搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于谐振环的太赫兹宽带偏振转换器件研究

付亚男 张新群 赵国忠 李永花 于佳怡

引用本文:
Citation:

基于谐振环的太赫兹宽带偏振转换器件研究

付亚男, 张新群, 赵国忠, 李永花, 于佳怡

A broadband polarization converter based on resonant ring in terahertz region

Fu Ya-Nan, Zhang Xin-Qun, Zhao Guo-Zhong, Li Yong-Hua, Yu Jia-Yi
PDF
导出引用
  • 提出了一个基于谐振环结构的宽带且高效的太赫兹线偏振转换器.该结构由金属-电介质-金属三层构成,位于顶层的是基于开口谐振环的超表面,中间为介质层,底部为金属板.实验结果表明,该结构可以在0.59–1.24 THz频率范围内将线偏振的太赫兹波偏振方向旋转90°,转换率超过80%.通过计算该结构在所研究的频率范围内反射光的偏振角和椭圆角,证实了该结构可以在较宽的频率范围内实现高效的线偏振转换.对该结构在偏振转换率高的频率下表面电流和电场进行仿真,分析了高偏振转换率和宽带的机理.同时,研究了该结构的偏振转换率对入射角以及偏振角的依赖性,结果表明该结构在0°–30°入射角范围内、-10°–10°偏振角范围内均有很好的偏振转换性能.
    The terahertz polarization converter has potential applications in the field of terahertz spectroscopy and imaging. A broadband and high conversion rate of terahertz linear polarization converter based on the metasurface of resonant ring is proposed. The designed structure consists of three layers, i.e., the top layer, which is a metasurface of resonant ring; the bottom layer, which is a metal film of aluminum; a dielectric layer of polyethylene terephthalate, which is sandwiched in between. In order to obtain the best performance, the simulation and optimization are performed by using CST microwave studio. At the same time, the preparation conditions are also taken into account. The optimized geometric parameters of device are obtained. The samples are prepared by using the photolithography and wet etching. The performance of the designed polarization converter is demonstrated experimentally by using the terahertz time domain spectroscopy. The experimental results show that the proposed device can rotate 90° the polarization state of incident terahertz wave of linear polarization in a frequency range from 0.59 THz to 1.24 THz. The polarization conversion rate is more than 80%. The experimental result is in good agreement with the simulated one. By calculating the polarization angle and elliptical angle of the reflected terahertz wave, it is proved that this device can achieve a high-efficiency linear polarization conversion in a wide frequency range. The distributions of surface currents and electric fields are simulated at the frequency with the high polarization conversion rate. The mechanism of high polarization conversion rate is analyzed based on the distribution of surface currents. The performances of broadband and high conversion rate of the designed structure are derived from the third-order electromagnetic resonance. At the same time, the dependence of the polarization conversion rate on incident angle and polarization angle is stimulated and analyzed. The results show that this device has a good polarization conversion performance in an incidence angle range of 0°-30° and a polarization angle range of-10°-10°.
      通信作者: 赵国忠, guozhong-zhao@126.com
    • 基金项目: 国家自然科学基金(批准号:61575130,61575131,50971094)和北京市自然科学基金-北京市教育委员会科技计划重点项目(批准号:KZ201310028032)资助的课题.
      Corresponding author: Zhao Guo-Zhong, guozhong-zhao@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575130, 61575131, 50971094) and the Natural Science Foundation of Beijing, China (Grant No. KZ201310028032).
    [1]

    Liu K, Brown M G, Saykally R J 1997 J. Phys. Chem. A 101 8995

    [2]

    Beard M C, Turner G M, Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146

    [3]

    Vieweg N, Fischer B M, Reuter M, Kula P, Dabrowski R, Celik M A, Frenking G, Koch M, Jepsen P U 2012 Opt. Express 20 28249

    [4]

    Janek M, Zich D, Naftaly M 2014 Mater. Chem. Phys. 145 278

    [5]

    Qin J Y, Xie L Y, Ying Y B 2016 Food Chem. 211 300

    [6]

    Xu W D, Xie L Y, Zhu J F, Wang W, Ye Z Z, Ma Y G, Tsai C Y, Chen S M, Ying Y B 2017 Food Chem. 218 330

    [7]

    Hu B B, Nuss M C 1995 Opt. Lett. 20 1716

    [8]

    Mittleman D, Gupta M, Neelamani R, Baraniuk R, Rudd J, Koch M 1999 Appl. Phys. B 68 1085

    [9]

    Köhler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C, Rossi F 2002 Nature 417 156

    [10]

    Hara J F O, Singh R, Brener I, Smirnova E, Han J, Taylor A J, Zhang W L 2008 Opt. Express 16 1786

    [11]

    Zhang Z W, Zhao Y M, Li C Y, Zhang C L 2015 Sci. China:Phys. Mech. Astron. 58 124202

    [12]

    Sibik J, Axel Zeitler J 2016 Adv. Drug Deliv. Rev. 100 147

    [13]

    Huang Z, Park H, Parrott E P J, Chan H P, Pickwell-MacPherson E 2013 IEEE Photon. Tech. Lett. 25 81

    [14]

    Hofmann T, Schade U, Herzinger C, Esquinazi P, Schubert M 2006 Rev. Sci. Instrum. 77 063902

    [15]

    Brucherseifer M, Nagel M, Bolivar P H, Kurz H, Bosserhoff A, Bttner R 2000 Appl. Phys. Lett. 77 4049

    [16]

    Bolivar P, Brucherseifer M, Nagel M, Kurz H, Bosserhoff A, Bttner R 2002 Phys. Med. Biol. 47 3815

    [17]

    Wang X, Cui Y, Sun W, Ye J, Zhang Y 2010 J. Opt. Soc. Am. A 27 2387

    [18]

    Chen H, Bian H, Li J, Guo X, Wen X, Zheng J 2013 J. Phys. Chem. B 117 15614

    [19]

    Smith D R, Pendry J B, Wiltshire M C 2004 Science 305 788

    [20]

    Chen H T, Hara J F O, Azad A K, Taylor A J, Averitt R D, Shrekenhamer D B, Padilla W J 2008 Nat. Photon. 2 295

    [21]

    Chen H T, Hara J F O, Taylor A J, Averitt R D, Highstrete C, Lee M, Padilla W J 2007 Opt. Express 15 1084

    [22]

    Dong J W, Zheng H H, Lai Y, Wang H Z, Chan C 2011 Phys. Rev. B 83 115124

    [23]

    Dolling G, Wegener M, Soukoulis C M, Linden S 2007 Opt. Lett. 32 53

    [24]

    Singh R, Plum E, Menzel C, Rockstuhl C, Azad A, Cheville R, Lederer F, Zhang W, Zheludev N 2009 Phys. Rev. B 80 153104

    [25]

    Strikwerda A C, Fan K, Tao H, Pilon D V, Zhang X, Averitt R D 2009 Opt. Express 17 136

    [26]

    Ma X, Huang C, Pu M, Hu C, Feng Q, Luo X 2012 Opt. Express 20 16050

    [27]

    Kanda N, Konishi K, Kuwata-Gonokami M 2007 Opt. Express 15 11117

    [28]

    Huang C, Ma X, Pu M, Yi G, Wang Y, Luo X 2013 Opt. Commun. 291 345

    [29]

    Cong L, Cao W, Zhang X Q, Tian Z, Gu J Q, Singh R, Han J G, Zhang W L 2013 Appl. Phys. Lett. 103 171107

    [30]

    Tang J G, Xiao Z Y, Xu K K, Ma X L, Liu D J, Wang Z H 2016 Opt. Quant Electron 48 111

    [31]

    Yang L, Fan F, Chen M, Zhang X Z, Chang S J 2016 Acta Phys. Sin. 65 080702(in Chinese)[杨磊, 范飞, 陈猛, 张选洲, 常胜江2016 65 080702]

    [32]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Pang Y Q, Xu Z, Zhang A X 2015 J. Appl. Phys. 117 044501

  • [1]

    Liu K, Brown M G, Saykally R J 1997 J. Phys. Chem. A 101 8995

    [2]

    Beard M C, Turner G M, Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146

    [3]

    Vieweg N, Fischer B M, Reuter M, Kula P, Dabrowski R, Celik M A, Frenking G, Koch M, Jepsen P U 2012 Opt. Express 20 28249

    [4]

    Janek M, Zich D, Naftaly M 2014 Mater. Chem. Phys. 145 278

    [5]

    Qin J Y, Xie L Y, Ying Y B 2016 Food Chem. 211 300

    [6]

    Xu W D, Xie L Y, Zhu J F, Wang W, Ye Z Z, Ma Y G, Tsai C Y, Chen S M, Ying Y B 2017 Food Chem. 218 330

    [7]

    Hu B B, Nuss M C 1995 Opt. Lett. 20 1716

    [8]

    Mittleman D, Gupta M, Neelamani R, Baraniuk R, Rudd J, Koch M 1999 Appl. Phys. B 68 1085

    [9]

    Köhler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C, Rossi F 2002 Nature 417 156

    [10]

    Hara J F O, Singh R, Brener I, Smirnova E, Han J, Taylor A J, Zhang W L 2008 Opt. Express 16 1786

    [11]

    Zhang Z W, Zhao Y M, Li C Y, Zhang C L 2015 Sci. China:Phys. Mech. Astron. 58 124202

    [12]

    Sibik J, Axel Zeitler J 2016 Adv. Drug Deliv. Rev. 100 147

    [13]

    Huang Z, Park H, Parrott E P J, Chan H P, Pickwell-MacPherson E 2013 IEEE Photon. Tech. Lett. 25 81

    [14]

    Hofmann T, Schade U, Herzinger C, Esquinazi P, Schubert M 2006 Rev. Sci. Instrum. 77 063902

    [15]

    Brucherseifer M, Nagel M, Bolivar P H, Kurz H, Bosserhoff A, Bttner R 2000 Appl. Phys. Lett. 77 4049

    [16]

    Bolivar P, Brucherseifer M, Nagel M, Kurz H, Bosserhoff A, Bttner R 2002 Phys. Med. Biol. 47 3815

    [17]

    Wang X, Cui Y, Sun W, Ye J, Zhang Y 2010 J. Opt. Soc. Am. A 27 2387

    [18]

    Chen H, Bian H, Li J, Guo X, Wen X, Zheng J 2013 J. Phys. Chem. B 117 15614

    [19]

    Smith D R, Pendry J B, Wiltshire M C 2004 Science 305 788

    [20]

    Chen H T, Hara J F O, Azad A K, Taylor A J, Averitt R D, Shrekenhamer D B, Padilla W J 2008 Nat. Photon. 2 295

    [21]

    Chen H T, Hara J F O, Taylor A J, Averitt R D, Highstrete C, Lee M, Padilla W J 2007 Opt. Express 15 1084

    [22]

    Dong J W, Zheng H H, Lai Y, Wang H Z, Chan C 2011 Phys. Rev. B 83 115124

    [23]

    Dolling G, Wegener M, Soukoulis C M, Linden S 2007 Opt. Lett. 32 53

    [24]

    Singh R, Plum E, Menzel C, Rockstuhl C, Azad A, Cheville R, Lederer F, Zhang W, Zheludev N 2009 Phys. Rev. B 80 153104

    [25]

    Strikwerda A C, Fan K, Tao H, Pilon D V, Zhang X, Averitt R D 2009 Opt. Express 17 136

    [26]

    Ma X, Huang C, Pu M, Hu C, Feng Q, Luo X 2012 Opt. Express 20 16050

    [27]

    Kanda N, Konishi K, Kuwata-Gonokami M 2007 Opt. Express 15 11117

    [28]

    Huang C, Ma X, Pu M, Yi G, Wang Y, Luo X 2013 Opt. Commun. 291 345

    [29]

    Cong L, Cao W, Zhang X Q, Tian Z, Gu J Q, Singh R, Han J G, Zhang W L 2013 Appl. Phys. Lett. 103 171107

    [30]

    Tang J G, Xiao Z Y, Xu K K, Ma X L, Liu D J, Wang Z H 2016 Opt. Quant Electron 48 111

    [31]

    Yang L, Fan F, Chen M, Zhang X Z, Chang S J 2016 Acta Phys. Sin. 65 080702(in Chinese)[杨磊, 范飞, 陈猛, 张选洲, 常胜江2016 65 080702]

    [32]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Pang Y Q, Xu Z, Zhang A X 2015 J. Appl. Phys. 117 044501

  • [1] 王丹, 李九生, 郭风雷. 宽带吸收与极化转换可切换的太赫兹超表面.  , 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [2] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面.  , 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [3] 马少卿, 龚士香, 张微, 路承彪, 李小俚, 李英伟. 宽带微量太赫兹辐射促进神经元生长发育.  , 2022, 71(20): 208701. doi: 10.7498/aps.71.20220636
    [4] 刘靖宇, 李文宇, 刘智星, 舒敬懿, 赵国忠. 基于V形超表面的透射式太赫兹线偏振转换器.  , 2022, 71(23): 230701. doi: 10.7498/aps.71.20221259
    [5] 吕晓龙, 陆浩然, 郭云胜. Mie谐振耦合的亚波长金属孔宽带高透射传输.  , 2021, 70(3): 034201. doi: 10.7498/aps.70.20201121
    [6] 阎昊岚, 程雅青, 王凯礼, 王雅昕, 陈洋玮, 袁秋林, 马恒. 烷基环己苯异硫氰酸液晶材料太赫兹波吸收.  , 2019, 68(11): 116102. doi: 10.7498/aps.68.20190209
    [7] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束.  , 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [8] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生.  , 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [9] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计.  , 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [10] 金柯, 刘永强, 韩俊, 杨崇民, 王颖辉, 王慧娜. 基于超材料的中波红外宽带偏振转换研究.  , 2017, 66(13): 134201. doi: 10.7498/aps.66.134201
    [11] 张晨, 曹祥玉, 高军, 李思佳, 郑月军. 一种基于共享孔径Fabry-Perot谐振腔结构的宽带高增益磁电偶极子微带天线.  , 2016, 65(13): 134205. doi: 10.7498/aps.65.134205
    [12] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器.  , 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [13] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体.  , 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [14] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构.  , 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [15] 刘建丰, 周庆莉, 施宇蕾, 李磊, 赵冬梅, 张存林. 基底对亚波长金属双环结构太赫兹透射性质的影响.  , 2012, 61(4): 048101. doi: 10.7498/aps.61.048101
    [16] 韩煜, 袁学松, 马春燕, 鄢扬. 波瓣波导谐振腔太赫兹回旋管的研究.  , 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [17] 王立文, 娄淑琴, 陈卫国, 鹿文亮, 王鑫. 一种覆盖全通信波段的新型宽带偏振无关双芯光纤定向耦合器的研究.  , 2012, 61(15): 154207. doi: 10.7498/aps.61.154207
    [18] 陈吴玉婷, 韩鹏昱, Kuo Mei-Ling, Lin Shawn-Yu, 张希成. 具有缓变折射率的太赫兹宽带增透器件.  , 2012, 61(8): 088401. doi: 10.7498/aps.61.088401
    [19] 李磊, 周庆莉, 施宇蕾, 赵冬梅, 张存林, 赵昆, 田璐, 赵卉, 宝日玛, 赵嵩卿. 在太赫兹波段的开口共振环的不同开口形状对透过率频谱的影响.  , 2011, 60(1): 019503. doi: 10.7498/aps.60.019503
    [20] 冯野, 杨毅彪, 王安帮, 王云才. 利用半导体激光器环产生27 GHz的平坦宽带混沌激光.  , 2011, 60(6): 064206. doi: 10.7498/aps.60.064206
计量
  • 文章访问数:  7049
  • PDF下载量:  355
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-12
  • 修回日期:  2017-06-01
  • 刊出日期:  2017-09-05

/

返回文章
返回
Baidu
map