Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhancement of Faraday rotation of black phosphorus by extraordinary optical transmission of the metal grating

Dong Da-Xing Liu You-Wen Fu Yang-Yang Fei Yue

Citation:

Enhancement of Faraday rotation of black phosphorus by extraordinary optical transmission of the metal grating

Dong Da-Xing, Liu You-Wen, Fu Yang-Yang, Fei Yue
PDF
HTML
Get Citation
  • Black phosphorus(BP) is a kind of two-dimensional (2D) material with direct bandgap. Its adjustable bandgap fills the gap between graphene and transition metal dichalcogenides(TMDCs). At the same time, the black phosphorusalso has a higher charge carrier mobility. The unique fold-like crystal structure of the black phosphorus leads to in-plane anisotropy and it makes the photoelectric response anisotropic. It shows that the properties of black phosphorus can be dynamically adjusted by various methods. These characteristics make black phosphorus a two-dimensional material with great potential applications in the visible light to mid-infrared region and even terahertz bands. In view of this, this paper focuses on the magneto-optical response of black phosphorus. In this paper, we design a magneto-optical device in Au grating/black phosphorus/silicon hybrid plasmonic structures. The inducing of abnormal transmission through the metal grating significantly enhances the transmittance, while the Faraday rotation effect is enhanced through the mode coupling between the TE and TM in the THz range. The rigorous coupled wave analysis (RCWA) is used to calculate the transmittance of the grating. The finite element software COMSOL Multiphysics is used to calculate the transmittance and simulate the electric field distribution of the magneto-optical device. Under the optimal parameters, the Faraday rotation can increase 14.434 times, reaching to 2.7426°, and the transmittance is more than 85% with an external magnetic field of 5 T at the operation frequency (1.5 THz). We plot the electric profiles of the magneto-optical device with and without BP to prove that the Faraday rotation is a result of the magneto-optical property of the monolayer phosphorus and that the enhancement is due to the mode coupling between the TE and TM. Moreover, we extract the tunable character of the magneto-optical device with the external magnetic field and the carrier density of the black phosphorus. The external magnetic field can effectively tune the Faraday rotation angle while keeping the working wavelength and the transmittance substantially unchanged. The increasing of the carrier density will not improve the Faraday rotation angle, for the changes in surface conductivity under fixed structural parameters will disrupt the mode coupling. At the same time the transmittance will decrease, because the larger carrier density will enhance the absorption of the BP. Therefore, to obtain a higher FR angle with apparent transmittance, the carrier density should not be too high. Finally, the effects of the spoof surface plasmons on the waveguide mode and the Faraday magneto-optical effect are also discussed.
      Corresponding author: Liu You-Wen, ywliu@nuaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61675095, 11904169)
    [1]

    Royer F, Varghese B, Gamet E, Neveu S, Jourlin Y, Jamon D 2020 ACS Omega 5 2886Google Scholar

    [2]

    Da H, Gao L, Ding W, Yan X 2017 J. Phys. Chem. Lett. 8 3805Google Scholar

    [3]

    Tymchenko M, Nikitin A Yu, Martín-Moreno L 2013 ACS Nano 7 9780Google Scholar

    [4]

    Deeter M N, Rose A H, Day G W 1990 J. Lightwave Technol. 8 1838Google Scholar

    [5]

    Rochford K B, Rose A H, Deeter M N, Day G W 1944 Opt. Lett. 19 1903

    [6]

    Luo X, Zhou M, Liu J, Qiu T, Yu Z 2016 Appl. Phys. Lett. 108 131104Google Scholar

    [7]

    Morimoto R, Goto T, Pritchard J, et al. 2016 Sci. Rep. 6 38679Google Scholar

    [8]

    Bossini D, Belotelov V I, Zvezdin A K, Kalish A N, Kimel A V 2016 ACS Photonics 3 1385Google Scholar

    [9]

    Dolatabady A, Granpayeh N 2019 J. Magn. Magn. Mater. 469 231Google Scholar

    [10]

    Dou R, Zhang H, Zhang Q, Zhuang N, Liu W, He Y, Chen Y, Cheng M, Luo J, Sun D 2019 Opt. Mater. 96 109272Google Scholar

    [11]

    Dong D X, Liu Y W, Fei Y, Fan Y Q, Li J S, Fu Y Y 2020 Opt. Mater. 102 109809Google Scholar

    [12]

    Bychkov I V, Kuzmin D A, Tolkachev V A, Plaksin P S, Shavrov V G 2018 Opt. Lett. 43 26Google Scholar

    [13]

    Sadowski M L, Martinez G, Potemski M, Berger C, de Heer W A 2006 Phys. Rev. Lett. 97 266405Google Scholar

    [14]

    Zhou X, Lou W K, Zhai F, Chang K 2015 Phys. Rev. B 92 165405Google Scholar

    [15]

    Jiang Y, Roldán R, Guinea F, Low T 2015 Phys. Rev. B 92 085408Google Scholar

    [16]

    Hoi B D, Yarmohammadi M 2018 Mater. Res. Express 6 015903Google Scholar

    [17]

    Yi Y, Sun Z, Li J, Chu P K, Yu X 2019 Small Methods 3 1900165Google Scholar

    [18]

    Debnath P C, Park K, Song Y-W 2018 Small Methods 2 1700315Google Scholar

    [19]

    Zhou Y, Zhang M X, Guo Z N, Miao L L, Han S T, Wang Z Y, Zhang X W, Zhang H, Peng Z C 2017 Mater. Horiz. 4 997Google Scholar

    [20]

    Wang X, Lan S 2016 Adv. Opt. Photon. 8 618Google Scholar

    [21]

    Li X J, Yu J H, Luo K, Wu Z H, Yang W 2018 Nanotechnology 29 174001Google Scholar

    [22]

    Low T, Roldán R, Wang H, Xia F, Avouris P, Moreno L M, Guinea F 2014 Phys. Rev. Lett. 113 106802Google Scholar

    [23]

    Zhou X Y, Zhang R, Sun J P, Zou Y L, Zhang D, Lou W K, Cheng F, Zhou G H, Zhai F, Chang K 2015 Sci. Rep. 5 12295Google Scholar

    [24]

    You Y, Gonçalves P A D, Shen L, Wubs M, Deng X, Xiao S 2019 Opt. Lett. 44 554Google Scholar

    [25]

    Da H X, Yan X 2016 Opt. Lett. 41 151Google Scholar

    [26]

    Smith K, Carroll T, Bodyfelt J D, Vitebskiy I, Chabanov A A 2013 J. Phys. D: Appl. Phys. 46 165002Google Scholar

    [27]

    Qin J, Xia S, Jia K, Wang C, Tang T, Lu H, Zhang L, Zhou P, Peng B, Deng L, Bi L 2018 APL Photonics 3 016103Google Scholar

    [28]

    Li L, Yang F, Ye G J, et al. 2016 Nat. Nanotechnol. 11 593Google Scholar

    [29]

    Wang J, Jiang Y 2017 Opt. Express 25 5206Google Scholar

    [30]

    Qing Y M, Ma H F, Cui T J 2018 Opt. Lett. 43 4985Google Scholar

    [31]

    Nemilentsau A, Low T, Hanson G 2016 Phys. Rev. Lett. 116 066804Google Scholar

    [32]

    Kang P, Kim K H, Park H G, Nam S 2018 Light Sci. Appl. 7 17Google Scholar

    [33]

    Xiao S, Liu T, Cheng L, Zhou C, Jiang X, Li Z, Xu C 2019 J. Lightwave Technol. 37 3290Google Scholar

    [34]

    袁英豪 2011博士学位论文 (武汉: 华中科技大学)

    Yuan Y H Ph. D. Dissertation (WuHan: Huazhong University of Science and Technology) (in Chinese)

    [35]

    王清 2014 硕士学位论文 (长沙: 国防科学技术大学)

    Wang Q 2014 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)

    [36]

    冯月, 沈涛, 胡超 2017 光子学报 43 294

    Feng Y, Shen T, Hu C 2017 Acta Photon. Sin. 43 294

    [37]

    Dong D, Liu Y, Fei Y, Fan Y, Li J, Feng Y, Fu Y 2019 Appl. Opt. 58 3862Google Scholar

    [38]

    Woolf D, Kats M A, Capasso F 2014 Opt. Lett. 39 517Google Scholar

  • 图 1  磁光器件结构图 (a) 三维结构图, 底部为硅基底, 上部为金属光栅, 中间为黑磷, 磁场垂直黑磷水平面, 入射光为线偏振光; (b) 垂直面二维图, 光栅周期L, 金属条厚度da, 宽度W, 基底厚度ds

    Figure 1.  Schematic of the magneto-optical device: (a) 3D structure diagram. The Si layer is the substrate, the grating is in the top layer, and the black phosphorus (BP) is in the center laye; (b) 2D vertical plane diagram. The period of the grating is L, the thickness and the width of the metal are da and W, and the thickness of the substrate is ds.

    图 2  单层黑磷和磁光器件透射谱、法拉第旋转角度和品质因数谱 (a) 虚线为单层黑磷的透射率频谱图, 实线为法拉第旋转角度频谱图; (b) 单层黑磷的品质因数频谱图; (c) GBPS结构的透射率频谱图和法拉第旋转角度频谱图; (d) GBPS结构的品质因数频谱图

    Figure 2.  The transmittance, Faraday rotation angle and the figure of merit (FOM) of the monolayer BP and magneto-optical device verse the frequency: (a) The dotted line is the transmittance of the monolayer BP, and the solid line is the Faraday rotation angle of the monolayer BP; (b) the FOM of the monolayer BP; (c) the dotted line is the transmittance of the magneto-optical device with GBPS structure, and the solid line is the Faraday rotation angle of the magneto-optical device with GBPS structure; (d) the FOM of the magneto-optical device with GBPS structure.

    图 3  磁光器件电场分布图和TE/TM透射谱 (a) GS结构, 1.5 THz时TM模式下的Ex, Ey分布图; (b) GBPS结构, 1.5 THz时TM模式下的的Ex, Ey分布图, Ey分布图中放大部分为金属光栅端子上的场分布; (c) TE模式下透射率随频率和光栅周期的变化图; (d) TM模式下透射率随频率和光栅周期的变化图

    Figure 3.  The electric field distribution and the TE/TM transmittance spectrum of the magneto-optical device: (a) The Ex and Ey of the device without the monolayer BP in TM mode at 1.5 THz; (b) the Ex and Ey of the device with GBPS structure in TM mode at 1.5 THz, and the electric field distribution on the metal grating terminal is shown in the enlarged part of Ey; (c) variations of transmittance with frequency and grating period in TE mode; (d) variations of transmittance with frequency and grating period in TM mode.

    图 4  外部磁场分别为3, 5, 7和9 T下的磁光器件响应图 (a) GBPS结构的透射率频谱图; (b) GBPS结构法拉第旋转角度频谱图

    Figure 4.  The magneto-optical response diagrams of the device when the external magnetic fields are set as 3, 5, 7 and 9 T: (a) Transmission and (b) faraday rotation angle of the device with GBPS structure.

    图 5  不同载流子浓度下的磁光器件响应图 (a) GBPS结构的透射率频谱; (b) GBPS结构的法拉第旋转角度频谱. 黑磷载流子浓度度分别为0.5n0, 1.0n0, 1.5 n0, 2.0 n0 (n0 = 1 × 1013 cm–2)

    Figure 5.  Magneto-optical response diagrams of the device with different carrier density of BP: (a) Transmission and (b) faraday rotation angle of the device with GBPS structure. The carrier density of BP are set as 0.5n0, 1.0n0, 1.5 n0, 2.0 n0 (n0 = 1 × 1013 cm–2).

    图 6  光栅中间填充二氧化硅后的磁光器件品质因数, 实线表示光栅宽度为109.365 μm, 点划线表示光栅宽度为110.650 μm

    Figure 6.  The FOM of the MO device when the grating is filled with SiO2. The solid line indicates that the grating width is 109.365 μm, and the dashed line indicates that the grating width is 110.650 μm.

    表 1  磁光器件不同结构参数下的法拉第旋转角度和透射率

    Table 1.  Faraday rotation and transmittance of the MO device with different structure parameters.

    No.f/THzL/μmW/μmds/μmT/%θp/(°)
    11.40170.580118.15031.37784.3544.3845
    21.45164.650113.16030.75085.2563.4711
    31.50159.000109.36529.28586.9682.7426
    41.55153.500105.91528.41487.1232.1730
    51.60148.800102.81027.45586.6792.1443
    DownLoad: CSV
    Baidu
  • [1]

    Royer F, Varghese B, Gamet E, Neveu S, Jourlin Y, Jamon D 2020 ACS Omega 5 2886Google Scholar

    [2]

    Da H, Gao L, Ding W, Yan X 2017 J. Phys. Chem. Lett. 8 3805Google Scholar

    [3]

    Tymchenko M, Nikitin A Yu, Martín-Moreno L 2013 ACS Nano 7 9780Google Scholar

    [4]

    Deeter M N, Rose A H, Day G W 1990 J. Lightwave Technol. 8 1838Google Scholar

    [5]

    Rochford K B, Rose A H, Deeter M N, Day G W 1944 Opt. Lett. 19 1903

    [6]

    Luo X, Zhou M, Liu J, Qiu T, Yu Z 2016 Appl. Phys. Lett. 108 131104Google Scholar

    [7]

    Morimoto R, Goto T, Pritchard J, et al. 2016 Sci. Rep. 6 38679Google Scholar

    [8]

    Bossini D, Belotelov V I, Zvezdin A K, Kalish A N, Kimel A V 2016 ACS Photonics 3 1385Google Scholar

    [9]

    Dolatabady A, Granpayeh N 2019 J. Magn. Magn. Mater. 469 231Google Scholar

    [10]

    Dou R, Zhang H, Zhang Q, Zhuang N, Liu W, He Y, Chen Y, Cheng M, Luo J, Sun D 2019 Opt. Mater. 96 109272Google Scholar

    [11]

    Dong D X, Liu Y W, Fei Y, Fan Y Q, Li J S, Fu Y Y 2020 Opt. Mater. 102 109809Google Scholar

    [12]

    Bychkov I V, Kuzmin D A, Tolkachev V A, Plaksin P S, Shavrov V G 2018 Opt. Lett. 43 26Google Scholar

    [13]

    Sadowski M L, Martinez G, Potemski M, Berger C, de Heer W A 2006 Phys. Rev. Lett. 97 266405Google Scholar

    [14]

    Zhou X, Lou W K, Zhai F, Chang K 2015 Phys. Rev. B 92 165405Google Scholar

    [15]

    Jiang Y, Roldán R, Guinea F, Low T 2015 Phys. Rev. B 92 085408Google Scholar

    [16]

    Hoi B D, Yarmohammadi M 2018 Mater. Res. Express 6 015903Google Scholar

    [17]

    Yi Y, Sun Z, Li J, Chu P K, Yu X 2019 Small Methods 3 1900165Google Scholar

    [18]

    Debnath P C, Park K, Song Y-W 2018 Small Methods 2 1700315Google Scholar

    [19]

    Zhou Y, Zhang M X, Guo Z N, Miao L L, Han S T, Wang Z Y, Zhang X W, Zhang H, Peng Z C 2017 Mater. Horiz. 4 997Google Scholar

    [20]

    Wang X, Lan S 2016 Adv. Opt. Photon. 8 618Google Scholar

    [21]

    Li X J, Yu J H, Luo K, Wu Z H, Yang W 2018 Nanotechnology 29 174001Google Scholar

    [22]

    Low T, Roldán R, Wang H, Xia F, Avouris P, Moreno L M, Guinea F 2014 Phys. Rev. Lett. 113 106802Google Scholar

    [23]

    Zhou X Y, Zhang R, Sun J P, Zou Y L, Zhang D, Lou W K, Cheng F, Zhou G H, Zhai F, Chang K 2015 Sci. Rep. 5 12295Google Scholar

    [24]

    You Y, Gonçalves P A D, Shen L, Wubs M, Deng X, Xiao S 2019 Opt. Lett. 44 554Google Scholar

    [25]

    Da H X, Yan X 2016 Opt. Lett. 41 151Google Scholar

    [26]

    Smith K, Carroll T, Bodyfelt J D, Vitebskiy I, Chabanov A A 2013 J. Phys. D: Appl. Phys. 46 165002Google Scholar

    [27]

    Qin J, Xia S, Jia K, Wang C, Tang T, Lu H, Zhang L, Zhou P, Peng B, Deng L, Bi L 2018 APL Photonics 3 016103Google Scholar

    [28]

    Li L, Yang F, Ye G J, et al. 2016 Nat. Nanotechnol. 11 593Google Scholar

    [29]

    Wang J, Jiang Y 2017 Opt. Express 25 5206Google Scholar

    [30]

    Qing Y M, Ma H F, Cui T J 2018 Opt. Lett. 43 4985Google Scholar

    [31]

    Nemilentsau A, Low T, Hanson G 2016 Phys. Rev. Lett. 116 066804Google Scholar

    [32]

    Kang P, Kim K H, Park H G, Nam S 2018 Light Sci. Appl. 7 17Google Scholar

    [33]

    Xiao S, Liu T, Cheng L, Zhou C, Jiang X, Li Z, Xu C 2019 J. Lightwave Technol. 37 3290Google Scholar

    [34]

    袁英豪 2011博士学位论文 (武汉: 华中科技大学)

    Yuan Y H Ph. D. Dissertation (WuHan: Huazhong University of Science and Technology) (in Chinese)

    [35]

    王清 2014 硕士学位论文 (长沙: 国防科学技术大学)

    Wang Q 2014 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)

    [36]

    冯月, 沈涛, 胡超 2017 光子学报 43 294

    Feng Y, Shen T, Hu C 2017 Acta Photon. Sin. 43 294

    [37]

    Dong D, Liu Y, Fei Y, Fan Y, Li J, Feng Y, Fu Y 2019 Appl. Opt. 58 3862Google Scholar

    [38]

    Woolf D, Kats M A, Capasso F 2014 Opt. Lett. 39 517Google Scholar

  • [1] Ding Yan, Zhong Yue-Hua, Guo Jun-Qing, Lu Yi, Luo Hao-Yu, Shen Yun, Deng Xiao-Hua. Anisotropic Raman characterization and electrical properties of black phosphorus. Acta Physica Sinica, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [2] Huang Shen-Yang, Zhang Guo-Wei, Wang Fan-Jie, Lei Yu-Chen, Yan Hu-Gen. Optical properties of two-dimensional black phosphorus. Acta Physica Sinica, 2021, 70(2): 027802. doi: 10.7498/aps.70.20201497
    [3] Song Ke-Chao, Huo Shuai-Nan, Tu Dong-Ming, Hou Xin-Fu, Wu Xiao-Jing, Wang Ming-Wei. Theoretical study on the modulation characteristics of THz wave by two-dimensional black phosphorus. Acta Physica Sinica, 2020, 69(17): 174205. doi: 10.7498/aps.69.20200105
    [4] Meng Da, Cong Xin, Leng Yu-Chen, Lin Miao-Ling, Wang Jia-Hong, Yu Bin-Lu, Liu Xue-Lu, Yu Xue-Feng, Tan Ping-Heng. Resonant Multi-phonon Raman scattering of black phosphorus. Acta Physica Sinica, 2020, 69(16): 167803. doi: 10.7498/aps.69.20200696
    [5] Cai Wei, Xu You-An, Yang Zhi-Yong. Quantum calculation of the influence of trivalent praseodymium ions doping on the magneto-optical properties of terbium gallium garnet crystal. Acta Physica Sinica, 2019, 68(13): 137801. doi: 10.7498/aps.68.20190576
    [6] Wang Shuai, Deng Zi-Lan, Wang Fa-Qiang, Wang Xiao-Lei, Li Xiang-Ping. Role of optical angular momentum in enhanced transmission process of plasmonic coaxial nanoring aperture. Acta Physica Sinica, 2019, 68(7): 077801. doi: 10.7498/aps.68.20182017
    [7] Zhang Zhong-Qiang, Liu Han-Lun, Fan Jin-Wei, Ding Jian-Ning, Cheng Guang-Gui. Pressure-driven fluid flow characteristics in black phosphorus nanochannels. Acta Physica Sinica, 2019, 68(17): 170202. doi: 10.7498/aps.68.20190531
    [8] Shang Ya-Xuan, Ma Jian, Shi Ping, Qian Xuan, Li Wei, Ji Yang. Measurement and improvement of rubidium spin noise spectroscopy. Acta Physica Sinica, 2018, 67(8): 087201. doi: 10.7498/aps.67.20180098
    [9] Shi Ping, Ma Jian, Qian Xuan, Ji Yang, Li Wei. Signal-to-noise ratio of spin noise spectroscopy in rubidium vapor. Acta Physica Sinica, 2017, 66(1): 017201. doi: 10.7498/aps.66.017201
    [10] Lu Yun-Qing, Cheng Xin-Yi, Xu Min, Xu Ji, Wang Jin. Extraordinary transmission of light enhanced by exciting hybrid states of Tamm and surface plasmon polaritions in a single nano-slit. Acta Physica Sinica, 2016, 65(20): 204207. doi: 10.7498/aps.65.204207
    [11] Cao Ming-Tao, Qiu Shu-Wei, Guo Wen-Ge, Liu Tao, Han Liang, Liu Hao, Zhang Pei, Zhang Shou-Gang, Gao Hong, Li Fu-Li. Optical polarization rotation in a rubidium vapor. Acta Physica Sinica, 2012, 61(16): 164208. doi: 10.7498/aps.61.164208
    [12] Zeng Xiang-Ming, Yan Hui-Jun, Ouyang Chu-Ying. First principles investigation of dynamic performance in the process of lithium intercalation into black phosphorus. Acta Physica Sinica, 2012, 61(24): 247101. doi: 10.7498/aps.61.247101
    [13] Teng Li-Hua, Wang Xia. Effect of carrier recombination on time-resolved Faraday rotation spectroscopy in GaAs quantum wells. Acta Physica Sinica, 2011, 60(5): 057202. doi: 10.7498/aps.60.057202
    [14] Wang Ya-Wei, Liu Ming-Li, Liu Ren-Jie, Lei Hai-Na, Tian Xiang-Long. Fabry-Perot resonance on extraordinary transmission through one-dimensional metallic gratings with sub-wavelength under transverse electric wave excitation. Acta Physica Sinica, 2011, 60(2): 024217. doi: 10.7498/aps.60.024217
    [15] Yan Wei, Lu Wen, Shi Jian-Kang, Ren Jian-Qi, Wang Rui. Eliminating the influence of Faraday rotation on passive microwave remote sensing from space. Acta Physica Sinica, 2011, 60(9): 099401. doi: 10.7498/aps.60.099401
    [16] Liu Jiang-Tao, Xiao Wen-Bo, Huang Jie-Hui, Yu Tian-Bao, Deng Xin-Hua. Tunable pass band of anomalous dispersion photonic crystals. Acta Physica Sinica, 2010, 59(3): 1665-1670. doi: 10.7498/aps.59.1665
    [17] Wang Ya-Wei, Liu Ming-Li, Liu Ren-Jie, Lei Hai-Na, Deng Xiao-Bin. Extraordinary transmission through one-dimensional metallic gratings with sub-wavelength slits under transverse electric wave excitation. Acta Physica Sinica, 2010, 59(6): 4030-4035. doi: 10.7498/aps.59.4030
    [18] Gu Yong-Jian, Chen Xiao-Dong, Lin Xiu-Min, Xiao Shao-Jun. Implementation of photon Bell-state and GHZ-state analyzers through the Faraday rotation. Acta Physica Sinica, 2010, 59(8): 5251-5255. doi: 10.7498/aps.59.5251
    [19] Wang Yuan-Yuan, Zhang Cai-Hong, Ma Jin-Long, Jin Biao-Bing, Xu Wei-Wei, Kang Lin, Chen Jian, Wu Pei-Heng. Extraordinary transmission of sub-wavelength apertures in terahertz region. Acta Physica Sinica, 2009, 58(10): 6884-6888. doi: 10.7498/aps.58.6884
    [20] WANG HUAN-YUAN, JIA WEI-YI, SHEN JING-XING. MAGNETO-OPTICAL FARADAY ROTATION IN Bi4Ge3O12 CRYSTAL. Acta Physica Sinica, 1985, 34(1): 126-128. doi: 10.7498/aps.34.126
Metrics
  • Abstract views:  6105
  • PDF Downloads:  117
  • Cited By: 0
Publishing process
  • Received Date:  03 July 2020
  • Accepted Date:  04 August 2020
  • Available Online:  30 November 2020
  • Published Online:  05 December 2020

/

返回文章
返回
Baidu
map