart cards, microelectromechanical systems, wireless sensors, and implantable medical devices. All-solid-state thin-film batteries have become an important research direction of rechargeable solid-state batteries (SSBs). However, the solid-solid interface between electrodes and electrolytes seriously affects the further improvement of battery performance, which has attracted extensive attention. Lithium phosphorus oxynitride (LiPON) was found to be a useful inorganic electrolyte in lithium batteries because of its favorable electrochemical properties. For instance, LiPON has good electrical and chemical stability, negligible electronic conductivity and excellent cyclability as well as ease of integration with thin film battery with an electrochemical stability window. The LiPON can present two states, i.e. amorphous state and crystalline state. Here, we adopt ab initio molecular dynamics to study amorphous-LiPON/Li(100) interface and crystalline-Li2PO2N(100)/Li(100) interface. Our results demonstrate that the atomic inter-diffusion occurs in the interfacial region, forming a thin interfacial layer, and the ionic conductivity is increased after the interface layer has formed. Meanwhile, comparing with the Lipon bulk phase structure, the proportion of Li[O2N2], Li[O3N], and Li[O4] tetrahedral local structure in the interface layer with Li atom as the center decrease obviously, and the average coordination number of Li-O, Li-N, P-O, and P-N in the interfacial layers also decrease in the LiPON/Li interface. Due to the change of structure and coordination number at the interface, the ionic bonds between Li and O, N are weaker, which explains the increase of ionic conductivity at the LiPON/Li interface. Previous experiments showed that element interdiffusion occurs at the LiPON/Li interface and the interface layer is formed, and found that the decrease in impedance of the interface layer can confirm that the ionic conductivity of the interface layer indeed increases. In addition, the tetrahedral structure of the interface layer will be decomposed into other smaller structures. Our computational results are consistent with the previous experimental results, which indicates the rationality and reliability of our conclusion. This feature plays a positive role in promoting the performance of LiPON electrolytes in practical battery applications.
      Corresponding author: Wu Shun-Qing, wsq@xmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11874307) and the National Key R&D Program of China (Grant Nos. 2016YFA0202601, 2016YFB0901502)
    [1]

    Bates J B, Dudney N J, Gruzalski G R, Zuhr R A, Choudhury A, Luck C F 1992 Solid State Ionics 53 647

    [2]

    Yu X, Bates J B, Jellison G E, Hart F X 1997 J. Electrochem. Soc. 144 524Google Scholar

    [3]

    Le Van-Jodin L, Ducroquet F, Sabary F, Chevalier I 2013 Solid State Ionics 253 151Google Scholar

    [4]

    Zhao S l, Wen J b, Zhu Y m, Qin Q 2008 J. Funct. Mater. 39 91

    [5]

    Nowak S, Berkemeier F, Schmitz G 2015 J. Power Sources 275 144Google Scholar

    [6]

    Kim H T, Mun T, Park C, Jin S W, Park H Y 2013 J. Power Sources 244 641Google Scholar

    [7]

    Nisula M, Shindo Y, Koga H, Karppinen M 2015 Chem. Mater. 27 6987Google Scholar

    [8]

    Du Y A, Holzwarth N A W 2010 Phys. Rev. B 81

    [9]

    Senevirathne K, Day C S, Gross M D, Lachgar A, Holzwarth N A W 2013 Solid State Ionics 233 95Google Scholar

    [10]

    Sagane F, Ikeda K I, Okita K, Sano H, Sakaebe H, Iriyama Y 2013 J. Power Sources 233 34Google Scholar

    [11]

    Schwöbel A, Hausbrand R, Jaegermann W 2015 Solid State Ionics 273 51Google Scholar

    [12]

    Sicolo S, Fingerle M, Hausbrand R, Albe K 2017 J. Power Sources 354 124Google Scholar

    [13]

    Albertus P, Babinec S, Litzelman S, Newman A 2017 Nat. Energy 3 16

    [14]

    Bates J B, Dudney N J, Gruzalski G R, Zuhr R A, Choudhury A, Luck C F 1993 J. Power Sources 43 103Google Scholar

    [15]

    Suzuki N, Inaba T, Shiga T 2012 Thin Solid Films 520 1821Google Scholar

    [16]

    Han F, Westover A S, Yue J, Fan X, Wang F, Chi M, Leonard D N, Dudney N J, Wang H, Wang C 2019 Nat. Energy 4 187Google Scholar

    [17]

    Su Y, Falgenhauer J, Polity A, Leichtweiß T, Kronenberger A, Obel J, Zhou S, Schlettwein D, Janek J, Meyer B K 2015 Solid State Ionics 282 63Google Scholar

    [18]

    Li G, Li M, Dong L, Li X, Li D 2014 Int. J. Hydrogen Energy 39 17466Google Scholar

    [19]

    Le Van-Jodin L, Claudel A, Secouard C, Sabary F, Barnes J P, Martin S 2018 Electrochim. Acta 259 742Google Scholar

    [20]

    Hamon Y, Douard A, Sabary F, Marcel C, Vinatier P, Pecquenard B, Levasseur A 2006 Solid State Ionics 177 257Google Scholar

    [21]

    Tian H K, Xu B, Qi Y 2018 J. Power Sources 392 79Google Scholar

    [22]

    Kresse G, Furthmiiller J 1998 Phys. Rev. B 59 1758

    [23]

    Kresse G, Furthmuller 1996 Comput. Mater. Sci. 6 15Google Scholar

    [24]

    Kresse G, Furthmuller 1996 Phys. Rev. B 54 11169Google Scholar

    [25]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [28]

    Martyna G J, Klein M L, Tuckerman M 1992 J. Chem. Phys. 97 2635Google Scholar

    [29]

    Cheng D, Wynn T A, Wang X, Wang S, Zhang M, Shimizu R, Bai S, Nguyen H, Fang C, Kim M C, Li W, Lu B, Kim S J, Meng Y S 2020 Joule 4 2484Google Scholar

    [30]

    Mani P D, Saraf S, Singh V, Real-Robert M, Vijayakumar A, Duranceau S J, Seal S, Coffey K R 2016 Solid State Ionics 287 48Google Scholar

    [31]

    Larfaillou S, Guy-Bouyssou D, le Cras F, Franger S 2016 J. Power Sources 319 139Google Scholar

  • 图 1  (a)−(c) 三种a-LiPON/Li(100)界面沿Z方向的Li原子互扩散图; (d), (e) 两种Li2PO2N(100)/Li(100)界面沿Z方向的Li原子互扩散图. 灰色虚线表示原始的界面位置. 结构图中的红色虚线框标注的是固定的末端原子, 蓝色虚线框标注的是形成的界面区域

    Figure 1.  (a)−(c) Inter-diffusion of Li atoms along the Z direction of three a-LiPON/Li(100) interfaces; (d), (e) inter-diffusion of Li atoms along the Z direction of two Li2PO2N(100)/Li(100) interfaces. The gray dotted line indicates the original interface location. The red dotted frames in the structure diagram mark fixed terminal atoms, and the blue dotted frames mark the formed interface areas.

    图 2  (a)−(c)三种a-LiPON/Li(100)界面和(d) a-LiPON在不同高温下Li+的均方位移(MSD); (e) a-LiPON和三种a-LiPON/Li(100)界面体系中温度与Li+扩散系数(DLi)的关系. 图中灰色虚线为300 K对应的位置

    Figure 2.  (a)−(c) the three a-LiPON /Li(100) and (d) a-LiPON MSD of Li+ at different temperatures, (e) Arrhenius plot of Li diffusivity (DLi) as a function of temperature in a-LiPON and three kinds of a-LiPON/Li (100). The corresponding positions of 300 K are presented by dotted lines.

    图 3  (a) Li2PO2N、(b), (c) Li2PO2N(100)/Li(100)界面在不同高温下的MSD; (d)两种Li2PO2N(100)/Li(100)界面体系中温度与Li+扩散系数(DLi)的关系. 图中灰色虚线为300 K对应的位置

    Figure 3.  (a) Li2PO2N and (b), (c) Li2PO2N(100)/Li(100) MSD of Li+ at different temperatures. Arrhenius plot of Li diffusivity (DLi) as a function of temperature in two kinds of Li2PO2N(100)/Li(100). The corresponding positions of 300 K are presented by dotted lines.

    图 4  a-LiPON体系中各类原子之间的径向分布函数(RDF)

    Figure 4.  Radial Distribution Functions of a-LiPON.

    图 5  (a) a-LiPON体系与a-LiPON/Li(100)界面、(b) Li2PO2N(100)/Li(100)界面, 以Li原子为中心的Li[OxNy]局域结构统计图

    Figure 5.  Statistics of local structures (Li[OxNy]) of (a) a-LiPON and (b) a-LiPON/Li(100) interfaces.

    表 1  a-LiPON、三种a-LiPON/Li(100)界面和两种Li2PO2N(100)/Li(100)界面的室温Li+扩散系数(DLi)与电导率(σLi)

    Table 1.  Li+ diffusion coefficient (DLi) and electrical conductivity (σLi) of a-LiPON, three a-LiPON/Li(100) interfaces and two Li2PO2N(100)/Li(100) interfaces at room temperature.

    StructureDLi/(cm2·s–1)σLi/(S·cm–1)σLi/(S·cm–1) exp.
    a-LiPON2.18×10–95.56×10–51.8×10–6 exp.[30]
    a-Interface-14.67×10–89.69×10–3
    a-Interface-23.44×10–67.14×10–3
    a-Interface-32.23×10–64.63×10–3
    Li2PO2N8.8×10–7 exp.[10]
    c-Interface-11.19×10–83.19×10–3
    c-Interface-23.57×10–87.78×10–3
    DownLoad: CSV

    表 2  LiPON体相与LiPON/Li界面中原子间的平均配位数

    Table 2.  The average coordination number between atoms in LiPON bulk and LiPON/Li interface

    StructureLi-OLi-NP-OP-N
    a-LiPON2.490.502.430.51
    a-LiPON/Li (100)1.750.342.070.42
    Li2PO2N3122
    Li2PO2N (100)/Li (100)1.630.711.041.72
    DownLoad: CSV
    Baidu
  • [1]

    Bates J B, Dudney N J, Gruzalski G R, Zuhr R A, Choudhury A, Luck C F 1992 Solid State Ionics 53 647

    [2]

    Yu X, Bates J B, Jellison G E, Hart F X 1997 J. Electrochem. Soc. 144 524Google Scholar

    [3]

    Le Van-Jodin L, Ducroquet F, Sabary F, Chevalier I 2013 Solid State Ionics 253 151Google Scholar

    [4]

    Zhao S l, Wen J b, Zhu Y m, Qin Q 2008 J. Funct. Mater. 39 91

    [5]

    Nowak S, Berkemeier F, Schmitz G 2015 J. Power Sources 275 144Google Scholar

    [6]

    Kim H T, Mun T, Park C, Jin S W, Park H Y 2013 J. Power Sources 244 641Google Scholar

    [7]

    Nisula M, Shindo Y, Koga H, Karppinen M 2015 Chem. Mater. 27 6987Google Scholar

    [8]

    Du Y A, Holzwarth N A W 2010 Phys. Rev. B 81

    [9]

    Senevirathne K, Day C S, Gross M D, Lachgar A, Holzwarth N A W 2013 Solid State Ionics 233 95Google Scholar

    [10]

    Sagane F, Ikeda K I, Okita K, Sano H, Sakaebe H, Iriyama Y 2013 J. Power Sources 233 34Google Scholar

    [11]

    Schwöbel A, Hausbrand R, Jaegermann W 2015 Solid State Ionics 273 51Google Scholar

    [12]

    Sicolo S, Fingerle M, Hausbrand R, Albe K 2017 J. Power Sources 354 124Google Scholar

    [13]

    Albertus P, Babinec S, Litzelman S, Newman A 2017 Nat. Energy 3 16

    [14]

    Bates J B, Dudney N J, Gruzalski G R, Zuhr R A, Choudhury A, Luck C F 1993 J. Power Sources 43 103Google Scholar

    [15]

    Suzuki N, Inaba T, Shiga T 2012 Thin Solid Films 520 1821Google Scholar

    [16]

    Han F, Westover A S, Yue J, Fan X, Wang F, Chi M, Leonard D N, Dudney N J, Wang H, Wang C 2019 Nat. Energy 4 187Google Scholar

    [17]

    Su Y, Falgenhauer J, Polity A, Leichtweiß T, Kronenberger A, Obel J, Zhou S, Schlettwein D, Janek J, Meyer B K 2015 Solid State Ionics 282 63Google Scholar

    [18]

    Li G, Li M, Dong L, Li X, Li D 2014 Int. J. Hydrogen Energy 39 17466Google Scholar

    [19]

    Le Van-Jodin L, Claudel A, Secouard C, Sabary F, Barnes J P, Martin S 2018 Electrochim. Acta 259 742Google Scholar

    [20]

    Hamon Y, Douard A, Sabary F, Marcel C, Vinatier P, Pecquenard B, Levasseur A 2006 Solid State Ionics 177 257Google Scholar

    [21]

    Tian H K, Xu B, Qi Y 2018 J. Power Sources 392 79Google Scholar

    [22]

    Kresse G, Furthmiiller J 1998 Phys. Rev. B 59 1758

    [23]

    Kresse G, Furthmuller 1996 Comput. Mater. Sci. 6 15Google Scholar

    [24]

    Kresse G, Furthmuller 1996 Phys. Rev. B 54 11169Google Scholar

    [25]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [28]

    Martyna G J, Klein M L, Tuckerman M 1992 J. Chem. Phys. 97 2635Google Scholar

    [29]

    Cheng D, Wynn T A, Wang X, Wang S, Zhang M, Shimizu R, Bai S, Nguyen H, Fang C, Kim M C, Li W, Lu B, Kim S J, Meng Y S 2020 Joule 4 2484Google Scholar

    [30]

    Mani P D, Saraf S, Singh V, Real-Robert M, Vijayakumar A, Duranceau S J, Seal S, Coffey K R 2016 Solid State Ionics 287 48Google Scholar

    [31]

    Larfaillou S, Guy-Bouyssou D, le Cras F, Franger S 2016 J. Power Sources 319 139Google Scholar

  • [1] Liu Qiao, Huang Jia-Chen, Wang Hao, Deng Ya-Jun. Structure and migration mechanism of thin liquid film in vicinity of advancing contact line. Acta Physica Sinica, 2024, 73(1): 016801. doi: 10.7498/aps.73.20231296
    [2] Li Duo-Duo, Zhang Song. Molecular structures in the non-adiabatic relaxaiton processes of excited states of pentafluoropyridine. Acta Physica Sinica, 2024, 73(4): 043101. doi: 10.7498/aps.73.20231570
    [3] Han Shuai, Guo Qiu-Bo, Lu Ya-Xiang, Chen Li-Quan, Hu Yong-Sheng. Recent progress in aqueous akali-metal-ion batteries at low temperatures. Acta Physica Sinica, 2023, 72(7): 070702. doi: 10.7498/aps.72.20230024
    [4] Yang Yuan, Hu Nai-Fang, Jin Yong-Cheng, Ma Jun, Cui Guang-Lei. Research advance of lithium-rich cathode materials in all-solid-state lithium batteries. Acta Physica Sinica, 2023, 72(11): 118801. doi: 10.7498/aps.72.20230258
    [5] Cao Wen-Zhuo, Li Quan, Wang Sheng-Bin, Li Wen-Jun, Li Hong. Mechanism, strategies, and characterizations of Li plating in solid state batteries. Acta Physica Sinica, 2020, 69(22): 228204. doi: 10.7498/aps.69.20201293
    [6] Yu Qi-Peng, Liu Qi, Wang Zi-Qiang, Li Bao-Hua. Anode interface in all-solid-state lithium-metal batteries: Challenges and strategies. Acta Physica Sinica, 2020, 69(22): 228805. doi: 10.7498/aps.69.20201218
    [7] Zheng Zhi-Xiu, Zhang Lin. Atomic-scale simulation study of structural changes of Fe-Cu binary system containing Cu clusters embedded in the Fe matrix during heating. Acta Physica Sinica, 2017, 66(8): 086301. doi: 10.7498/aps.66.086301
    [8] Feng Tao, Horst Hahn, Herbert Gleiter. Progress of nanostructured metallic glasses. Acta Physica Sinica, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [9] Yuan Wei, Peng Hai-Bo, Du Xin, Lü Peng, Shen Yang-Hao, Zhao Yan, Chen Liang, Wang Tie-Shan. Structure evalution of electron irradiated borosilicate glass simuluated by molecular dynamics. Acta Physica Sinica, 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [10] Jia Ming-Zhen, Wang Hong-Yan, Chen Yuan-Zheng, Ma Cun-Liang. Effect of Na substitution on the electronic structure and ion diffusion in Li2MnSiO4. Acta Physica Sinica, 2016, 65(5): 057101. doi: 10.7498/aps.65.057101
    [11] Liu Hua-Yan, Fan Yue, Kang Zhen-Feng, Xu Yan-Bin, Bo Qing-Rui, Ding Tie-Zhu. Preparation and characterization of the superlattice (Sm-doped ceria/yttria-stabilized zirconia)N electrolyte film. Acta Physica Sinica, 2015, 64(23): 236801. doi: 10.7498/aps.64.236801
    [12] Xu Bo, Wang Shu-Lin, Li Lai-Qiang, Li Sheng-Juan. Structure evolvement of solid particles and mechano-chemical effect. Acta Physica Sinica, 2012, 61(9): 090201. doi: 10.7498/aps.61.090201
    [13] Wang Jun-Guo, Liu Fu-Sheng, Li Yong-Hong, Zhang Ming-Jian, Zhang Ning-Chao, Xue Xue-Dong. The structural transition of water at quartz/water interfaces under shock compression in phase region of liquid. Acta Physica Sinica, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [14] Wu Yang, Duan Hai-Ming. Study of structure evolution of (C60)N clusters usingLennard-Jones atom-atom potential. Acta Physica Sinica, 2011, 60(7): 076102. doi: 10.7498/aps.60.076102
    [15] Xia Geng-Pei, Feng Liang-Huan, Cai Ya-Ping, Li Bing, Zhang Jing-Quan, Zheng Jia-Gui, Lu Tie-Cheng. Effect of oxygen on CdS polycrystalline thin films prepared in ambient of Ar and O2 by close spaced sublimation technology. Acta Physica Sinica, 2009, 58(9): 6465-6470. doi: 10.7498/aps.58.6465
    [16] Liu Gui-Li, Guo Yu-Fu, Li Rong-De. Electronic theory of interface characteristics of ZA27/CNT. Acta Physica Sinica, 2007, 56(7): 4075-4078. doi: 10.7498/aps.56.4075
    [17] Tang Yuan-He, Xie Guang-Yong, Liu Han-Chen, Shao Jian-Bin, Ma Qi, Liu Hui-Ping, Ning Hui, Yang Yu, Yan Cheng-Hai. Study of the interface optical property of bubbles in water based on PIV. Acta Physica Sinica, 2006, 55(5): 2257-2262. doi: 10.7498/aps.55.2257
    [18] Lao Yan-Feng, Wu Hui-Zhen. Study on infrared absorption of interfaces in direct wafer bonded InP-GaAs structures. Acta Physica Sinica, 2005, 54(9): 4334-4339. doi: 10.7498/aps.54.4334
    [19] Hao Wan-Jun, Li Chang, Wei Ying-Jin, Chen Gang, Xu Wu. Transformation of electronic state of Co3+ and its influence on the structural development in Li(AlxCo1-x)O2. Acta Physica Sinica, 2003, 52(4): 1023-1027. doi: 10.7498/aps.52.1023
    [20] Zhao Xiao-Peng, Gao Xiu-Min, Gao Dan-Jun, Zhong Hong-Fei. . Acta Physica Sinica, 2002, 51(5): 1075-1080. doi: 10.7498/aps.51.1075
Metrics
  • Abstract views:  13286
  • PDF Downloads:  344
  • Cited By: 0
Publishing process
  • Received Date:  28 December 2020
  • Accepted Date:  28 January 2021
  • Available Online:  01 July 2021
  • Published Online:  05 July 2021

/

返回文章
返回
Baidu
map