搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黑磷纳米通道内压力驱动流体流动特性

张忠强 刘汉伦 范晋伟 丁建宁 程广贵

引用本文:
Citation:

黑磷纳米通道内压力驱动流体流动特性

张忠强, 刘汉伦, 范晋伟, 丁建宁, 程广贵

Pressure-driven fluid flow characteristics in black phosphorus nanochannels

Zhang Zhong-Qiang, Liu Han-Lun, Fan Jin-Wei, Ding Jian-Ning, Cheng Guang-Gui
PDF
HTML
导出引用
  • 运用分子动力学方法探索了水-黑磷流-固界面各向异性、水流驱动力、黑磷通道宽度和黑磷层数等对黑磷通道内Poiseuille水流流动特性的影响规律. 研究结果表明: 随着驱动力的增加, 边界滑移速度随之增加; 各向异性也会对压力驱动作用下纳米通道内的水分子的流动特性产生影响, 具体表现为边界滑移速度会随着手性角度的增加而减小, 而水分子黏度系数却不受各向异性的影响. 发现黑磷表面天然的褶皱结构所产生的粗糙势能表面, 是导致流固界面各向异性特性的本质原因. 在加速度值保持不变的情况下, 研究纳米通道宽度和黑磷层数对水分子流动特性的影响, 发现随着纳米通道宽度的增加, 水分子滑移速度随之减小; 双层模型中水分子的速度分布与单层模型差异微小, 而随着层数的增加, 黑磷-水流固交互界面能随之增加, 各向异性规律依然保持不变. 研究结果将为水-黑磷流体器件设计与制备提供理论基础.
    With the rapid development of low-dimensional materials, the opportunity that promotes the development of micro/nano fluid devices, a new low-dimensional material black phosphorus (BP) has attracted wide attention due to its excellent properties, and has been applied to many areas. In this paper, the influences of driving force, water-BP anisotropy, channels’ width and the number of black phosphorus layers on the flow characteristics of water molecules in the nanochannels are studied by molecular dynamics based on the Poiseuille flow model. The results show that the boundary slip velocity increases with the driving force increasing. The anisotropy will also affect the flow characteristics of water molecules in the nanochannel under the pressure driving the Poiseuille flow. Specifically, the boundary slip velocity decreases with the chirality angle increasing, and the viscosity coefficient of water molecules is still not affected by the anisotropy. The natural rippled structure of the BP surface leads to the coarse potential surface, and further results in the anisotropic boundary slip and interfacial friction between water and BP sheets. With the driving acceleration kept constant, the influences of the width of nanochannels and the number of black phosphorus layers on the boundary slip velocity and viscosity coefficient of water molecules are investigated. The results indicate that the slip velocity of water molecules in the nanochannels decreases with the width of the nanochannels increasing. The velocity profile of water molecules in the bilayer model is slightly different from that in the monolayer model. With the number of BP layers increasing, the energy of BP-water solid-liquid interface increases while the anisotropic interfacial property remains unchanged. The results will provide a theoretical basis for the study of the characteristics of the fluid flowing in the black phosphorus nanochannels and the design of micro/nano fluid devices based on black phosphorus materials.
      通信作者: 张忠强, zhangzq@ujs.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11872192, 51675236)资助的课题.
      Corresponding author: Zhang Zhong-Qiang, zhangzq@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11872192, 51675236).
    [1]

    Keim N C, Arratia P E 2014 Phys. Rev. Lett. 112 028302Google Scholar

    [2]

    Naumis G G, Barraza-Lopez S, Oliva-Leyva M, Terrones H 2017 Rep. Prog. Phys. 80 096501Google Scholar

    [3]

    Paul J T, Singh A K, Dong Z, Zhuang H, Revard B C, Rijal B, Ashton M, Linscheid A, Blonsky M, Gluhovic D, Guo J, Hennig R G 2017 J. Phys.: Condens. Matter 29 473001Google Scholar

    [4]

    胡小唐, 李源, 饶志军, 胡春光, 傅星 2004 纳米技术与精密工程 2 1

    Hu X T, Li Y, Rao Z J, Hu C G, Fu X 2004 Nanotechnology and Precision Engineering 2 1

    [5]

    周兆英, 杨兴 2003 仪表技术与传感器 2 1Google Scholar

    Zhou Z Y, Yang X 2003 Instrument Technique and Sensor 2 1Google Scholar

    [6]

    严宇才, 张端 2011 电子工业专用设备 40 1Google Scholar

    Yan Y C, Zhang R 2011 Equipment for Electronic Products Manufacturing 40 1Google Scholar

    [7]

    Wu L, Deng D, Jin J, Lu X B, Chen J P 2012 Biosens. Bioelectron. 35 193Google Scholar

    [8]

    Khan M, Misra S K, Wang Z, Daza E, Schwartz-Duval A, Kus M J, Pan D 2017 Anal. Chem. 89 2107Google Scholar

    [9]

    Narang J, Malhotra N, Singhal C, Mathur A, Chakraborty D, Anil A, Ingle A, Pundir C S 2017 Biosens. Bioelectron. 88 249Google Scholar

    [10]

    Connacher W, Zhang N, An H, Mei J Y, Zhang S, Gopesh T, Friend J 2018 Lab Chip 10 1039

    [11]

    Soong C Y, Yen T H, Tzeng P Y 2007 Phys. Rev. E 76 036303Google Scholar

    [12]

    Sofos F D, Karakasidis T E, Antonios L 2009 Phys. Rev. E 79 026305Google Scholar

    [13]

    Turlo V, Politano O, Baras F 2015 Acta Mater. 99 363Google Scholar

    [14]

    Balasubramanian S, Mundy C J 1999 Bull. Mater. Sci. 22 873Google Scholar

    [15]

    Wang Z, Jia H, Zheng X, Yang R, Wang Z F, Ye G J, Chen X H, Shan J, Feng, P X L 2015 Nanoscale 7 877Google Scholar

    [16]

    Li L, Guo J Y, Tran V, Tran V, Fei R, Zhang Y 2015 Nat. Nanotechnol. 10 608Google Scholar

    [17]

    Wang X M, Jones A M, Seyler K L, Tran V, Jia Y C, Zhao H, Wang H, Yang L, Xu X D, Xia F N 2015 Nat. Nanotechnol. 10 517Google Scholar

    [18]

    袁振洲, 刘丹敏, 田楠, 张国庆, 张永哲 2016 化学学报 74 488

    Yuan Z Z, Liu D M, Tian N, Zhang G Q, Zhang Y Z 2016 Acta Chimica Sinica 74 488

    [19]

    Chen H, Huang P, Guo D, Xie G X 2016 J. Phys. Chem. C 120 29491Google Scholar

    [20]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [21]

    Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 4458Google Scholar

    [22]

    Fernández-Escamilla H N, Quijano-Briones J J, Tlahuice-Flores A 2016 Phys. Chem. Chem. Phys. 18 12414Google Scholar

    [23]

    Cai K, Wan J, Wei N, Qin Q H 2016 Nanotechnology 27 275701Google Scholar

    [24]

    Horn H W, Swope W C, Pitera J W, Madura J D, Dick T J, Hura G L, Head-Gordon T 2004 J. Chem. Phys. 120 9665Google Scholar

    [25]

    Ryckaert J P, Ciccotti G, Berendsen H J C 1977 J. Comput. Phys. 23 327Google Scholar

    [26]

    Cai K, Liu L, Jiao S, Qin Q H 2017 Mater. Des. 121 406Google Scholar

    [27]

    Zhang H W, Ye H F, Zheng Y G, Zhang Z 2011 Microfluid. Nanofluid. 10 403Google Scholar

    [28]

    Thompson P A, Troian S M 1997 Nature 63 360

    [29]

    Cao B Y, Chen M, Guo Z Y 2006 Phys. Rev. E 74 066311Google Scholar

    [30]

    Zhang H W, Zhang Z Q, Zheng Y G, Wang L, Wang J B 2010 Phys. Rev. E 81 066303Google Scholar

    [31]

    Zhang Z Q, Liu H L, Liu Z, Zhang Z, Cheng G G, Wang X D, Ding J N 2019 Appl. Surf. Sci. 475 857Google Scholar

    [32]

    Koplik J, Banavar J R, Willemsen J F 1988 Phys. Rev. Lett. 60 1282Google Scholar

  • 图 1  (a)单层黑磷模型图, 其中手性角度θ指黑磷褶皱方向与水分子流动方向夹角; (b)黑磷纳米通道内水分子流动的Poiseuille流模型图

    Fig. 1.  (a) Monolayer black phosphorus models, chiral angle θ is the intersection angle between water flow direction adjacent the top plate and the ripple direction of BP monolayer; (b) poiseuille flow model of water molecules in black phosphorus nanochannels.

    图 2  模型手性角度为0°时水分子的速度分布

    Fig. 2.  The velocity distribution of water molecules when the chiral angle of the model is 0°.

    图 3  黑磷纳米通道内水分子沿通道宽度方向的数密度分布图

    Fig. 3.  Number density distribution of water molecules along the channel width in the black phosphorus nanochannels.

    图 4  速度分布图及势能云图 (a) 模型手性角度为37.4°时水分子的速度分布; (b) 模型手性角度为66.6°时水分子的速度分布; (c) 模型手性角度为90°时水分子的速度分布; (d)模型手性角度为90°时的势能分布云图

    Fig. 4.  Velocity distribution diagram and potential energy cloud diagram: (a) The velocity distribution of water molecules when the chiral angle of the model is 37.4°; (b) the velocity distribution of water molecules when the chiral angle of the model is 66.6°; (c) the velocity distribution of water molecules when the chiral angle of the model is 90°; (d) potential energy cloud diagram when the chiral angle of the model is 90°.

    图 5  不同手性的模拟系统在不同加速度条件下的水分子黏度系数方差分布图

    Fig. 5.  Variance distribution of water molecular viscosity coefficient of a simulation system with different chirality under different acceleration conditions.

    图 6  不同纳米通道宽度内水分子沿通道宽度方向速度分布图

    Fig. 6.  Velocity distribution of water molecules along the width of different nanochannel widths.

    图 7  不同层数模型对应的速度分布图

    Fig. 7.  Velocity distributions corresponding to different layer models.

    表 1  L-J势能函数的参数值

    Table 1.  Parameter values of L-J potential function

    Atomsε/kcal·mol–1σ
    P-P0.367603.43800
    O-O0.162753.16435
    P-O0.244603.30120
    下载: 导出CSV

    表 2  不同手性情况中, 不同加速度对应的水分子边界滑移速度VS统计表

    Table 2.  Statistical table of water molecule boundary slip velocity VS corresponding to different accelerations in different chiral conditions.

    gx/m·s–1Angle/(°)
    037.466.690
    1.0 × 10126.33055.79904.78183.5462
    1.5 × 10128.98478.79796.88675.8156
    2.0 × 101213.491212.969410.69957.5839
    下载: 导出CSV

    表 3  不同手性的模拟系统在不同加速度条件下的水分子黏度系数μ分布表

    Table 3.  Distribution of water molecular viscosity coefficient μ of simulation systems with different chirality under different acceleration conditions.

    gx/m·s–1Angle/(°)
    037.466.690
    1.0 × 10120.11820.12090.11160.1212
    1.5 × 10120.11930.11730.11230.1168
    2.0 × 10120.11710.12030.12010.1183
    下载: 导出CSV

    表 4  不同纳米通道宽度内水分子的边界滑移表

    Table 4.  Boundary slip of water molecules at different nanochannels widths.

    H/nm3456
    VS/m·s–14.02674.35475.80057.5839
    下载: 导出CSV

    表 5  不同黑磷层数纳米通道模型中流固界面参数对比

    Table 5.  Comparison of the interfacial parameters for the models with different BP layers.

    VS/m·s–1μ/mPa·sEw-BP/kcal·mol–1·nm–2
    MonolayerBilayerMonolayerBilayerMonolayerBilayer
    13.491212.92560.11710.1216–13.7663–13.9138
    37.4°12.969412.44600.12030.1204–13.7797–13.9285
    下载: 导出CSV
    Baidu
  • [1]

    Keim N C, Arratia P E 2014 Phys. Rev. Lett. 112 028302Google Scholar

    [2]

    Naumis G G, Barraza-Lopez S, Oliva-Leyva M, Terrones H 2017 Rep. Prog. Phys. 80 096501Google Scholar

    [3]

    Paul J T, Singh A K, Dong Z, Zhuang H, Revard B C, Rijal B, Ashton M, Linscheid A, Blonsky M, Gluhovic D, Guo J, Hennig R G 2017 J. Phys.: Condens. Matter 29 473001Google Scholar

    [4]

    胡小唐, 李源, 饶志军, 胡春光, 傅星 2004 纳米技术与精密工程 2 1

    Hu X T, Li Y, Rao Z J, Hu C G, Fu X 2004 Nanotechnology and Precision Engineering 2 1

    [5]

    周兆英, 杨兴 2003 仪表技术与传感器 2 1Google Scholar

    Zhou Z Y, Yang X 2003 Instrument Technique and Sensor 2 1Google Scholar

    [6]

    严宇才, 张端 2011 电子工业专用设备 40 1Google Scholar

    Yan Y C, Zhang R 2011 Equipment for Electronic Products Manufacturing 40 1Google Scholar

    [7]

    Wu L, Deng D, Jin J, Lu X B, Chen J P 2012 Biosens. Bioelectron. 35 193Google Scholar

    [8]

    Khan M, Misra S K, Wang Z, Daza E, Schwartz-Duval A, Kus M J, Pan D 2017 Anal. Chem. 89 2107Google Scholar

    [9]

    Narang J, Malhotra N, Singhal C, Mathur A, Chakraborty D, Anil A, Ingle A, Pundir C S 2017 Biosens. Bioelectron. 88 249Google Scholar

    [10]

    Connacher W, Zhang N, An H, Mei J Y, Zhang S, Gopesh T, Friend J 2018 Lab Chip 10 1039

    [11]

    Soong C Y, Yen T H, Tzeng P Y 2007 Phys. Rev. E 76 036303Google Scholar

    [12]

    Sofos F D, Karakasidis T E, Antonios L 2009 Phys. Rev. E 79 026305Google Scholar

    [13]

    Turlo V, Politano O, Baras F 2015 Acta Mater. 99 363Google Scholar

    [14]

    Balasubramanian S, Mundy C J 1999 Bull. Mater. Sci. 22 873Google Scholar

    [15]

    Wang Z, Jia H, Zheng X, Yang R, Wang Z F, Ye G J, Chen X H, Shan J, Feng, P X L 2015 Nanoscale 7 877Google Scholar

    [16]

    Li L, Guo J Y, Tran V, Tran V, Fei R, Zhang Y 2015 Nat. Nanotechnol. 10 608Google Scholar

    [17]

    Wang X M, Jones A M, Seyler K L, Tran V, Jia Y C, Zhao H, Wang H, Yang L, Xu X D, Xia F N 2015 Nat. Nanotechnol. 10 517Google Scholar

    [18]

    袁振洲, 刘丹敏, 田楠, 张国庆, 张永哲 2016 化学学报 74 488

    Yuan Z Z, Liu D M, Tian N, Zhang G Q, Zhang Y Z 2016 Acta Chimica Sinica 74 488

    [19]

    Chen H, Huang P, Guo D, Xie G X 2016 J. Phys. Chem. C 120 29491Google Scholar

    [20]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [21]

    Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 4458Google Scholar

    [22]

    Fernández-Escamilla H N, Quijano-Briones J J, Tlahuice-Flores A 2016 Phys. Chem. Chem. Phys. 18 12414Google Scholar

    [23]

    Cai K, Wan J, Wei N, Qin Q H 2016 Nanotechnology 27 275701Google Scholar

    [24]

    Horn H W, Swope W C, Pitera J W, Madura J D, Dick T J, Hura G L, Head-Gordon T 2004 J. Chem. Phys. 120 9665Google Scholar

    [25]

    Ryckaert J P, Ciccotti G, Berendsen H J C 1977 J. Comput. Phys. 23 327Google Scholar

    [26]

    Cai K, Liu L, Jiao S, Qin Q H 2017 Mater. Des. 121 406Google Scholar

    [27]

    Zhang H W, Ye H F, Zheng Y G, Zhang Z 2011 Microfluid. Nanofluid. 10 403Google Scholar

    [28]

    Thompson P A, Troian S M 1997 Nature 63 360

    [29]

    Cao B Y, Chen M, Guo Z Y 2006 Phys. Rev. E 74 066311Google Scholar

    [30]

    Zhang H W, Zhang Z Q, Zheng Y G, Wang L, Wang J B 2010 Phys. Rev. E 81 066303Google Scholar

    [31]

    Zhang Z Q, Liu H L, Liu Z, Zhang Z, Cheng G G, Wang X D, Ding J N 2019 Appl. Surf. Sci. 475 857Google Scholar

    [32]

    Koplik J, Banavar J R, Willemsen J F 1988 Phys. Rev. Lett. 60 1282Google Scholar

  • [1] 桑丽霞, 李志康. Au-TiO2光电极界面声子热输运特性的分子动力学模拟.  , 2024, 73(10): 103105. doi: 10.7498/aps.73.20240026
    [2] 黄申洋, 张国伟, 汪凡洁, 雷雨晨, 晏湖根. 二维黑磷的光学性质.  , 2021, 70(2): 027802. doi: 10.7498/aps.70.20201497
    [3] 丁燕, 钟粤华, 郭俊青, 卢毅, 罗昊宇, 沈云, 邓晓华. 黑磷各向异性拉曼光谱表征及电学特性.  , 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [4] 董大兴, 刘友文, 伏洋洋, 费越. 金属光栅异常透射增强黑磷烯法拉第旋转的理论研究.  , 2020, 69(23): 237802. doi: 10.7498/aps.69.20201056
    [5] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究.  , 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [6] 孟达, 从鑫, 冷宇辰, 林妙玲, 王佳宏, 喻彬璐, 刘雪璐, 喻学锋, 谭平恒. 黑磷的多声子共振拉曼散射.  , 2020, 69(16): 167803. doi: 10.7498/aps.69.20200696
    [7] 陈仙, 张静, 唐昭焕. 纳米尺度下Si/Ge界面应力释放机制的分子动力学研究.  , 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [8] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟.  , 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [9] 卢敏, 黄惠莲, 余冬海, 刘维清, 魏望和. 不同晶面银纳米晶高温熔化的各向异性.  , 2015, 64(10): 106101. doi: 10.7498/aps.64.106101
    [10] 王成龙, 王庆宇, 张跃, 李忠宇, 洪兵, 苏折, 董良. SiC/C界面辐照性能的分子动力学研究.  , 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [11] 唐翠明, 赵锋, 陈晓旭, 陈华君, 程新路. Al与α-Fe2O3纳米界面铝热反应的从头计算分子动力学研究.  , 2013, 62(24): 247101. doi: 10.7498/aps.62.247101
    [12] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算.  , 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [13] 张云鹏, 林鑫, 魏雷, 王猛, 彭东剑, 黄卫东. 用CA方法模拟界面能各向异性对胞晶生长形态的影响.  , 2012, 61(22): 228106. doi: 10.7498/aps.61.228106
    [14] 曾祥明, 鄢慧君, 欧阳楚英. 第一性原理计算研究黑磷嵌锂态的动力学性能.  , 2012, 61(24): 247101. doi: 10.7498/aps.61.247101
    [15] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟.  , 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [16] 陈敏. 分子动力学方法研究金属Ti中He小团簇的迁移.  , 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [17] 何安民, 秦承森, 邵建立, 王裴. 金属Al表面熔化各向异性的分子动力学模拟.  , 2009, 58(4): 2667-2674. doi: 10.7498/aps.58.2667
    [18] 王志军, 王锦程, 杨根仓. 各向异性作用下合金定向凝固界面稳定性的渐近分析.  , 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [19] 李安华, 董生智, 李卫. 烧结Sm2Co17型永磁材料的力学性能及断裂行为的各向异性.  , 2002, 51(10): 2320-2324. doi: 10.7498/aps.51.2320
    [20] 戴永兵, 沈荷生, 张志明, 何贤昶, 胡晓君, 孙方宏, 莘海维. 金刚石/硅(001)异质界面的分子动力学模拟研究.  , 2001, 50(2): 244-250. doi: 10.7498/aps.50.244
计量
  • 文章访问数:  13424
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-11
  • 修回日期:  2019-06-14
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回
Baidu
map