-
采用基于密度泛函理论的第一性原理方法对锂离子电池负极材料黑磷在嵌锂过程中的产物LiP5, Li3P7以及LiP的晶体结构与电子结构进行了研究与分析. 通过计算这几种材料的电子结构, 发现黑磷嵌锂后的这几种相均为半导体能带结构, 其带隙均比黑磷嵌锂前的带隙大, 表明黑磷嵌锂后的电子电导性能降低了. 利用弹性能带方法模拟了Li离子在LiP5, Li3P7和LiP材料中的扩散, 从理论上得到了Li离子的扩散势垒,并与其他电极材料进行了比较, 发现Li离子在各种嵌锂态的材料中都能够比较快速的扩散. 计算结果表明, Li在LiP5中的扩散系数大约为10-4 cm2/s, 扩散通道是一维的; Li在Li3P7中的扩散系数为10-7—10-6 cm2/s, 扩散通道是三维的; Li在LiP中的扩散系数为10-8—10-5 cm2/s, 扩散通道是三维的.Electronic and atomic structures of LiP5, Li3P7 and LiP, which are formed in the process of lithium intercalation into black phosphorus, are systematically studied and analyzed using first-principles ultrasoft pseudopotential method based on the density functional theory (DFT). By caculating the electronic strucrures of these products, we find that the three products are all of semiconductor band structure, of which band gaps are larger than those of black phosphorus, indicating that the electronic conductivity of the black phosphorus is reduced after lithium has been intercalated into it. We simulate the diffusion of lithium ions in the LiP5, Li3P7 and LiP materials using nudged elastic band (NEB) method, and the diffusion activation energy of lithium ions is obtained firstly through the theoretical calculation. Compare with the results of other electrode materials, our results show that the migration energy barriers of lithium ions in LiP5, Li3P7 and LiP are all low. The diffusion coefficient of lithium ions in LiP5 is about 10-4 m2/s and the diffusion channel is one-dimensional. The diffusion coefficient of lithium ions in Li3P7 is approximately 10-7-10-6 cm2/s and the diffusion channel is three-dimensional. The diffusion coefficient of lithium ions in LiP is approximately 10-8-10-5 cm2/s and the diffusion channel is three-dimensional.
-
Keywords:
- lithium ion batteries /
- black phosphorus /
- elastic band method /
- diffusion energy barriers
[1] Lu Q, Hu X G, Chen H Mao Y Z 2005 Chinese Patent ZL-03153105.9 [2005-07-06]
[2] Motohiro N, Akitoshi H 2010 The 15th international Meeting on Lithium Batteries- IMLB Montréal, Canada, June 27 - July 3, 2010 248
[3] Park C M, Sohn H J 2007 Adv. Mater. 19 2465
[4] Tom N, Marcel K, Thorben P 2008 J. Solid-State Chem. 181 1707
[5] Park C M 2008 US Patent 11 835 710 [2008-02-14]
[6] Du Y L, Ouyang C Y, Shi S Q, Lei M S 2010 J. Appl. Phys. 107 093718
[7] Ouyang C Y, Zeng X M, Sljivancanin Z, Baldereschi A 2010 J. Phys. Chem. C 114 4756
[8] Zhong Z Y, Nie Z X, Du Y L, Ouyang C Y, Shi S Q, Lei M S 2009 Chin. Phys. 18 2492
[9] Liu C H, Ouyang C Y, Ji Y H 2011 Acta Phys. Sin. 60 077103 (in Chinese) [刘春华, 欧阳楚英, 嵇英华 2011 60 077103]
[10] Ouyang C Y, Wang D Y, Shi S Q, Wang Z X, Li H, Huang X J, Chen L Q 2006 Chin. Phys. Lett. 23 61
[11] Jorn S G, Sylvia K 1999 J. Solid-State Chem. 147 341
[12] Honle W, Manriquez V, Meyer T, Schnering H G 1983 Z. Kristallogr 162 104
[13] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
[14] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 10304
[15] Blochl P E 1994 Phys. Rev. B 50 17953
[16] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[17] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[18] Perdew J P, Chevary J A 1992 Phys. Rev. B 46: 6671
[19] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[20] Henkelman G, Uberuaga B P, Jonsson H 2000 J. Chem. Phys. 113 22
[21] Sheppard D, Terrell R, Henkelman G 2008 J. Chem. Phys. 128, 134106
[22] Jorn S G, Sylvia K 1999 J. Solid-State Chem. 147 341
[23] Persson K, Sethuraman V A, Hardwick L J, Hinuma Y, Meng Y S, Van V A, Srinivasan V, Kostecki R, Ceder G 2010 J. Phys. Chem. Lett. 1 1176
[24] Van V A, Ceder G 2000 Electrochem. Solid-State Lett. 3 301
[25] Ouyang C Y, Shi S Q, Wang Z X, Huang X J, Chen L Q 2004 Phys. Rev. B 69 104303
[26] Morgan D, Van V A, Ceder G 2004 Electrochem. Solid-State Lett. 7 A30
[27] Du Y A, Holzwarth N A W 2007 Phys. Rev. B 76 174302
[28] Weppner W, Huggins R A 1977 J. Electrochem. Soc. 124 1569
-
[1] Lu Q, Hu X G, Chen H Mao Y Z 2005 Chinese Patent ZL-03153105.9 [2005-07-06]
[2] Motohiro N, Akitoshi H 2010 The 15th international Meeting on Lithium Batteries- IMLB Montréal, Canada, June 27 - July 3, 2010 248
[3] Park C M, Sohn H J 2007 Adv. Mater. 19 2465
[4] Tom N, Marcel K, Thorben P 2008 J. Solid-State Chem. 181 1707
[5] Park C M 2008 US Patent 11 835 710 [2008-02-14]
[6] Du Y L, Ouyang C Y, Shi S Q, Lei M S 2010 J. Appl. Phys. 107 093718
[7] Ouyang C Y, Zeng X M, Sljivancanin Z, Baldereschi A 2010 J. Phys. Chem. C 114 4756
[8] Zhong Z Y, Nie Z X, Du Y L, Ouyang C Y, Shi S Q, Lei M S 2009 Chin. Phys. 18 2492
[9] Liu C H, Ouyang C Y, Ji Y H 2011 Acta Phys. Sin. 60 077103 (in Chinese) [刘春华, 欧阳楚英, 嵇英华 2011 60 077103]
[10] Ouyang C Y, Wang D Y, Shi S Q, Wang Z X, Li H, Huang X J, Chen L Q 2006 Chin. Phys. Lett. 23 61
[11] Jorn S G, Sylvia K 1999 J. Solid-State Chem. 147 341
[12] Honle W, Manriquez V, Meyer T, Schnering H G 1983 Z. Kristallogr 162 104
[13] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
[14] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 10304
[15] Blochl P E 1994 Phys. Rev. B 50 17953
[16] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[17] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[18] Perdew J P, Chevary J A 1992 Phys. Rev. B 46: 6671
[19] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[20] Henkelman G, Uberuaga B P, Jonsson H 2000 J. Chem. Phys. 113 22
[21] Sheppard D, Terrell R, Henkelman G 2008 J. Chem. Phys. 128, 134106
[22] Jorn S G, Sylvia K 1999 J. Solid-State Chem. 147 341
[23] Persson K, Sethuraman V A, Hardwick L J, Hinuma Y, Meng Y S, Van V A, Srinivasan V, Kostecki R, Ceder G 2010 J. Phys. Chem. Lett. 1 1176
[24] Van V A, Ceder G 2000 Electrochem. Solid-State Lett. 3 301
[25] Ouyang C Y, Shi S Q, Wang Z X, Huang X J, Chen L Q 2004 Phys. Rev. B 69 104303
[26] Morgan D, Van V A, Ceder G 2004 Electrochem. Solid-State Lett. 7 A30
[27] Du Y A, Holzwarth N A W 2007 Phys. Rev. B 76 174302
[28] Weppner W, Huggins R A 1977 J. Electrochem. Soc. 124 1569
计量
- 文章访问数: 12954
- PDF下载量: 1957
- 被引次数: 0