搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位表征技术在全固态锂电池中的应用

陆敬予 柯承志 龚正良 李德平 慈立杰 张力 张桥保

引用本文:
Citation:

原位表征技术在全固态锂电池中的应用

陆敬予, 柯承志, 龚正良, 李德平, 慈立杰, 张力, 张桥保

Application of in-situ characterization techniques in all-solid-state lithium batteries

Lu Jing-Yu, Ke Cheng-Zhi, Gong Zheng-Liang, Li De-Ping, Ci Li-Jie, Zhang Li, Zhang Qiao-Bao
PDF
HTML
导出引用
  • 近年来, 可移动消费电子与电动汽车等产业发展迅速, 迫切需要发展高能量密度与高安全稳定性的锂电池, 以提高这些设备的长续航与长期稳定运行的能力. 这使得全固态锂电池极具潜力, 并获得迅速发展. 然而, 高性能全固态锂电池的发展需要对其充放电机制与性能衰减机理等有深入的认识, 对电池内部及界面的微观结构、物相组成、化学成分及局域化学环境等动态演变规律有系统深入的理解. 基于此, 本文总结归纳了典型原位表征技术, 包括原位显微技术 (原位扫描电子显微镜 (SEM), 原位透射电子显微镜 (TEM))、原位X射线技术 (原位X射线衍射 (XRD)、原位X射线光电子能谱 (XPS)、原位近边结构X射线吸收光谱 (XANES)、原位X射线层析成像等)、原位中子技术 (原位中子衍射 (ND)、原位中子深度剖析 (NDP))以及原位波谱技术 (原位拉曼光谱、原位核磁共振 (NMR)与原位核磁共振成像 (MRI)) 等的基本原理、功能、及其应用于研究固态锂电池中电极材料与界面在服役状态下、真实电化学过程中的动态过程与失效机制的代表性研究进展, 并对未来先进原位表征技术在全固态锂电池研究中的应用进行了探讨和展望.
    In recent years, mobile consumer electronics and electric vehicles have been developing rapidly, and they have been hunting for lithium batteries with high energy density, high safety and stability, to alleviate the range anxiety and improve their stability over long term operations. These make all-solid-state lithium batteries very attractive and they have been under intense investigations. However, the development of high-performance all-solid-state lithium batteries requires an in-depth understanding of their charge and discharge mechanism, their degradation process, along with the evolution of the microstructures, phase compositions, chemical states and their distributions, etc., inside the battery and at the interface. This paper summarizes the basic principles, functions, and the representative advances in investigation of the dynamics and failure mechanism of electrode materials and interfaces in solid-state lithium batteries under working conditions, with typical in-situ characterization techniques, including in-situ microscopy (in-situ scanning electron microscopy (SEM), in-situ transmission electron microscopy (TEM)), in-situ X-ray techniques (in-situ X-ray diffraction (XRD)), in-situ X-ray photoelectron spectroscopy (XPS), in-situ near-edge structure X-ray absorption spectroscopy (XANES), in-situ X-ray tomography), in-situ neutron techniques (in-situ neutron diffraction (ND), in-situ neutron depth profiling (NDP)) and in-situ spectroscopies (in-situ Raman spectroscopy, in-situ nuclear magnetic resonance (NMR) and in-situ nuclear magnetic resonance imaging (MRI)), etc. We also discussed the application of future advanced in-situ characterization techniques in the investigation of all-solid-state lithium batteries.
      通信作者: 李德平, lideping@hit.edu.cn ; 慈立杰, cilijie@hit.edu.cn ; 张桥保, zhangqiaobao@xmu.edu.cn
    • 基金项目: 哈尔滨工业大学(深圳)科研启动经费 (批准号: DD29100027, DD45001022, 校20210028)、深圳市稳定支持计划 (批准号: GXWD20201230155427003-20200824103000001)和国家自然科学基金 (批准号: 52002094, 52122211, 52072323, 21935009, 21875196)资助的课题
      Corresponding author: Li De-Ping, lideping@hit.edu.cn ; Ci Li-Jie, cilijie@hit.edu.cn ; Zhang Qiao-Bao, zhangqiaobao@xmu.edu.cn
    • Funds: Project supported by the Scientific Research Starting Foundation of Harbin Institute of Technology (Shenzhen), China (Grant Nos. DD29100027, DD45001022, University 20210028), the Shenzhen Steady Support Plan (Grant No. GXWD20201230155427003-20200824103000001), and the National Natural Science Foundation of China (Grant Nos. 52002094, 52122211, 52072323, 21935009, 21875196)
    [1]

    An W, Gao B, Mei S, Xiang B, Fu J, Wang L, Zhang Q, Chu P K, Huo K 2019 Nat. Commun. 10 1447Google Scholar

    [2]

    Lu J Y, Xu C 2020 Chem 6 3165Google Scholar

    [3]

    Manthiram A, Yu X, Wang S 2017 Nat. Rev. Mater. 2 16103Google Scholar

    [4]

    Randau S, Weber D A, Kötz O, Koerver R, Braun P, Weber A, Ivers-Tiffée E, Adermann T, Kulisch J, Zeier W G, Richter F H, Janek J 2020 Nat. Energy 5 259Google Scholar

    [5]

    Zuo J H, Gong Y J 2020 Tungsten 2 134Google Scholar

    [6]

    Zhao C, Xu G L, Yu Z, Zhang L, Hwang I, Mo Y X, Ren Y, Cheng L, Sun C J, Ren Y, Zuo X, Li J T, Sun S G, Amine K, Zhao T 2021 Nat. Nanotechnol. 16 166Google Scholar

    [7]

    Cao Z J, Zhang Y Z, Cui Y L S, Li B, Yang S B 2020 Tungsten 2 162Google Scholar

    [8]

    Lu J, Dey S, Temprano I, Jin Y, Xu C, Shao Y, Grey C P 2020 ACS Energy Lett. 5 3681Google Scholar

    [9]

    Liu T, Vivek J P, Zhao E W, Lei J, Garcia-Araez N, Grey C P 2020 Chem. Rev. 120 6558Google Scholar

    [10]

    Guo H, Hou G, Dai L, Yao Y, Wei C, Liang Z, Si P, Ci L 2020 J. Phys. Chem. Lett. 11 172Google Scholar

    [11]

    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R 2016 Nat. Energy 1 16030Google Scholar

    [12]

    Zhou L, Park K H, Sun X, Lalère F, Adermann T, Hartmann P, Nazar L F 2019 ACS Energy Lett. 4 265Google Scholar

    [13]

    Ji X, Hou S, Wang P, He X, Piao N, Chen J, Fan X, Wang C 2020 Adv. Mater. 32 2002741Google Scholar

    [14]

    Zhao Q, Stalin S, Zhao C Z, Archer L A 2020 Nat. Rev. Mater. 5 229Google Scholar

    [15]

    Xu L, Li J, Deng W, Shuai H, Li S, Xu Z, Li J, Hou H, Peng H, Zou G, Ji X 2021 Adv. Energy Mater. 11 2000648Google Scholar

    [16]

    Lilu Liu, Fan Wu, Hong Li, Chen L 2019 J. Chin. Ceramic Soc. 47 1367

    [17]

    Chung H, Kang B 2017 Chem. Mater. 29 8611Google Scholar

    [18]

    Han F, Zhu Y, He X, Mo Y, Wang C 2016 Adv. Energy Mater. 6 1501590Google Scholar

    [19]

    Zhang S N, Zeng Z, Zhai W, Hou G M, Chen L N, Ci L J 2021 Adv. Mater. Interfaces. 8 2100072Google Scholar

    [20]

    拱越, 谷林 2020 69 226801Google Scholar

    Gong Y, Gu L 2020 Acta Phys. Sin. 69 226801Google Scholar

    [21]

    冯吴亮, 王飞, 周星, 吉晓, 韩福东, 王春生 2020 69 228206Google Scholar

    Feng W L, Wang F, Zhou X, Ji X, Han F D, Wang C S 2020 Acta Phys. Sin. 69 228206Google Scholar

    [22]

    Banerjee A, Wang X, Fang C, Wu E A, Meng Y S 2020 Chem. Rev. 120 6878Google Scholar

    [23]

    Symington A R, Molinari M, Dawson J A, Statham J M, Purton J, Canepa P, Parker S C 2021 J. Mater. Chem. A 9 6487Google Scholar

    [24]

    Grey C P, Tarascon J M 2017 Nat. Mater. 16 45Google Scholar

    [25]

    Cheng Y, Zhang L, Zhang Q, Li J, Tang Y, Delmas C, Zhu T, Winter M, Wang M S, Huang J 2021 Mater. Today 42 137Google Scholar

    [26]

    Li W, Lutz D M, Wang L, Takeuchi K J, Marschilok A C, Takeuchi E S 2021 Joule 5 77Google Scholar

    [27]

    李文俊, 郑杰允, 谷林, 李泓 2015 电化学 21 99

    Li W J, Zheng J Y, Gu L, Li H 2015 J. Electrochem. 21 99

    [28]

    潘弘毅, 禹习谦, 李泓, 李泉 2021 物理化学学报 37 2008090

    Pan H Y, Yu X Q, Li H, Li Q 2021 Acta Phys. Sin. 37 2008090

    [29]

    Romanenko K, Jin L, Howlett P, Forsyth M 2016 Chem. Mater. 28 2844Google Scholar

    [30]

    Ishikawa R, Jimbo Y, Terao M, Nishikawa M, Ueno Y, Morishita S, Mukai M, Shibata N, Ikuhara Y 2020 Microscopy 69 240Google Scholar

    [31]

    Hou P, Chu G, Gao J, Zhang Y, Zhang L 2016 Chin. Phys. B 25 016104Google Scholar

    [32]

    余启鹏, 刘琦, 王自强, 李宝华 2020 69 228805Google Scholar

    Yu Q P, Liu Q, Wang Z Q, Li B H 2020 Acta Phys. Sin. 69 228805Google Scholar

    [33]

    曹文卓, 李泉, 王胜彬, 李文俊, 李泓 2020 69 228204Google Scholar

    Cao W Z, Li Q, Wang S B, Li W J, Li H 2020 Acta Phys. Sin. 69 228204Google Scholar

    [34]

    Sagane F, Shimokawa R, Sano H, Sakaebe H, Iriyama Y 2013 J. Power Sources 225 245Google Scholar

    [35]

    Motoyama M, Ejiri M, Iriyama Y 2015 J. Electrochem. Soc. 162 A7067Google Scholar

    [36]

    Zheng H, Xiao D, Li X, Liu Y, Wu Y, Wang J, Jiang K, Chen C, Gu L, Wei X, Hu Y S, Chen Q, Li H 2014 Nano Lett. 14 4245Google Scholar

    [37]

    柯承志, 肖本胜, 李苗, 陆敬予, 何洋, 张力, 张桥保 2021 储能科学与技术 10 1219Google Scholar

    Ke C Z, Xiao B S, Li M, Lu J Y, He Y, Zhang L, Zhang Q B 2021 Energy Storage Sci. Technol. 10 1219Google Scholar

    [38]

    Nomura Y, Yamamoto K, Fujii M, Hirayama T, Igaki E, Saitoh K 2020 Nat. Commun. 11 2824Google Scholar

    [39]

    Zhu J, Zhao J, Xiang Y, Lin M, Wang H, Zheng B, He H, Wu Q, Huang J Y, Yang Y 2020 Chem. Mater. 32 4998Google Scholar

    [40]

    梁宇皓, 范丽珍 2020 69 226201Google Scholar

    Liang Y H, Fan L Z 2020 Acta Phys. Sin. 69 226201Google Scholar

    [41]

    Zhang L, Yang T, Du C, Liu Q, Tang Y, Zhao J, Wang B, Chen T, Sun Y, Jia P, Li H, Geng L, Chen J, Ye H, Wang Z, Li Y, Sun H, Li X, Dai Q, Tang Y, Peng Q, Shen T, Zhang S, Zhu T, Huang J 2020 Nat. Nanotechnol. 15 94

    [42]

    Wang Z, Tang Y, Zhang L, Li M, Shan Z, Huang J 2020 Small 16 2001899

    [43]

    Lu P, Yan P, Romero E, Spoerke E D, Zhang J G, Wang C M 2015 Chem. Mater. 27 1375Google Scholar

    [44]

    Lin F, Markus I M, Doeff M M, Xin H L 2014 Sci. Rep. 4 5694

    [45]

    Shim J H, Kang H, Lee S, Kim Y M 2021 J. Mater. Chem. A 9 2429Google Scholar

    [46]

    Wang X, Li Y, Meng Y S 2018 Joule 2 2225Google Scholar

    [47]

    Li Y, Li Y, Pei A, Yan K, Sun Y, Wu C L, Joubert L M, Chin R, Koh A L, Yu Y, Perrino J, Butz B, Chu S, Cui Y 2017 Science 358 506Google Scholar

    [48]

    Llewellyn A V, Matruglio A, Brett D J L, Jervis R, Shearing P R 2020 Condens. Matter 5 75Google Scholar

    [49]

    Xu C, Märker K, Lee J, Mahadevegowda A, Reeves P J, Day S J, Groh M F, Emge S P, Ducati C, Layla Mehdi B, Tang C C, Grey C P 2021 Nat. Mater. 20 84Google Scholar

    [50]

    Bak S M, Hu E, Zhou Y, Yu X, Senanayake S D, Cho S J, Kim K B, Chung K Y, Yang X Q, Nam K W 2014 ACS Appl. Mater. Interfaces 6 22594Google Scholar

    [51]

    Safanama D, Sharma N, Rao R P, Brand H E A, Adams S 2016 J. Mater. Chem. A 4 7718Google Scholar

    [52]

    Li W, Liang J, Li M, Adair K R, Li X, Hu Y, Xiao Q, Feng R, Li R, Zhang L, Lu S, Huang H, Zhao S, Sham T K, Sun X 2020 Chem. Mater. 32 7019Google Scholar

    [53]

    Bartsch T, Kim A Y, Strauss F, de Biasi L, Teo J H, Janek J, Hartmann P, Brezesinski T 2019 Chem. Commun. 55 11223Google Scholar

    [54]

    Goonetilleke D, Sharma N, Kimpton J, Galipaud J, Pecquenard B, Le Cras F 2018 Front. Energy Res. 6 64Google Scholar

    [55]

    刘丽露, 吴凡, 李泓, 陈立泉 2019 硅酸盐学报 47 1367

    Liu L L, Wu F, Li H, Chen L Q 2019 J. Chin. Ceram. Soc. 47 1367

    [56]

    张桥保, 龚正良, 杨勇 2020 69 228803Google Scholar

    Zhang Q B, Gong Z L, Yang Y 2020 Acta Phys. Sin. 69 228803Google Scholar

    [57]

    Wenzel S, Randau S, Leichtweiß T, Weber D A, Sann J, Zeier W G, Janek J 2016 Chem. Mater. 28 2400Google Scholar

    [58]

    Wenzel S, Weber D A, Leichtweiss T, Busche M R, Sann J, Janek J 2016 Solid State Ionics 286 24Google Scholar

    [59]

    Wu J, Liu S, Han F, Yao X, Wang C 2021 Adv. Mater. 33 2000751Google Scholar

    [60]

    Endo R, Ohnishi T, Takada K, Masuda T 2020 J. Phys. Chem. Lett. 11 6649Google Scholar

    [61]

    张念, 任国玺, 章辉, 周櫈, 刘啸嵩 2020 69 228806Google Scholar

    Zhang N, Ren G X, Zhang H, Zhou D, Liu X G 2020 Acta Phys. Sin. 69 228806Google Scholar

    [62]

    蔡明俐, 姚柳, 靳俊, 温兆银 2021 物理化学学报 37 2009006

    Cai L, Yao L, Qi J, Wen Z 2021 Acta Phys. -Chim. Sin. 37 2009006

    [63]

    赵宁, 穆爽, 郭向欣 2020 69 228804Google Scholar

    Zhao N, Mu S, Guo X X 2020 Acta Phys. Sin. 69 228804Google Scholar

    [64]

    Connell J G, Fuchs T, Hartmann H, Krauskopf T, Zhu Y, Sann J, Garcia-Mendez R, Sakamoto J, Tepavcevic S, Janek J 2020 Chem. Mater. 32 10207Google Scholar

    [65]

    Liu Z, Li G, Borodin A, Liu X, Li Y, Endres F 2019 J. Solid State Electrochem. 23 2107Google Scholar

    [66]

    Li X, Ren Z, Norouzi Banis M, Deng S, Zhao Y, Sun Q, Wang C, Yang X, Li W, Liang J, Li X, Sun Y, Adair K, Li R, Hu Y, Sham T K, Huang H, Zhang L, Lu S, Luo J, Sun X 2019 ACS Energy Lett. 4 2480Google Scholar

    [67]

    Gonzalez Malabet H J, Juarez Robles D, de Andrade V, Mukherjee P P, Nelson G J 2020 J. Electrochem. Soc. 167 40523Google Scholar

    [68]

    Lou S, Liu Q, Zhang F, Liu Q, Yu Z, Mu T, Zhao Y, Borovilas J, Chen Y, Ge M, Xiao X, Lee W K, Yin G, Yang Y, Sun X, Wang J 2020 Nat. Commun. 11 5700Google Scholar

    [69]

    Wood V 2018 Nat. Rev. Mater. 3 293Google Scholar

    [70]

    Pietsch P, Wood V 2017 Annu. Rev. Mater. Res. 47 451Google Scholar

    [71]

    Wu X, Billaud J, Jerjen I, Marone F, Ishihara Y, Adachi M, Adachi Y, Villevieille C, Kato Y 2019 Adv. Energy Mater. 9 1901547Google Scholar

    [72]

    Madsen K E, Bassett K L, Ta K, Sforzo B A, Matusik K E, Kastengren A L, Gewirth A A 2020 Adv. Mater. Interfaces 7 2000751Google Scholar

    [73]

    Sun F, Dong K, Osenberg M, Hilger A, Risse S, Lu Y, Kamm P H, Klaus M, Markötter H, García-Moreno F, Arlt T, Manke I 2018 J. Mater. Chem. A 6 22489Google Scholar

    [74]

    Lewis J A, Cortes F J Q, Liu Y, Miers J C, Verma A, Vishnugopi B S, Tippens J, Prakash D, Marchese T S, Han S Y, Lee C, Shetty P P, Lee H W, Shevchenko P, De Carlo F, Saldana C, Mukherjee P P, McDowell M T 2021 Nat. Mater. 20 503Google Scholar

    [75]

    Kimura Y, Tomura A, Fakkao M, Nakamura T, Ishiguro N, Sekizawa O, Nitta K, Uruga T, Okumura T, Tada M, Uchimoto Y, Amezawa K 2020 J. Phys. Chem. Lett. 11 3629Google Scholar

    [76]

    Kimura Y, Fakkao M, Nakamura T, Okumura T, Ishiguro N, Sekizawa O, Nitta K, Uruga T, Tada M, Uchimoto Y, Amezawa K 2020 ACS Appl. Energy Mater. 3 7782Google Scholar

    [77]

    Wang J, Karen Chen-Wiegart Y C, Eng C, Shen Q, Wang J 2016 Nat. Commun. 7 12372Google Scholar

    [78]

    Xiang Y, Li X, Cheng Y, Sun X, Yang Y 2020 Mater. Today 36 139Google Scholar

    [79]

    Liang G, Didier C, Guo Z, Pang W K, Peterson V K 2020 Adv. Mater. 32 1904528Google Scholar

    [80]

    郑国瑞, 向宇轩, 杨勇 2021 物理化学学报 37 2008094

    Zheng G R, Xiang Y X, Yang Y 2021 Acta Phys. -Chim. Sin. 37 2008094

    [81]

    Kaup K, Zhou L, Huq A, Nazar L F 2020 J. Mater. Chem. A 8 12446Google Scholar

    [82]

    Li Q, Yi T, Wang X, Pan H, Quan B, Liang T, Guo X, Yu X, Wang H, Huang X, Chen L, Li H 2019 Nano Energy 63 103895Google Scholar

    [83]

    Wang C, Gong Y, Dai J, Zhang L, Xie H, Pastel G, Liu B, Wachsman E, Wang H, Hu L 2017 J. Am. Chem. Soc. 139 14257Google Scholar

    [84]

    赵亮, 胡勇胜, 李泓, 王兆翔, 徐红星, 黄学杰, 陈立泉 2011 电化学 17 12

    Zhao L, Hu Y S, Li H, Wang Z X, Xu H X, Huang X J, Chen L Q 2011 J. Electrochem. 17 12

    [85]

    孙姝纬, 赵慧玲, 郁彩艳, 白莹 2019 储能科学与技术 5 975

    Sun S W, Zhao H L, Yu C Y, Bai Y 2019 Energy Storage Sci. Technol. 5 975

    [86]

    Matsuda Y, Kuwata N, Okawa T, Dorai A, Kamishima O, Kawamura J 2019 Solid State Ionics 335 7Google Scholar

    [87]

    Wang C, Liang J, Jiang M, Li X, Mukherjee S, Adair K, Zheng M, Zhao Y, Zhao F, Zhang S, Li R, Huang H, Zhao S, Zhang L, Lu S, Singh C V, Sun X 2020 Nano Energy 76 105015Google Scholar

    [88]

    Zhou Y, Doerrer C, Kasemchainan J, Bruce P G, Pasta M, Hardwick L J 2020 Batteries & Supercaps 3 647

    [89]

    耿福山, 胡炳文 2019 储能科学与技术 8 1017

    Geng F S, Hu B W 2019 Energy Storage Sci. Technol. 8 1017

    [90]

    傅日强, 刘湘思, 向宇轩, 钟贵明, 李琦, 郑时尧, 杨勇 2019 电源技术 43 5Google Scholar

    Fu R Q, Liu X S, Xiang Y X, Zhong G M, Li Q, Zheng S R, Yang Y 2019 Chin. J. Power Sources 43 5Google Scholar

    [91]

    Huo H, Lin Z, Wu D, Zhong G, Shao J, Xu X, Xie B, Ma Y, Dai C, Du C, Zuo P, Yin G, Peng L 2019 ACS Appl. Energy Mater. 2 3692Google Scholar

    [92]

    Kitada K, Pecher O, Magusin P C M M, Groh M F, Weatherup R S, Grey C P 2019 J. Am. Chem. Soc. 141 7014Google Scholar

    [93]

    Bhattacharyya R, Key B, Chen H, Best A S, Hollenkamp A F, Grey C P 2010 Nat. Mater. 9 504Google Scholar

    [94]

    Forse Alexander C, Griffin John M, Merlet C, Carretero-Gonzalez J, Raji A-Rahman O, Trease Nicole M, Grey Clare P 2017 Nat. Energy 2 16216Google Scholar

    [95]

    Xiang Y, Zheng G, Liang Z, Jin Y, Liu X, Chen S, Zhou K, Zhu J, Lin M, He H, Wan J, Yu S, Zhong G, Fu R, Li Y, Yang Y 2020 Nat. Nanotechnol. 15 883Google Scholar

    [96]

    Zhao E W, Liu T, Jónsson E, Lee J, Temprano I, Jethwa R B, Wang A, Smith H, Carretero-González J, Song Q, Grey C P 2020 Nature 579 224Google Scholar

    [97]

    Liu X, Wang D, Wan L 2015 Sci. Bull. 60 839Google Scholar

    [98]

    Deng X, Liu X, Yan H, Wang D, Wan L 2014 Sci. China Chem. 57 178Google Scholar

    [99]

    Zhu J, Feng J, Lu L, Zeng K 2012 J. Power Sources 197 224Google Scholar

    [100]

    Liu T, Lin L, Bi X, Tian L, Yang K, Liu J, Li M, Chen Z, Lu J, Amine K, Xu K, Pan F 2019 Nat. Nanotechnol. 14 50Google Scholar

    [101]

    Wan J, Hao Y, Shi Y, Song Y X, Yan H J, Zheng J, Wen R, Wan L J 2019 Nat. Commun. 10 3265Google Scholar

    [102]

    Bartsch T, Strauss F, Hatsukade T, Schiele A, Kim A Y, Hartmann P, Janek J, Brezesinski T 2018 ACS Energy Lett. 3 2539Google Scholar

    [103]

    Yamagishi Y, Morita H, Nomura Y, Igaki E 2021 ACS Appl. Mater. Interfaces 13 580Google Scholar

    [104]

    Marceau H, Kim C S, Paolella A, Ladouceur S, Lagacé M, Chaker M, Vijh A, Guerfi A, Julien C M, Mauger A, Armand M, Hovington P, Zaghib K 2016 J. Power Sources 319 247Google Scholar

    [105]

    Wan M, Kang S, Wang L, Lee H W, Zheng G W, Cui Y, Sun Y 2020 Nat. Commun. 11 829Google Scholar

    [106]

    Otoyama M, Sakuda A, Hayashi A, Tatsumisago M 2018 Solid State Ionics 323 123Google Scholar

    [107]

    Nishikawa K, Munakata H, Kanamura K 2013 J. Power Sources 243 630Google Scholar

    [108]

    Sethuraman V A, Chon M J, Shimshak M, Van Winkle N, Guduru P R 2010 Electrochem. Commun. 12 1614Google Scholar

  • 图 1  典型表征技术的空间(x轴)与时间及能量(y轴)分辨率[31]

    Fig. 1.  Spatial (x-axis) and time/energy (y-axis) resolution of typical characterization techniques[31].

    图 2  (a) 原位电化学扫描电子显微镜电池示意图[34]; 在电流密度为50 μA·cm–2下, 锂电池在沉积反应过程中的原位SEM图像 (b) 0 s; (c) 30 s; (d) 60 s; (e) 150 s; (f) 300 s; (g) 900 s; (h) 1800 s; (i) 3600 s[34]

    Fig. 2.  (a) Schematic diagram of the battery design for in situ electrochemical SEM[34]; in situ SEM images of the Cu working electrode acquired at (b) 0, (c) 30, (d) 60, (e) 150, (f) 300, (g) 900, (h) 1800 and (i) 3600 s, during Li plating at the current density of 50 μA·cm–2[34].

    图 3  (a) 原位电化学扫描电子显微镜电池示意图[35]; (b) 在锂电沉积过程中间隔5 min的连续SEM图像[35]; (c) 在(b)虚线方格区域内锂电沉积过程中间隔200 s的连续SEM图像[35]; (d) 锂棒冲破Cu CC膜的生长示意图[35]; (e) 用蒸馏水除去电沉积锂后Cu CC膜的SEM图像[35]

    Fig. 3.  (a) Electrochemical cell design for the in situ SEM observation[35]; sequential SEM images taken (b) every 5 min, and (c) every 200 s of the region in the dashed region in Figure (b)[35]; (d) illustration of the breaking of the Cu CC film by the growth of a Li rod[35]; (e) SEM image of the Cu CC film after removing the plated lithium with distilled water[35].

    图 4  (a) 用于原位SEM观测的微型全固态Li-O2电池示意图[36]; 在锂氧电池的(b)放电和(c)充电过程中的原位SEM照片[36]

    Fig. 4.  (a) Schematic view of a microscale all solid-state Li-O2 battery for in situ SEM observation[36]; in situ SEM images of the cathode surface during the (b) discharge and (c) charge process[36].

    图 5  (a) 固态电池中正极与固体电解质LASGTP界面附近的ADF-STEM图像[38]; (b) 为(a)中正极在充放电过程中锂平均浓度的变化[38]; (c), (d)分别在1−3点和4−6点锂浓度的变化[38]; (e)−(j)在阶段A (3−18 nA·h)、阶段B (39−53 nA·h)和阶段C(充放电反应间30 min开路状态)锂分布的变化[38]

    Fig. 5.  (a) ADF-STEM image of the interfacial region between the cathode and solid electrolyte LASGTP in the solid-state battery[38]; (b) evolution of the average Li concentration in the entire cathode film in Figure (a)[38]; (c), (d) evolution of Li concentrations at points 1−3 and 4−6, respectively; (e)−(j) evolution of the Li maps at stages A (3−18 nA·h), B (39−53 nA·h), and C (open-circuit state for 30 min between the charge and discharge reactions), respectively[38].

    图 6  (a)−(d) LATP与锂金属反应的原位TEM图[39]; 与金属锂反应前(e)和后(f)LATP的SAED图[39]; 在无人工层(g)和有保护层(h)下LATP|Li界面的化学-机械失效机制[39]

    Fig. 6.  (a)−(d) In situ TEM images of the reaction between a LATP wire and a Li metal[39]; SAED pattern of LATP before (e) and after (f) reaction with the lithium metal[39]; illustration of the chemomechanical failure mechanism at the LATP|lithium interface: (g) without an artificial layer[39]; (h) with the protection layer[39].

    图 7  (a) AFM–ETEM装置示意图[41]; (b) TEM图像显示一个AFM悬臂梁接近锂金属的对电极[41]; (c) TEM图像显示碳纳米管附着在扁平的AFM尖端上[41]; (d), (e), (g) 锂晶须生长的延时TEM图像[41]; (f) 不同生长方向锂晶须的最大应力σm与等效直径的关系图[41]; (h) 8个锂晶须测试的临界压应力(当锂晶须停止生长时)与施加电压的关系[41]

    Fig. 7.  (a) Schematic diagram of the AFM–ETEM set-up[41]; (b) TEM image showing an AFM cantilever approaching the counter electrode of Li metal[41]; (c) TEM image showing a CNT attached to a flattened AFM tip[41]; (d), (e), (g) time-lapse TEM images of Li whisker growth[41]; (f) plot of the maximum stress σm versus equivalent diameter for Li whiskers with different growth directions[41]; (h) critical compressive stress (when the growth of a Li whisker stops) versus applied voltage for eight Li whiskers tested[41].

    图 8  用于进行(a)反射式[48]与(b)透射式[49]原位XRD测试的典型电池装置示意图; (c) 在一个充电-放电循环中, 利用同步辐射X光进行原位XRD表征所获得的NCM811正极XRD图谱[49]; (d) 在指定数目的充放电循环中, 同步辐射原位XRD在1.3 Å–1附近所获得的图谱[49]; (e) 基于(d)中数据进行精修与物相分析所获得的各物相含量变化[49]

    Fig. 8.  Schematic diagram of typical setup for in situ XRD of batteries in (a) reflection mode[48], and (b) transmission mode[49]; (c) the in situ XRD pattern of a NCM811 cathode during a charge-discharge cycle, with the synchrotron X-ray, with local zoom in view at around 1.3 Å–1 shown in Figure (d)[49]; (e) evolution of relative concentration of different phases calculated based on data in Figure (d)[49].

    图 9  (a) 典型用于原位XPS的固态电池[60]及(b) 原位XPS系统[57]示意图; 在Li10GeP2S12 (LGPS)固体电解质上通过电化学沉积31 nm锂金属过程中, 原位XPS所检测的(c) S 2p谱、(d) Ge 3d谱, 以及(e) P 2p/Ge 3p谱, 及(f)各谱峰对应组分的相对摩尔含量随时间的变化, 包括Li3P, Li2S和Li–Ge合金等[57]; (c)−(e) 中, 渐变色竖条代表典型组分的能谱峰区[57]

    Fig. 9.  (a) Typical solid-state battery for in situ XPS characterization[60], and (b) Diagram of in situ XPS system[57]; during the electrochemical deposition of 31 nm thick Li metal on LGPS solid electrolyte, evolution of the (c) S 2p spectra, (d) Ge 3d spectra, (e) P 2p/Ge 2p spectra, and (f) the evolution of relative molar concentration of phases, including Li3P, Li2S, and Li–Ge alloy, etc[57]; the color stripes in Figure (c)−(e) indicate binding energy regions of typical compositions[57].

    图 10  (a) 典型原位XANES系统[52]及(b)对应电池结构设计示意图[52]; 在(c)干燥空气和湿气混合物中, (d)干燥空气中, 及(e) 氩气和湿气混合物中, 120 min内对固体电解质Li3InCl6的原位XANES的Cl K-边谱图[52]; (f) 对全固态电池NMC811-LGPS的原位工况XANES S K-边谱图及其(g)微分投影图[66]; (h) Ni K-边谱以及(i)电池的充电/放电曲线[66]

    Fig. 10.  (a) Diagram of a typical in situ XANES system[52], and (b) the corresponding battery structure design[52]; Cl K-edge XANES spectra of the solid electrolyte Li3InCl6 acquired during its exposure for120 min in (c) mixture of dry air and moisture, (d) dry air, and (e) mixture of Ar and moisture[52]; (f) operando S K-edge spectra with (g) first derivative mapping, and (h) Ni K-edge of a NCM811-LGPS solid state battery during a full cycle, with the charge/discharge profile shown in Figure (i)[66]

    图 11  (a) XANES对Cu6Sn5负极的原位成像过程[67]; 原位二维TXM-XANES对(b)全固态锂电池、及(c)传统基于液体电解质的锂离子电池对正极材料NCM622颗粒在充电过程中的实时成像及状态示意图[68]

    Fig. 11.  (a) Image formation process based on in situ XANES investigation of a Cu6Sn5 anode[67]; in operando 2D TXM-XANES mapping of a NCM622 cathode particle during its charging process in (b) a solid-state battery, and (c) a Li-ion battery based on a conventional liquid electrolyte, with the corresponding schematic view included[68].

    图 12  (a) X射线层析成像原理示意图[70]. 相干X射线光源穿透位于可旋转台上的样品后被闪烁体转换为可见光, 光学放大后被CMOS相机拍摄成像, 然后样品旋转一个小角度进行成像, 最后对不同角度采集的投影照片重构为三维结构; (b) 原位X射线层析成像对Li|LGPS|Li电池在循环过程中LGPS片表面形貌实时监测所获得的三维结构[72]; 原位X射线层析成像监测下, (c) 在1 mA·cm–2电流下Li|LSPS界面随时间的变化, 其中蓝色区域表示锂金属, 棕红色区域代表界面, 黄色区域代表LSPS固体电解质[74]; (d) Li|LSPS界面及两电极在此电流下的体积变化[74]; (e) 电流中实际用于锂氧化的比率随界面层厚度的变化曲线[74]; (f) Li|LSPS界面孔隙在脱锂过程中的演变过程[74]

    Fig. 12.  (a) Schematic diagram of the X-ray tomography process[70]. Coherent X-rays are transmitted through the sample mounted on a rotating stage and then converted into visible light via a scintillator, the image is then optically magnified and recorded by a CMOS detector. The projected imaging process was continued during the gradual rotation of the sample, finally the data set is reconstructed into a 3D structure; (b) 3D morphology renderings of a LGPS pellet during the cycling of a Li|LGPS|Li battery with operando X-ray tomography[72]; (c) operando X-ray tomography detected 3D growth of the Li|LSPS interface at 1 mA·cm–2 current, with blue region indicates Li metal, brown for the interface, and yellow for LSPS solid electrolyte[74]; (d) volumetric evolution of Li|LSPS interface and the Li at the two electrodes based on Figure (c)[74]; (e) profile of the fraction of total current due to Li oxidation vs the thickness of the interface[74]; (f) evolution of the voids at the Li|LSPS interface region during the stripping process[74].

    图 13  (a) 原位3D CT-XANES测试示意图[76]; (b) 对复合电极(LiCoO2∶Li2.2Co0.8O3 = 8∶2)在充放电过程中的原位3D CT-XANES扫描[76]; LiFePO4颗粒在充电过程中的(c)物相变化及(d)物相比率变化[77]

    Fig. 13.  (a) Schematic diagram of the operando CT-XANES system[76]; (b) 3D mapping of the composite electrode (LiCoO2∶Li2.2Co0.8O3 = 8∶2) during the charge process[76]; the evolution of (c) phases and (d) phase volume fraction in the LiFePO4 particle during the charge process[77].

    图 14  (a) NDP系统示意图[83]; (b) 用于NDP检测非对称电池的结构设计; 对称电池中只需将此电池中的CNT正极更改为Li金属[83]; (c) 典型Li|LLZO|Li对称电池的原位NDP谱图[83]; (d) 为其中一个镀锂-脱锂循环过程中的NDP谱图[83]; (e) 循环过程中对电池每5 min采集一次NDP谱后的二维(2D)投影图[83]; (f) 在前期循环过程中, 及(g)在动态短路过程中, 用于诊断对称电池中锂枝晶短路的原位NDP谱图, 图中蓝色线表示电压, 绿色线是电量曲线, 红色线为NDP信号积分值; (h)为”动态短路”机理示意图[83]

    Fig. 14.  Schematic of the (a) NDP system, and (b) asymmetric battery design for NDP measurement; while only the CNT cathode needs to be replaced by Li metal in symmetric cells[83]; typical in situ NDP spectra of a Li|LLZO|Li symmetric cell (c) at different times, and (d) during a plating-stripping cycle[83]; (e) 2D projection of the NDP spectra acquired every 5 min during the cycling process of the symmetric cell[83]; in situ NDP measurement for diagnosing short-circuit of a symmetric cell during the (f) predicted and (g) “dynamic short-circuit” stage of the cycling process, with blue for voltage, green for charge, and red for NDP counts, respectively[83]; (h) schematic of the “dynamic short-circuit” mechanism[83].

    图 15  用于进行原位拉曼检测LiCoO2 电极的(a)正面和(b)背面的电池示意图[86]; 对LixCoO2正极正面在(c)充电与(d)放电过程中进行原位拉曼检测的拉曼光谱[86]

    Fig. 15.  Schematic diagram of the battery design for in situ Raman measurement of the LiCoO2 electrode at (a) the front side and (b) the backside[86]; in situ Raman spectra acquired at front side of the LixCoO2 cathode during (c) charging and (d) discharging process[86].

    图 16  (a) 典型原位固态NMR电池的组成, 包括集流体、电极、隔膜以及三个由聚醚醚酮PEEK制成的电池支撑结构[92]; (b) 组装后的原位固态NMR电池及(c)在NMR探头里的照片[92]; 用于进行原位固态MRI而采用(d)平行线形与(e)圆盘电极的电池示意图[92].; 对基于(f)纯硅与(g)无定形SiO (a-SiO)电极的半电池进行的 7Li原位NMR波普及电压随时间的变化曲线[92]. 对由含有锂涂层的铜圆盘电极片组成的对称电池进行的原位1H SPRITE (T1加权单点攀升成像, 即single point ramped imaging with T1 enhancement) MRI成像图片: (h) 初始状态[29]; 在10 μA电流下运行(i) 17, (j) 34, (k) 51 h后[29]; 该电池在反向电流下运行 (l) 6, (m) 40, (n) 57, 及 (o) 77 h后[29]

    Fig. 16.  (a) Components of a typical battery for solid state NMR measurement, including current collector, electrodes, separator, and the plastic cell capsule consisting of 3 PEEK structures[92]; (b) a NMR battery after assembly[92]; (c) a photo of the battery in the NMR probe[92]; schematic of symmetric cells with (d) parallel wire, and (e) disk electrodes[92]; 7Li in situ NMR spectra and cell voltage during the cycling of the half-cell based on (f) pure Si, and (g) a-SiO electrode[92]; in situ 1H SPRITE MRI images of the lithium coated copper disk electrodes in a symmetric cell: (h) At initial state, after operation at +10 μA for (i) 17, (j) 34 and (k) 51 h; and after operation at –10 μA current for (l) 6, (m) 40 and (o) 77 h[29].

    Baidu
  • [1]

    An W, Gao B, Mei S, Xiang B, Fu J, Wang L, Zhang Q, Chu P K, Huo K 2019 Nat. Commun. 10 1447Google Scholar

    [2]

    Lu J Y, Xu C 2020 Chem 6 3165Google Scholar

    [3]

    Manthiram A, Yu X, Wang S 2017 Nat. Rev. Mater. 2 16103Google Scholar

    [4]

    Randau S, Weber D A, Kötz O, Koerver R, Braun P, Weber A, Ivers-Tiffée E, Adermann T, Kulisch J, Zeier W G, Richter F H, Janek J 2020 Nat. Energy 5 259Google Scholar

    [5]

    Zuo J H, Gong Y J 2020 Tungsten 2 134Google Scholar

    [6]

    Zhao C, Xu G L, Yu Z, Zhang L, Hwang I, Mo Y X, Ren Y, Cheng L, Sun C J, Ren Y, Zuo X, Li J T, Sun S G, Amine K, Zhao T 2021 Nat. Nanotechnol. 16 166Google Scholar

    [7]

    Cao Z J, Zhang Y Z, Cui Y L S, Li B, Yang S B 2020 Tungsten 2 162Google Scholar

    [8]

    Lu J, Dey S, Temprano I, Jin Y, Xu C, Shao Y, Grey C P 2020 ACS Energy Lett. 5 3681Google Scholar

    [9]

    Liu T, Vivek J P, Zhao E W, Lei J, Garcia-Araez N, Grey C P 2020 Chem. Rev. 120 6558Google Scholar

    [10]

    Guo H, Hou G, Dai L, Yao Y, Wei C, Liang Z, Si P, Ci L 2020 J. Phys. Chem. Lett. 11 172Google Scholar

    [11]

    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R 2016 Nat. Energy 1 16030Google Scholar

    [12]

    Zhou L, Park K H, Sun X, Lalère F, Adermann T, Hartmann P, Nazar L F 2019 ACS Energy Lett. 4 265Google Scholar

    [13]

    Ji X, Hou S, Wang P, He X, Piao N, Chen J, Fan X, Wang C 2020 Adv. Mater. 32 2002741Google Scholar

    [14]

    Zhao Q, Stalin S, Zhao C Z, Archer L A 2020 Nat. Rev. Mater. 5 229Google Scholar

    [15]

    Xu L, Li J, Deng W, Shuai H, Li S, Xu Z, Li J, Hou H, Peng H, Zou G, Ji X 2021 Adv. Energy Mater. 11 2000648Google Scholar

    [16]

    Lilu Liu, Fan Wu, Hong Li, Chen L 2019 J. Chin. Ceramic Soc. 47 1367

    [17]

    Chung H, Kang B 2017 Chem. Mater. 29 8611Google Scholar

    [18]

    Han F, Zhu Y, He X, Mo Y, Wang C 2016 Adv. Energy Mater. 6 1501590Google Scholar

    [19]

    Zhang S N, Zeng Z, Zhai W, Hou G M, Chen L N, Ci L J 2021 Adv. Mater. Interfaces. 8 2100072Google Scholar

    [20]

    拱越, 谷林 2020 69 226801Google Scholar

    Gong Y, Gu L 2020 Acta Phys. Sin. 69 226801Google Scholar

    [21]

    冯吴亮, 王飞, 周星, 吉晓, 韩福东, 王春生 2020 69 228206Google Scholar

    Feng W L, Wang F, Zhou X, Ji X, Han F D, Wang C S 2020 Acta Phys. Sin. 69 228206Google Scholar

    [22]

    Banerjee A, Wang X, Fang C, Wu E A, Meng Y S 2020 Chem. Rev. 120 6878Google Scholar

    [23]

    Symington A R, Molinari M, Dawson J A, Statham J M, Purton J, Canepa P, Parker S C 2021 J. Mater. Chem. A 9 6487Google Scholar

    [24]

    Grey C P, Tarascon J M 2017 Nat. Mater. 16 45Google Scholar

    [25]

    Cheng Y, Zhang L, Zhang Q, Li J, Tang Y, Delmas C, Zhu T, Winter M, Wang M S, Huang J 2021 Mater. Today 42 137Google Scholar

    [26]

    Li W, Lutz D M, Wang L, Takeuchi K J, Marschilok A C, Takeuchi E S 2021 Joule 5 77Google Scholar

    [27]

    李文俊, 郑杰允, 谷林, 李泓 2015 电化学 21 99

    Li W J, Zheng J Y, Gu L, Li H 2015 J. Electrochem. 21 99

    [28]

    潘弘毅, 禹习谦, 李泓, 李泉 2021 物理化学学报 37 2008090

    Pan H Y, Yu X Q, Li H, Li Q 2021 Acta Phys. Sin. 37 2008090

    [29]

    Romanenko K, Jin L, Howlett P, Forsyth M 2016 Chem. Mater. 28 2844Google Scholar

    [30]

    Ishikawa R, Jimbo Y, Terao M, Nishikawa M, Ueno Y, Morishita S, Mukai M, Shibata N, Ikuhara Y 2020 Microscopy 69 240Google Scholar

    [31]

    Hou P, Chu G, Gao J, Zhang Y, Zhang L 2016 Chin. Phys. B 25 016104Google Scholar

    [32]

    余启鹏, 刘琦, 王自强, 李宝华 2020 69 228805Google Scholar

    Yu Q P, Liu Q, Wang Z Q, Li B H 2020 Acta Phys. Sin. 69 228805Google Scholar

    [33]

    曹文卓, 李泉, 王胜彬, 李文俊, 李泓 2020 69 228204Google Scholar

    Cao W Z, Li Q, Wang S B, Li W J, Li H 2020 Acta Phys. Sin. 69 228204Google Scholar

    [34]

    Sagane F, Shimokawa R, Sano H, Sakaebe H, Iriyama Y 2013 J. Power Sources 225 245Google Scholar

    [35]

    Motoyama M, Ejiri M, Iriyama Y 2015 J. Electrochem. Soc. 162 A7067Google Scholar

    [36]

    Zheng H, Xiao D, Li X, Liu Y, Wu Y, Wang J, Jiang K, Chen C, Gu L, Wei X, Hu Y S, Chen Q, Li H 2014 Nano Lett. 14 4245Google Scholar

    [37]

    柯承志, 肖本胜, 李苗, 陆敬予, 何洋, 张力, 张桥保 2021 储能科学与技术 10 1219Google Scholar

    Ke C Z, Xiao B S, Li M, Lu J Y, He Y, Zhang L, Zhang Q B 2021 Energy Storage Sci. Technol. 10 1219Google Scholar

    [38]

    Nomura Y, Yamamoto K, Fujii M, Hirayama T, Igaki E, Saitoh K 2020 Nat. Commun. 11 2824Google Scholar

    [39]

    Zhu J, Zhao J, Xiang Y, Lin M, Wang H, Zheng B, He H, Wu Q, Huang J Y, Yang Y 2020 Chem. Mater. 32 4998Google Scholar

    [40]

    梁宇皓, 范丽珍 2020 69 226201Google Scholar

    Liang Y H, Fan L Z 2020 Acta Phys. Sin. 69 226201Google Scholar

    [41]

    Zhang L, Yang T, Du C, Liu Q, Tang Y, Zhao J, Wang B, Chen T, Sun Y, Jia P, Li H, Geng L, Chen J, Ye H, Wang Z, Li Y, Sun H, Li X, Dai Q, Tang Y, Peng Q, Shen T, Zhang S, Zhu T, Huang J 2020 Nat. Nanotechnol. 15 94

    [42]

    Wang Z, Tang Y, Zhang L, Li M, Shan Z, Huang J 2020 Small 16 2001899

    [43]

    Lu P, Yan P, Romero E, Spoerke E D, Zhang J G, Wang C M 2015 Chem. Mater. 27 1375Google Scholar

    [44]

    Lin F, Markus I M, Doeff M M, Xin H L 2014 Sci. Rep. 4 5694

    [45]

    Shim J H, Kang H, Lee S, Kim Y M 2021 J. Mater. Chem. A 9 2429Google Scholar

    [46]

    Wang X, Li Y, Meng Y S 2018 Joule 2 2225Google Scholar

    [47]

    Li Y, Li Y, Pei A, Yan K, Sun Y, Wu C L, Joubert L M, Chin R, Koh A L, Yu Y, Perrino J, Butz B, Chu S, Cui Y 2017 Science 358 506Google Scholar

    [48]

    Llewellyn A V, Matruglio A, Brett D J L, Jervis R, Shearing P R 2020 Condens. Matter 5 75Google Scholar

    [49]

    Xu C, Märker K, Lee J, Mahadevegowda A, Reeves P J, Day S J, Groh M F, Emge S P, Ducati C, Layla Mehdi B, Tang C C, Grey C P 2021 Nat. Mater. 20 84Google Scholar

    [50]

    Bak S M, Hu E, Zhou Y, Yu X, Senanayake S D, Cho S J, Kim K B, Chung K Y, Yang X Q, Nam K W 2014 ACS Appl. Mater. Interfaces 6 22594Google Scholar

    [51]

    Safanama D, Sharma N, Rao R P, Brand H E A, Adams S 2016 J. Mater. Chem. A 4 7718Google Scholar

    [52]

    Li W, Liang J, Li M, Adair K R, Li X, Hu Y, Xiao Q, Feng R, Li R, Zhang L, Lu S, Huang H, Zhao S, Sham T K, Sun X 2020 Chem. Mater. 32 7019Google Scholar

    [53]

    Bartsch T, Kim A Y, Strauss F, de Biasi L, Teo J H, Janek J, Hartmann P, Brezesinski T 2019 Chem. Commun. 55 11223Google Scholar

    [54]

    Goonetilleke D, Sharma N, Kimpton J, Galipaud J, Pecquenard B, Le Cras F 2018 Front. Energy Res. 6 64Google Scholar

    [55]

    刘丽露, 吴凡, 李泓, 陈立泉 2019 硅酸盐学报 47 1367

    Liu L L, Wu F, Li H, Chen L Q 2019 J. Chin. Ceram. Soc. 47 1367

    [56]

    张桥保, 龚正良, 杨勇 2020 69 228803Google Scholar

    Zhang Q B, Gong Z L, Yang Y 2020 Acta Phys. Sin. 69 228803Google Scholar

    [57]

    Wenzel S, Randau S, Leichtweiß T, Weber D A, Sann J, Zeier W G, Janek J 2016 Chem. Mater. 28 2400Google Scholar

    [58]

    Wenzel S, Weber D A, Leichtweiss T, Busche M R, Sann J, Janek J 2016 Solid State Ionics 286 24Google Scholar

    [59]

    Wu J, Liu S, Han F, Yao X, Wang C 2021 Adv. Mater. 33 2000751Google Scholar

    [60]

    Endo R, Ohnishi T, Takada K, Masuda T 2020 J. Phys. Chem. Lett. 11 6649Google Scholar

    [61]

    张念, 任国玺, 章辉, 周櫈, 刘啸嵩 2020 69 228806Google Scholar

    Zhang N, Ren G X, Zhang H, Zhou D, Liu X G 2020 Acta Phys. Sin. 69 228806Google Scholar

    [62]

    蔡明俐, 姚柳, 靳俊, 温兆银 2021 物理化学学报 37 2009006

    Cai L, Yao L, Qi J, Wen Z 2021 Acta Phys. -Chim. Sin. 37 2009006

    [63]

    赵宁, 穆爽, 郭向欣 2020 69 228804Google Scholar

    Zhao N, Mu S, Guo X X 2020 Acta Phys. Sin. 69 228804Google Scholar

    [64]

    Connell J G, Fuchs T, Hartmann H, Krauskopf T, Zhu Y, Sann J, Garcia-Mendez R, Sakamoto J, Tepavcevic S, Janek J 2020 Chem. Mater. 32 10207Google Scholar

    [65]

    Liu Z, Li G, Borodin A, Liu X, Li Y, Endres F 2019 J. Solid State Electrochem. 23 2107Google Scholar

    [66]

    Li X, Ren Z, Norouzi Banis M, Deng S, Zhao Y, Sun Q, Wang C, Yang X, Li W, Liang J, Li X, Sun Y, Adair K, Li R, Hu Y, Sham T K, Huang H, Zhang L, Lu S, Luo J, Sun X 2019 ACS Energy Lett. 4 2480Google Scholar

    [67]

    Gonzalez Malabet H J, Juarez Robles D, de Andrade V, Mukherjee P P, Nelson G J 2020 J. Electrochem. Soc. 167 40523Google Scholar

    [68]

    Lou S, Liu Q, Zhang F, Liu Q, Yu Z, Mu T, Zhao Y, Borovilas J, Chen Y, Ge M, Xiao X, Lee W K, Yin G, Yang Y, Sun X, Wang J 2020 Nat. Commun. 11 5700Google Scholar

    [69]

    Wood V 2018 Nat. Rev. Mater. 3 293Google Scholar

    [70]

    Pietsch P, Wood V 2017 Annu. Rev. Mater. Res. 47 451Google Scholar

    [71]

    Wu X, Billaud J, Jerjen I, Marone F, Ishihara Y, Adachi M, Adachi Y, Villevieille C, Kato Y 2019 Adv. Energy Mater. 9 1901547Google Scholar

    [72]

    Madsen K E, Bassett K L, Ta K, Sforzo B A, Matusik K E, Kastengren A L, Gewirth A A 2020 Adv. Mater. Interfaces 7 2000751Google Scholar

    [73]

    Sun F, Dong K, Osenberg M, Hilger A, Risse S, Lu Y, Kamm P H, Klaus M, Markötter H, García-Moreno F, Arlt T, Manke I 2018 J. Mater. Chem. A 6 22489Google Scholar

    [74]

    Lewis J A, Cortes F J Q, Liu Y, Miers J C, Verma A, Vishnugopi B S, Tippens J, Prakash D, Marchese T S, Han S Y, Lee C, Shetty P P, Lee H W, Shevchenko P, De Carlo F, Saldana C, Mukherjee P P, McDowell M T 2021 Nat. Mater. 20 503Google Scholar

    [75]

    Kimura Y, Tomura A, Fakkao M, Nakamura T, Ishiguro N, Sekizawa O, Nitta K, Uruga T, Okumura T, Tada M, Uchimoto Y, Amezawa K 2020 J. Phys. Chem. Lett. 11 3629Google Scholar

    [76]

    Kimura Y, Fakkao M, Nakamura T, Okumura T, Ishiguro N, Sekizawa O, Nitta K, Uruga T, Tada M, Uchimoto Y, Amezawa K 2020 ACS Appl. Energy Mater. 3 7782Google Scholar

    [77]

    Wang J, Karen Chen-Wiegart Y C, Eng C, Shen Q, Wang J 2016 Nat. Commun. 7 12372Google Scholar

    [78]

    Xiang Y, Li X, Cheng Y, Sun X, Yang Y 2020 Mater. Today 36 139Google Scholar

    [79]

    Liang G, Didier C, Guo Z, Pang W K, Peterson V K 2020 Adv. Mater. 32 1904528Google Scholar

    [80]

    郑国瑞, 向宇轩, 杨勇 2021 物理化学学报 37 2008094

    Zheng G R, Xiang Y X, Yang Y 2021 Acta Phys. -Chim. Sin. 37 2008094

    [81]

    Kaup K, Zhou L, Huq A, Nazar L F 2020 J. Mater. Chem. A 8 12446Google Scholar

    [82]

    Li Q, Yi T, Wang X, Pan H, Quan B, Liang T, Guo X, Yu X, Wang H, Huang X, Chen L, Li H 2019 Nano Energy 63 103895Google Scholar

    [83]

    Wang C, Gong Y, Dai J, Zhang L, Xie H, Pastel G, Liu B, Wachsman E, Wang H, Hu L 2017 J. Am. Chem. Soc. 139 14257Google Scholar

    [84]

    赵亮, 胡勇胜, 李泓, 王兆翔, 徐红星, 黄学杰, 陈立泉 2011 电化学 17 12

    Zhao L, Hu Y S, Li H, Wang Z X, Xu H X, Huang X J, Chen L Q 2011 J. Electrochem. 17 12

    [85]

    孙姝纬, 赵慧玲, 郁彩艳, 白莹 2019 储能科学与技术 5 975

    Sun S W, Zhao H L, Yu C Y, Bai Y 2019 Energy Storage Sci. Technol. 5 975

    [86]

    Matsuda Y, Kuwata N, Okawa T, Dorai A, Kamishima O, Kawamura J 2019 Solid State Ionics 335 7Google Scholar

    [87]

    Wang C, Liang J, Jiang M, Li X, Mukherjee S, Adair K, Zheng M, Zhao Y, Zhao F, Zhang S, Li R, Huang H, Zhao S, Zhang L, Lu S, Singh C V, Sun X 2020 Nano Energy 76 105015Google Scholar

    [88]

    Zhou Y, Doerrer C, Kasemchainan J, Bruce P G, Pasta M, Hardwick L J 2020 Batteries & Supercaps 3 647

    [89]

    耿福山, 胡炳文 2019 储能科学与技术 8 1017

    Geng F S, Hu B W 2019 Energy Storage Sci. Technol. 8 1017

    [90]

    傅日强, 刘湘思, 向宇轩, 钟贵明, 李琦, 郑时尧, 杨勇 2019 电源技术 43 5Google Scholar

    Fu R Q, Liu X S, Xiang Y X, Zhong G M, Li Q, Zheng S R, Yang Y 2019 Chin. J. Power Sources 43 5Google Scholar

    [91]

    Huo H, Lin Z, Wu D, Zhong G, Shao J, Xu X, Xie B, Ma Y, Dai C, Du C, Zuo P, Yin G, Peng L 2019 ACS Appl. Energy Mater. 2 3692Google Scholar

    [92]

    Kitada K, Pecher O, Magusin P C M M, Groh M F, Weatherup R S, Grey C P 2019 J. Am. Chem. Soc. 141 7014Google Scholar

    [93]

    Bhattacharyya R, Key B, Chen H, Best A S, Hollenkamp A F, Grey C P 2010 Nat. Mater. 9 504Google Scholar

    [94]

    Forse Alexander C, Griffin John M, Merlet C, Carretero-Gonzalez J, Raji A-Rahman O, Trease Nicole M, Grey Clare P 2017 Nat. Energy 2 16216Google Scholar

    [95]

    Xiang Y, Zheng G, Liang Z, Jin Y, Liu X, Chen S, Zhou K, Zhu J, Lin M, He H, Wan J, Yu S, Zhong G, Fu R, Li Y, Yang Y 2020 Nat. Nanotechnol. 15 883Google Scholar

    [96]

    Zhao E W, Liu T, Jónsson E, Lee J, Temprano I, Jethwa R B, Wang A, Smith H, Carretero-González J, Song Q, Grey C P 2020 Nature 579 224Google Scholar

    [97]

    Liu X, Wang D, Wan L 2015 Sci. Bull. 60 839Google Scholar

    [98]

    Deng X, Liu X, Yan H, Wang D, Wan L 2014 Sci. China Chem. 57 178Google Scholar

    [99]

    Zhu J, Feng J, Lu L, Zeng K 2012 J. Power Sources 197 224Google Scholar

    [100]

    Liu T, Lin L, Bi X, Tian L, Yang K, Liu J, Li M, Chen Z, Lu J, Amine K, Xu K, Pan F 2019 Nat. Nanotechnol. 14 50Google Scholar

    [101]

    Wan J, Hao Y, Shi Y, Song Y X, Yan H J, Zheng J, Wen R, Wan L J 2019 Nat. Commun. 10 3265Google Scholar

    [102]

    Bartsch T, Strauss F, Hatsukade T, Schiele A, Kim A Y, Hartmann P, Janek J, Brezesinski T 2018 ACS Energy Lett. 3 2539Google Scholar

    [103]

    Yamagishi Y, Morita H, Nomura Y, Igaki E 2021 ACS Appl. Mater. Interfaces 13 580Google Scholar

    [104]

    Marceau H, Kim C S, Paolella A, Ladouceur S, Lagacé M, Chaker M, Vijh A, Guerfi A, Julien C M, Mauger A, Armand M, Hovington P, Zaghib K 2016 J. Power Sources 319 247Google Scholar

    [105]

    Wan M, Kang S, Wang L, Lee H W, Zheng G W, Cui Y, Sun Y 2020 Nat. Commun. 11 829Google Scholar

    [106]

    Otoyama M, Sakuda A, Hayashi A, Tatsumisago M 2018 Solid State Ionics 323 123Google Scholar

    [107]

    Nishikawa K, Munakata H, Kanamura K 2013 J. Power Sources 243 630Google Scholar

    [108]

    Sethuraman V A, Chon M J, Shimshak M, Van Winkle N, Guduru P R 2010 Electrochem. Commun. 12 1614Google Scholar

  • [1] 刘超, 张爱兵, 孙越强, 孔令高, 王文静, 关燚炳, 王永松, 郑香脂, 田峥, 高俊. 空间站问天舱等离子体原位成像探测技术.  , 2023, 72(4): 049401. doi: 10.7498/aps.72.20221759
    [2] 杨源, 胡乃方, 金永成, 马君, 崔光磊. 富锂正极材料在全固态锂电池中的研究进展.  , 2023, 72(11): 118801. doi: 10.7498/aps.72.20230258
    [3] 胡小华, 卢晓同, 张晓斐, 常宏. 基于原位成像技术的同步频率比对与密度频移测量.  , 2022, 71(17): 173401. doi: 10.7498/aps.71.20220600
    [4] 周海涛, 熊希雅, 罗飞, 罗炳威, 刘大博, 申承民. 原位生长技术制备石墨烯强化铜基复合材料.  , 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [5] 梁宇皓, 范丽珍. 固态锂电池中的机械力学失效及解决策略.  , 2020, 69(22): 226201. doi: 10.7498/aps.69.20200713
    [6] 赵宁, 穆爽, 郭向欣. 石榴石型固态锂电池中的物理问题.  , 2020, 69(22): 228804. doi: 10.7498/aps.69.20201191
    [7] 余启鹏, 刘琦, 王自强, 李宝华. 全固态金属锂电池负极界面问题及解决策略.  , 2020, 69(22): 228805. doi: 10.7498/aps.69.20201218
    [8] 崔龙飞, 鞠江伟, 崔光磊. 三维多孔陶瓷骨架增强的复合电解质.  , 2020, 69(22): 228203. doi: 10.7498/aps.69.20201552
    [9] 张念, 任国玺, 章辉, 周櫈, 刘啸嵩. 石榴石型固态电解质表界面问题及优化的研究进展.  , 2020, 69(22): 228806. doi: 10.7498/aps.69.20201533
    [10] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应.  , 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [11] 金鑫, 杨春明, 滑文强, 李怡雯, 王劼. PS3000-b-PAA5000球形胶束温度效应的原位小角X射线散射技术研究.  , 2018, 67(4): 048301. doi: 10.7498/aps.67.20172167
    [12] 王其钰, 王朔, 周格, 张杰男, 郑杰允, 禹习谦, 李泓. 锂电池失效分析与研究进展.  , 2018, 67(12): 128501. doi: 10.7498/aps.67.20180757
    [13] 李超, 姚湲, 杨阳, 沈希, 高滨, 霍宗亮, 康晋锋, 刘明, 禹日成. 纳米材料及HfO2基存储器件的原位电子显微学研究.  , 2018, 67(12): 126802. doi: 10.7498/aps.67.20180731
    [14] 李俊, 陈小辉, 吴强, 罗斌强, 李牧, 阳庆国, 陶天炯, 金柯, 耿华运, 谭叶, 薛桃. 基于原位X射线衍射技术的动态晶格响应测量方法研究.  , 2017, 66(13): 136101. doi: 10.7498/aps.66.136101
    [15] 曾娴, 杨朝晖, 张晓华. 高分子薄膜表征技术.  , 2016, 65(17): 176801. doi: 10.7498/aps.65.176801
    [16] 张坤, 刘芳洋, 赖延清, 李轶, 颜畅, 张治安, 李劼, 刘业翔. 太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征.  , 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [17] 罗宇峰, 钟 澄, 张 莉, 严学俭, 李 劲, 蒋益明. 方块电阻法原位表征Cu薄膜氧化反应动力学规律.  , 2007, 56(11): 6722-6726. doi: 10.7498/aps.56.6722
    [18] 白海洋, 陈红, 张云, 王文魁. Fe-Ti多层调制膜固态反应扩散的动态原位法X射线衍射研究.  , 1993, 42(7): 1134-1140. doi: 10.7498/aps.42.1134
    [19] 白海洋;陈红;张云;王文魁. Fe-Ti多层调制膜固态反应扩散的动态原位法X射线衍射研究.  , 1991, 40(7): 1134-1140. doi: 10.7498/aps.40.1134
    [20] 郭常霖, 陆昌伟, 沈定坤, 俞志中. 二次锂电池电极材料非晶态MoS3的结构研究.  , 1985, 34(10): 1336-1341. doi: 10.7498/aps.34.1336
计量
  • 文章访问数:  23809
  • PDF下载量:  1171
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-19
  • 修回日期:  2021-05-20
  • 上网日期:  2021-09-27
  • 刊出日期:  2021-10-05

/

返回文章
返回
Baidu
map