-
Using the Delude model. we theoretically calculate the dispersion of conductivity with frequency in the orthogonal direction of the two-dimensional black phosphorus (2D BP) x and y direction in the THz band. We find that the conductivity in the x direction is more sensitive to the electron doping concentration. The difference between 2D BP conductivities in both directions leads to the difference in dielectric constant which in turn can modulate light in different polarization directions. Using 2D BP to polarize the THz wave, the 2D BP-SiO2 periodic sandwich structure is designed. The three-dimensional electromagnetic field simulation software CST Microwave Studio can be used to calculate the regulation characteristics of this structure to THz wave. It is found that this structure has different polarization directions, and the incident THz wave has different absorption. By changing the thickness of the underlying SiO2 layer in the structure it is found that the absorption rate of this structure also changes accordingly. When the polarization direction of the THz pulse is parallel to the x axis, the absorption rate first increases and then decreases. When d5 = 9.5 μm, the absorption rate reaches 93% near 3.86 THz; when the polarization direction of the THz pulse is parallel to the y axis, the absorption rate gradually increases. The absorption peak has a significant red shift.
-
Keywords:
- black phosphorus /
- polarization /
- THz
[1] Asahina H, Shindo K, Morita A 1982 Phys. Soc. Jpn. 51 1193
Google Scholar
[2] Viti L, Hu J, Coquillat D, et al. 2015 Adv. Mater. 27 5567
Google Scholar
[3] Bridgman P 1914 JACS 36 1344
Google Scholar
[4] Li S, Zhang Y, Wen W, et al. 2019 Biosens. Bioelectron. 133 223
Google Scholar
[5] Zhao J, Zhu J, Cao R 2019 Nat. Commun. 10 4062
Google Scholar
[6] Bolognesi M, Brucale M, Lorenzoni A, et al. 2019 Nat. Nanotechnol. 11 17252
Google Scholar
[7] Izquierdo N, Myers Jason C, Seaton Nicholas C A 2019 ACS Nano 13 7091
Google Scholar
[8] Wang J, Jiang Y, Hu Z 2017 Opt. Express 25 22149
Google Scholar
[9] Jimin K, Seung S B, Sung W J 2017 Phys. Rev. Lett. 119 226801
Google Scholar
[10] Liu X, Lee M A, Sungjo P 2019 ACS Appl. Mater. Inter. 11 23558
Google Scholar
[11] Li L, Yang F, Ye G J 2016 Nat. Nanotechnol. 10 593
Google Scholar
[12] Liu X, Wood Joshua D, Chen K 2015 J. Phys. Chem. Lett. 9 773
Google Scholar
[13] Wang H, Zhang X, Xie Y 2018 ACS Nano 12 9648
Google Scholar
[14] Favron A, Gaufrès E, Fossard F, et al. 2015 Nat. Mater. 14 826
Google Scholar
[15] Ling X, Wang H, Huang S, et al. 2015 PNAS 112 4523
Google Scholar
[16] Wang X, Jones A M, Seyler K L 2015 Nat. Nanotechnol. 10 517
Google Scholar
[17] Low T, Roldán R, Wang H, et al. 2014 Phys. Rev. Lett. 113 106802
Google Scholar
[18] Naftaly M, Miles R E 2007 Proc. IEEE 95 1658
Google Scholar
[19] Rodin A, Carvalho A, Neto A C S 2014 Phys. Rev. Lett. 112 176801
Google Scholar
-
-
[1] Asahina H, Shindo K, Morita A 1982 Phys. Soc. Jpn. 51 1193
Google Scholar
[2] Viti L, Hu J, Coquillat D, et al. 2015 Adv. Mater. 27 5567
Google Scholar
[3] Bridgman P 1914 JACS 36 1344
Google Scholar
[4] Li S, Zhang Y, Wen W, et al. 2019 Biosens. Bioelectron. 133 223
Google Scholar
[5] Zhao J, Zhu J, Cao R 2019 Nat. Commun. 10 4062
Google Scholar
[6] Bolognesi M, Brucale M, Lorenzoni A, et al. 2019 Nat. Nanotechnol. 11 17252
Google Scholar
[7] Izquierdo N, Myers Jason C, Seaton Nicholas C A 2019 ACS Nano 13 7091
Google Scholar
[8] Wang J, Jiang Y, Hu Z 2017 Opt. Express 25 22149
Google Scholar
[9] Jimin K, Seung S B, Sung W J 2017 Phys. Rev. Lett. 119 226801
Google Scholar
[10] Liu X, Lee M A, Sungjo P 2019 ACS Appl. Mater. Inter. 11 23558
Google Scholar
[11] Li L, Yang F, Ye G J 2016 Nat. Nanotechnol. 10 593
Google Scholar
[12] Liu X, Wood Joshua D, Chen K 2015 J. Phys. Chem. Lett. 9 773
Google Scholar
[13] Wang H, Zhang X, Xie Y 2018 ACS Nano 12 9648
Google Scholar
[14] Favron A, Gaufrès E, Fossard F, et al. 2015 Nat. Mater. 14 826
Google Scholar
[15] Ling X, Wang H, Huang S, et al. 2015 PNAS 112 4523
Google Scholar
[16] Wang X, Jones A M, Seyler K L 2015 Nat. Nanotechnol. 10 517
Google Scholar
[17] Low T, Roldán R, Wang H, et al. 2014 Phys. Rev. Lett. 113 106802
Google Scholar
[18] Naftaly M, Miles R E 2007 Proc. IEEE 95 1658
Google Scholar
[19] Rodin A, Carvalho A, Neto A C S 2014 Phys. Rev. Lett. 112 176801
Google Scholar
Catalog
Metrics
- Abstract views: 7932
- PDF Downloads: 158
- Cited By: 0