-
本文提出了一种金属栅-开口环/硅环-金属栅结构的透射式超表面偏振控制器, 研究了入射角度和抽运光对该器件传输及偏振态控制性能的影响. 研究结果表明, 当线偏振太赫兹波垂直入射时, 可对0.39-1.11 THz频段的太赫兹波实现偏振方向90旋转, 偏振旋转效率为99%, 损耗为1 dB. 对于斜入射的情况, 偏振转换性能在0-60范围内基本保持不变, 且透过率达到90%以上. 同时, 通过调控抽运光强度的方式, 该器件能够实现对透射与反射太赫兹光束的强度调制, 调制深度均达到90%, 且可以实现太赫兹波偏振分束功能. 该器件可以作为未来太赫兹空间光通信和信息处理的宽带、角度不敏感、可调谐的偏振转换器和分束器.Polarization is one of the basic properties of electromagnetic wave conveying valuable information about signal transmission and sensitive measurements. Manipulations of polarization state and amplitude have aroused a lot of research interest in many different fields, especially in the terahertz (THz) regime. Although many researches on THz polarization controller have been carried out, their transmission losses are still difficult to lower in a broad bandwidth. And there are few reports on THz polarization controller which can rotate the polarization state and split beams at the same time. Multifunctional THz devices are required to meet the needs of the progress of THz technology and its applications. In order to overcome this constraint, semiconductor silicon is integrated into the proposed structure to manipulate the polarization state and the amplitude, because of its optical properties with the external pump light. Here, according to the electromagnetic resonance between split rings and silicon rings in Fabry-Prot-like cavity, we propose a metasurfaces-based terahertz polarization controller. The unite cell structure is composed of metal grids-split ring/Si ring-metal grids spaced by silica layers. By using the finite element method in CST Microwave Studio, we simulate the transport and polarization properties under different conditions. The results show that a linear polarization state can be nearly perfectly converted into its orthogonal one from 0.39 to 1.11 THz with a transmission loss of 1 dB, which fits well to the one of multiple-beam interference theory. Then we study the properties of the proposed metasurface structure for oblique incidence. The property of rotating polarization basically keeps stable even at an incident angle of 60 from 0.52 to 1.05 THz. At the end of the paper, the polarization splitting feature of the device is discussed in the THz regime. The results demonstrate that the transmitted and reflected beam power of the device can be tuned by changing the pump light power. The modulation depths of two beams reach more than 90% at 0.5 THz. It is worth noting that the proposed structure can not only rotate the polarization state of transmitted light in a broad bandwidth of 0.72 THz, but also modulate the transmitted and reflected beam power with a wide modulation depth. It can be used as a broad-band, low-loss and tunable terahertz polarization controller which is also insensitive to the incident angle. So it meets the requirements in THz communication, spectrum detection and imaging systems.
-
Keywords:
- terahertz /
- metasurfaces /
- polarization conversion /
- polarization splitting
[1] Tonouchi M 2007 Nat. Photon. 1 97
[2] Leitenstorfer A, Hunsche S, Shah J, Nuss M C, Knox W H 1999 Appl. Phys. Lett. 74 1516
[3] Carr G L, Martin M C, McKinney W R, Jordan K, Neil G R, Williams G P 2002 Nature 420 153
[4] Rochat M, Ajili L, Willenberg H, Faist J, Beere H, Davies G, Linfield E, Ritchie D 2002 Appl. Phys. Lett. 81 1381
[5] Li Z Y, Yao J Q, Xu D G, Zhong K, Wang J L, Bing P B 2011 Chin. Phys. B 20 054207
[6] Federici J, Moeller L 2010 J. Appl. Phys. 107 111101
[7] Awad M M, Cheville R A 2005 Appl. Phys. Lett. 86 221107
[8] Mittleman D M, Gupta M, Neelamani R, Baraniuk R G, Rudd J V, Koch M 1999 Appl. Phys. B 68 1085
[9] Ferguson B, Zhang X C 2002 Nat. Mater. 1 26
[10] Nagel M, Bolivar P H, Brucherseifer M, Kurz H, Bosserhoff A, Bttner R 2002 Appl. Phys. Lett. 80 154
[11] Li S S, Zhang H, Bai J J, Liu W W, Chang S J 2015 Acta Phys. Sin 64 154201 (in Chinese) [李珊珊, 张昊, 白晋军, 刘伟伟, 常胜江 2015 64 154201]
[12] Liu Z Q, Chang S J, Wang X L, Fan F, Li W 2013 Acta Phys. Sin 62 130702 (in Chinese) [刘志强, 常胜江, 王晓雷, 范飞, 李伟 2013 62 130702]
[13] Huang Z, Park H, Parrott E P J, Chan H P, Pickwell-MacPherson E 2013 Photon. Tech. Lett. IEEE 25 81
[14] Lin C J, Li Y T, Hsieh C F, Pan R P, Pan C L 2008 Opt. Express 16 2995
[15] Kaveev A K, Kropotov G I, Tsygankova E V, Tzibizov I A, Ganichev S D, Danilov S N, Olbrich P, Zoth C, Kaveeva E G, Zhdanov A I, Ivanov A A, Deyanov R Z, Redlich B 2013 Appl. Opt. 52 B60
[16] Costley A E, Hursey K H, Neill G F, Ward J M 1977 JOSA 67 979
[17] Masson J B, Gallot G 2006 Opt. Lett. 31 265
[18] Qi L M, Yang Z Q, Lan F, Gao X, Li D Z 2010 Chin. Phys. B 19 034210
[19] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
[20] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
[21] Withayachumnankul W, Abbott D 2009 Photon. J. IEEE 1 99
[22] Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597
[23] Chen H T, Palit S, Tyler T, Bingham C M, Zide J M O, O'Hara J F, Smith D R, Gossard A C, Averitt R D, Padilla W J, Padilla W J, Jokerst N M, Taylor A J 2008 Appl. Phys. Lett. 93 091117
[24] Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nat. Photon. 3 148
[25] Shu J, Qiu C, Astley V, Nickel D, Mittleman D M, Xu Q 2011 Opt. Express 19 26666
[26] Yang Y M, Huang R, Cong L Q, Zhu Z H, Gu J Q, Tian Z, Singh R, Zhang S, Han J G, Zhang W L 2011 Appl. Phys. Lett. 98 121114
[27] Karl N, Reichel K, Chen H T, Taylor A J, Brener I, Benz A, Reno J L, Mendis R, Mittleman D M 2014 Appl. Phys. Lett. 104 091115
[28] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304
[29] Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 181111
[30] Cong L, Cao W, Zhang X Q, Tian Z, Gu J Q, Singh R, Han J G, Zhang W L 2013 Appl. Phys. Lett. 103 171107
[31] Heyes J E, Withayachumnankul W, Grady N K, Chowdhury D R, Azad A K, Chen H T 2014 Appl. Phys. Lett. 105 181108
[32] Tian W, Wen Q Y, Chen Z, Yang Q H, Jing Y L, Zhang H W 2015 Acta Phys. Sin 64 28401 (in Chinese) [田伟, 文岐业, 陈智, 杨青慧, 荆玉兰, 张怀武 2015 64 28401]
[33] Xie Z, Wang X, Ye J, Feng S, Sun W, Akalin T, Zhang Y 2013 Scientific Reports 3 3347
[34] Goldstein D 2011 Polarized Light, Revised and Expanded (CRC Press) pp119-124
[35] Liu W W, Chen S Q, Li Z C, Cheng H, Yu P, Li J X, Tian J G 2015 Opt. Lett. 40 3185
-
[1] Tonouchi M 2007 Nat. Photon. 1 97
[2] Leitenstorfer A, Hunsche S, Shah J, Nuss M C, Knox W H 1999 Appl. Phys. Lett. 74 1516
[3] Carr G L, Martin M C, McKinney W R, Jordan K, Neil G R, Williams G P 2002 Nature 420 153
[4] Rochat M, Ajili L, Willenberg H, Faist J, Beere H, Davies G, Linfield E, Ritchie D 2002 Appl. Phys. Lett. 81 1381
[5] Li Z Y, Yao J Q, Xu D G, Zhong K, Wang J L, Bing P B 2011 Chin. Phys. B 20 054207
[6] Federici J, Moeller L 2010 J. Appl. Phys. 107 111101
[7] Awad M M, Cheville R A 2005 Appl. Phys. Lett. 86 221107
[8] Mittleman D M, Gupta M, Neelamani R, Baraniuk R G, Rudd J V, Koch M 1999 Appl. Phys. B 68 1085
[9] Ferguson B, Zhang X C 2002 Nat. Mater. 1 26
[10] Nagel M, Bolivar P H, Brucherseifer M, Kurz H, Bosserhoff A, Bttner R 2002 Appl. Phys. Lett. 80 154
[11] Li S S, Zhang H, Bai J J, Liu W W, Chang S J 2015 Acta Phys. Sin 64 154201 (in Chinese) [李珊珊, 张昊, 白晋军, 刘伟伟, 常胜江 2015 64 154201]
[12] Liu Z Q, Chang S J, Wang X L, Fan F, Li W 2013 Acta Phys. Sin 62 130702 (in Chinese) [刘志强, 常胜江, 王晓雷, 范飞, 李伟 2013 62 130702]
[13] Huang Z, Park H, Parrott E P J, Chan H P, Pickwell-MacPherson E 2013 Photon. Tech. Lett. IEEE 25 81
[14] Lin C J, Li Y T, Hsieh C F, Pan R P, Pan C L 2008 Opt. Express 16 2995
[15] Kaveev A K, Kropotov G I, Tsygankova E V, Tzibizov I A, Ganichev S D, Danilov S N, Olbrich P, Zoth C, Kaveeva E G, Zhdanov A I, Ivanov A A, Deyanov R Z, Redlich B 2013 Appl. Opt. 52 B60
[16] Costley A E, Hursey K H, Neill G F, Ward J M 1977 JOSA 67 979
[17] Masson J B, Gallot G 2006 Opt. Lett. 31 265
[18] Qi L M, Yang Z Q, Lan F, Gao X, Li D Z 2010 Chin. Phys. B 19 034210
[19] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
[20] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
[21] Withayachumnankul W, Abbott D 2009 Photon. J. IEEE 1 99
[22] Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597
[23] Chen H T, Palit S, Tyler T, Bingham C M, Zide J M O, O'Hara J F, Smith D R, Gossard A C, Averitt R D, Padilla W J, Padilla W J, Jokerst N M, Taylor A J 2008 Appl. Phys. Lett. 93 091117
[24] Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nat. Photon. 3 148
[25] Shu J, Qiu C, Astley V, Nickel D, Mittleman D M, Xu Q 2011 Opt. Express 19 26666
[26] Yang Y M, Huang R, Cong L Q, Zhu Z H, Gu J Q, Tian Z, Singh R, Zhang S, Han J G, Zhang W L 2011 Appl. Phys. Lett. 98 121114
[27] Karl N, Reichel K, Chen H T, Taylor A J, Brener I, Benz A, Reno J L, Mendis R, Mittleman D M 2014 Appl. Phys. Lett. 104 091115
[28] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304
[29] Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 181111
[30] Cong L, Cao W, Zhang X Q, Tian Z, Gu J Q, Singh R, Han J G, Zhang W L 2013 Appl. Phys. Lett. 103 171107
[31] Heyes J E, Withayachumnankul W, Grady N K, Chowdhury D R, Azad A K, Chen H T 2014 Appl. Phys. Lett. 105 181108
[32] Tian W, Wen Q Y, Chen Z, Yang Q H, Jing Y L, Zhang H W 2015 Acta Phys. Sin 64 28401 (in Chinese) [田伟, 文岐业, 陈智, 杨青慧, 荆玉兰, 张怀武 2015 64 28401]
[33] Xie Z, Wang X, Ye J, Feng S, Sun W, Akalin T, Zhang Y 2013 Scientific Reports 3 3347
[34] Goldstein D 2011 Polarized Light, Revised and Expanded (CRC Press) pp119-124
[35] Liu W W, Chen S Q, Li Z C, Cheng H, Yu P, Li J X, Tian J G 2015 Opt. Lett. 40 3185
计量
- 文章访问数: 8329
- PDF下载量: 488
- 被引次数: 0