Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dual-core negative curvature fiber-based terahertz polarization beam splitter with ultra-low loss and wide bandwidth

Hui Zhan-Qiang Gao Li-Ming Liu Rui-Hua Han Dong-Dong Wang Wei

Citation:

Dual-core negative curvature fiber-based terahertz polarization beam splitter with ultra-low loss and wide bandwidth

Hui Zhan-Qiang, Gao Li-Ming, Liu Rui-Hua, Han Dong-Dong, Wang Wei
PDF
HTML
Get Citation
  • A novel terahertz polarization beam splitter (PBS) with low loss and large bandwidth based on double core negative curvature fiber is designed. The device takes copolymers of cycloolefin as the substrate, and 12 circular tubes with embedded tubes are evenly distributed along the circumference. The fiber core is divided into two cores through two groups of circumscribed small clad tubes symmetrical up and down. The finite-difference time-domain (FDTD) method is used to analyze its guide mode properties. The effects of various structural parameters on its beam splitting characteristics are investigated in detail, and the extinction ratio (ER), bandwidth and transmission loss of the PBS are analyzed. The simulation results show that when the incident light frequency is 1THz and the beam splitter length is 6.224 cm, the ER of x-polarized light reaches 120.8 dB, the bandwidth with ER above 20 dB is 0.024 THz, the ER of y-polarized light reaches 63.74 dB, the bandwidth with ER above 20 dB is 0.02THz, and the total transmission loss is as low as 0.037 dB/cm. Tolerance analysis shows that the PBS can still maintain good performance under the ±1% deviation of structural parameters.
      Corresponding author: Hui Zhan-Qiang, zhanqianghui@xupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61875165, 61775180, 61772417), the Collaborative Innovation Projects of Education Office of Shaanxi Province, China (Grant No. 20JY060), and the Graduates’ Creative Workstation of Xi’an University of Posts and Telecommunications, China (Grant No. YJGJ201905)
    [1]

    Costa D, Yacoub M 2008 Electron. Lett. 44 214Google Scholar

    [2]

    Xu J, Zhang X C 2006 Appl. Phys. Lett. 88 151107Google Scholar

    [3]

    Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 S266Google Scholar

    [4]

    Liu H B, Plopper G, Earley S, Chen Y Q, Ferguson B, Zhang X C 2007 Biosens. Bioelectron. 22 1075Google Scholar

    [5]

    孟淼, 严德贤, 李九生, 孙帅 2020 69 167801Google Scholar

    Meng M, Yan D X, Li J S, Sun S 2020 Acta Phys. Sin. 69 167801Google Scholar

    [6]

    Hui Z Q, Zhang T T, Han D D, Zhao F, Zhang M Z, Gong J M 2021 J. Infrared Millimeter Waves 40 616Google Scholar

    [7]

    Shi Z W, Cao X X, Wen Q Y, Wen T L, Yang Q H, Chen Z, Shi W S, Zhang H W 2018 Adv. Opt. Mater. 6 1700620Google Scholar

    [8]

    Su X Q, Ouyang C M, Xu N N, Cao W, Wei X, Song G F, Gu J Q, Tian Z, O’Hara J F, Han J G, Zhang W L 2015 Opt. Express 23 27152Google Scholar

    [9]

    Li J S, Xu D G, Yao J Q 2010 Appl. Opt. 49 4494Google Scholar

    [10]

    Li J S, Zouhdi S 2012 IEEE Photonics Technol. Lett. 24 625Google Scholar

    [11]

    Li D, Li J S 2020 Opt. Commun. 472 125862Google Scholar

    [12]

    Xiong H, Ji Q, Bashir T, Yang F 2020 Opt. Express 28 13884Google Scholar

    [13]

    Galan J V, Sanchis P, Garcia J, Blasco J, Martinez A, Martí J 2009 Appl. Opt. 48 2693Google Scholar

    [14]

    Ren L S, Jiao Y C, Li F, Zhao J J, Zhao G 2011 IEEE Antennas Wirel. Propag. Lett. 10 407Google Scholar

    [15]

    Liu H, Li J S 2014 Optoelectron. Lett. 10 325Google Scholar

    [16]

    Niu T M, Withayachumnankul W, Upadhyay A, Gutruf P, Abbott D, Bhaskaran M, Sriram S, Fumeaux C 2014 Opt. Express 22 16148Google Scholar

    [17]

    Lai W, Born N, Schneider L M, Rahimi-Iman A, Balzer J C, Koch M 2015 Opt. Mater. Express 5 2812Google Scholar

    [18]

    Li S S, Zhang H, Bai J, Liu W W, Jiang Z W, Chang S J 2014 IEEE Photonics Technol. Lett. 26 1399Google Scholar

    [19]

    Li S S, Zhang H, Hou Y, Bai J J, Liu W W, Chang S J 2013 Appl. Opt. 52 3305Google Scholar

    [20]

    Chen H Z, Yan G F, Forsberg E, He S L 2016 Appl. Opt. 55 6236Google Scholar

    [21]

    汪静丽, 刘洋, 钟凯 2017 66 024209Google Scholar

    Wang J L, Liu Y, Zhong K 2017 Acta Phys. Sin. 66 024209Google Scholar

    [22]

    Zhu Y F, Liu X, Rao C F, Zhong H, Luo H M, Chen Y H, Ye Z Q, Wang H 2018 Opt. Eng. 57 086112Google Scholar

    [23]

    Wang B K, Tian F J, Liu G Y, Bai R L, Yang X H, Zhang J Z 2021 Opt. Commun. 480 126463Google Scholar

    [24]

    Benabid F, Knight J C, Antonopoulos G, Russell P 2002 Science 298 399Google Scholar

    [25]

    Pearce G J, Wiederhecker G S, Poulton C G, Burger S, Russell P S J 2007 Opt. Express 15 12680Google Scholar

    [26]

    Islam M S, Sultana J, Rana S, Islam M R, Faisal M, Kaijage S F, Abbott D 2017 Opt. Fiber Technol. 34 6Google Scholar

    [27]

    Nielsen K, Rasmussen H K, Adam A J L, Planken P C M, Bang O, Jepsen P U 2009 Opt. Express 17 8592Google Scholar

    [28]

    Khanarian G, Celanese H 2001 Opt. Eng. 40 1024Google Scholar

    [29]

    Hou M X, Zhu F, Wang Y, Wang Y P, Liao C R, Liu S, Lu P X 2016 Opt. Express 24 27890Google Scholar

    [30]

    Ding W, Wang Y Y 2015 Opt. Express 23 21165Google Scholar

    [31]

    Florous N J, Saitoh K, Koshiba M 2006 IEEE Photonics Technol. Lett. 18 1231Google Scholar

    [32]

    Qu Y W, Yuan J H, Zhou X, Li F, Yan B B, Wu Q, Wang K R, Sang X Z, Long K P, Yu C X 2020 J. Opt. Soc. Am. B 37 396410Google Scholar

    [33]

    Zhang Y N, Xue L, Qiao D, Guang Z 2019 Optik 207 163817Google Scholar

    [34]

    Wu Z Q, Zhou X Y, Xia H D, Shi Z H, Huang J, Jiang X D, Wu W D 2017 Appl. Opt. 56 2288Google Scholar

    [35]

    Cucinotta A, Selleri S, Vincetti L, Zoboli M 2002 J. Light Technol. 20 1433Google Scholar

    [36]

    Falkenstein P, Merritt C D, Justus B L 2004 Opt. Lett. 29 1858Google Scholar

    [37]

    Xian F, Mairaj A K, Hewak D, Monro T M 2005 J. Light Technol. 23 2046Google Scholar

    [38]

    Wang L L, Zhang Y N, Ren L Y, Wang X Z, Li T H, Hu B W, Li Y L, Zhao W, Chen X H 2005 Chin. Opt. Lett. 3 S94

    [39]

    Sultana J, Islam M S, Cordeiro C M B, Habib M S, Dinovitser A, Ng B, Abbott D 2020 IEEE Access 8 113309Google Scholar

    [40]

    Cruz A L S, Serrão V A, Barbosa C L, Franco M A R, Cordeiro C M B, Argyros A, Tang X L 2015 J. Microwaves, Optoelectron. Electromagn. Appl. 14 SI45

    [41]

    Van P L D, Gorecki J, Fokoua E N, Apostolopoulos V, Poletti F 2018 Appl. Opt. 57 3953Google Scholar

    [42]

    Kumar V, Varshney R K, Kumar S 2021 Results in Opt. 4 100094Google Scholar

    [43]

    Kumar V, Varshney R K, Kumar S 2020 Appl. Opt. 59 1974Google Scholar

    [44]

    Zhu Y F, Chen M Y, Wang H, Yao H B, Zhang Y K, Yang J C 2013 IEEE Photonics J. 5 7101410Google Scholar

    [45]

    Vera E R, Restrepo J Ú, Durango C J, Cardona J M, Cardona N G 2018 IEEE Photonics J. 10 1Google Scholar

    [46]

    Tian F J, Liu G Y, Luo J F, Yao C Y, Li L, Yang X H, Zhang J Z 2021 Optik 225 165862Google Scholar

  • 图 1  双芯负曲率光纤太赫兹偏振分束器横截面结构图

    Figure 1.  Cross sectional structure of dual core negative curvature fiber terahertz polarization beam splitter.

    图 2  当固定参数r2 = 160 μm, r3 = 174.1 μm, Λ = 810 μm, t = 90 μm时, r1分别为375, 380, 385 μm时耦合长度和CLR与频率的变化关系图 (a)耦合长度; (b) CLR

    Figure 2.  Variation of coupling length and CLR: (a) Coupling length on frequency when r1 varies from 375 to 385 μm when r2 = 160 μm, r3 = 174.1 μm, Λ = 810 μm, t = 90 μm; (b) CLR in x-polarization and y-polarization.

    图 3  当固定参数r1 = 380 μm, r3 = 174.1 μm, Λ = 810 μm, t = 90 μm时, r2分别为156, 160, 164 μm时耦合长度和CLR与频率的变化关系图 (a)耦合长度; (b) CLR

    Figure 3.  Variation of coupling length and CLR: (a) Coupling length on frequency when r2 varies from 156 to 164 μm when r1 = 380 μm, r3 = 174.1 μm, Λ = 810 μm, t = 90 μm; (b) CLR in x-polarization and y-polarization.

    图 4  当固定参数r1 = 380 μm, r2 = 160 μm, Λ = 810 μm, t = 90 μm时, r3分别为170.1, 174.1, 178.1 μm时耦合长度和CLR与频率的变化关系图 (a)耦合长度; (b) CLR

    Figure 4.  Variation of coupling length and CLR: (a) Coupling length on frequency when r3 varies from 170.1 to 178.1 μm when r1 = 380 μm, r2 = 160 μm, Λ = 810 μm, t = 90 μm; (b) CLR in x-polarization and y-polarization.

    图 5  当固定参数r1 = 380 μm, r2 = 160 μm, r3 = 174.1 μm, t = 90 μm时, Λ分别为805, 810, 815 μm时耦合长度和CLR与频率的变化关系图 (a)耦合长度; (b) CLR

    Figure 5.  Variation of coupling length and CLR: (a) Coupling length on frequency when Λ varies from 805 to 815 μm when r1 = 380 μm, r2 = 160 μm, r3 = 174.1 μm, t = 90 μm; (b) CLR in x-polarization and y-polarization.

    图 6  当固定参数r1 = 380 μm, r2 = 160 μm, r3 = 174.1 μm, Λ = 810 μm时, t分别为87, 90, 93 μm时耦合长度和CLR与频率的变化关系图 (a)耦合长度; (b) CLR

    Figure 6.  Variation of coupling length and CLR: (a) Coupling length on frequency when t varies from 87 to 93 μm when r1 = 380 μm, r2 = 160 μm, r3 = 174.1 μm, Λ = 810 μm; (b) CLR in x-polarization and y-polarization.

    图 7  双芯负曲率光纤太赫兹偏振分束器模场分布图 (a) x偏振偶模; (b) y偏振偶模; (c) x偏振奇模; (d) y偏振奇模

    Figure 7.  Distributions of four supermodes in the proposed dual core negative curvature fiber terahertz polarization beam splitter: (a) x-polarized even mode; (b) y-polarized even mode; (c) x-polarized odd mode; (d) y-polarized odd mode.

    图 8  4个非简并模式的有效折射率随着频率的变化关系图

    Figure 8.  Variation of effective refractive index with frequency.

    图 9  偏振分束器的双芯中归一化能量随着传输距离的变化关系图 (a) A芯; (b) B芯

    Figure 9.  Normalized transmission power changes with distance in the dual core of polarization beam splitter: (a) Core A; (b) core B.

    图 10  偏振分束器的双芯输出端口消光比变化曲线图 (a) A芯; (b) B芯

    Figure 10.  Variation curve of extinction ratio of dual core output port of polarization beam splitter: (a) Core A; (b) core B.

    图 11  偏振分束器的损耗随着频率的变化关系图 (a)限制损耗; (b)有效吸收损耗

    Figure 11.  Variation of loss with frequency in the proposed dual core negative curvature fiber terahertz polarization beam splitter: (a) Confinement loss; (b) effective material loss.

    图 12  A芯中分别输入x偏振光和y偏振光时, 双芯的模式传输情况 (a) A芯中x偏振光; (b) B芯中x偏振光; (c) A芯中y偏振光; (d) B芯中y偏振光

    Figure 12.  Mode transmission of dual core when x-polarized light and y-polarized light are input into core A respectively: (a) x-polarization in core A; (b) x-polarization in core B; (c) y-polarization in core A; (d) y-polarization in core B.

    图 13  各个参数分别在 ±1%误差情况下消光比的变化情况

    Figure 13.  Change of extinction ratio of each parameter under ±1% error.

    图 14  所有参数在 ± 1%误差情况下消光比的变化情况 (a) A芯; (b) B芯

    Figure 14.  Change of extinction ratio of all parameter under ± 1% error: (a) Core A; (b) core B.

    表 1  光纤型太赫兹PBS性能比较

    Table 1.  Performance comparison of optical fiber terahertz PBS.

    结构中心频率/THz消光比/dB工作带宽/THz传输损耗/(dB·cm–1)分束器长度/cm
    Zhu, Chen, et al. (2013)[44]173.860.0320.273.36
    Chen, Yan, et al. (2016)[20]0.6540.0130.281.43
    E. Reyes-Vera, et al. (2018)[45]1680.151.510.9
    Zhu, Liu, et al. (2018)[22]1700.0460.41.27
    Kumar, Varshney, et al. (2020)[42]0.75200.0310
    Tian, Liu, et al. (2021)[46]164.640.020.511.184
    Wang, Tian, et al. (2021)[23]120.80.010.150.865
    本文工作1120.80.0240.0376.224
    DownLoad: CSV
    Baidu
  • [1]

    Costa D, Yacoub M 2008 Electron. Lett. 44 214Google Scholar

    [2]

    Xu J, Zhang X C 2006 Appl. Phys. Lett. 88 151107Google Scholar

    [3]

    Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 S266Google Scholar

    [4]

    Liu H B, Plopper G, Earley S, Chen Y Q, Ferguson B, Zhang X C 2007 Biosens. Bioelectron. 22 1075Google Scholar

    [5]

    孟淼, 严德贤, 李九生, 孙帅 2020 69 167801Google Scholar

    Meng M, Yan D X, Li J S, Sun S 2020 Acta Phys. Sin. 69 167801Google Scholar

    [6]

    Hui Z Q, Zhang T T, Han D D, Zhao F, Zhang M Z, Gong J M 2021 J. Infrared Millimeter Waves 40 616Google Scholar

    [7]

    Shi Z W, Cao X X, Wen Q Y, Wen T L, Yang Q H, Chen Z, Shi W S, Zhang H W 2018 Adv. Opt. Mater. 6 1700620Google Scholar

    [8]

    Su X Q, Ouyang C M, Xu N N, Cao W, Wei X, Song G F, Gu J Q, Tian Z, O’Hara J F, Han J G, Zhang W L 2015 Opt. Express 23 27152Google Scholar

    [9]

    Li J S, Xu D G, Yao J Q 2010 Appl. Opt. 49 4494Google Scholar

    [10]

    Li J S, Zouhdi S 2012 IEEE Photonics Technol. Lett. 24 625Google Scholar

    [11]

    Li D, Li J S 2020 Opt. Commun. 472 125862Google Scholar

    [12]

    Xiong H, Ji Q, Bashir T, Yang F 2020 Opt. Express 28 13884Google Scholar

    [13]

    Galan J V, Sanchis P, Garcia J, Blasco J, Martinez A, Martí J 2009 Appl. Opt. 48 2693Google Scholar

    [14]

    Ren L S, Jiao Y C, Li F, Zhao J J, Zhao G 2011 IEEE Antennas Wirel. Propag. Lett. 10 407Google Scholar

    [15]

    Liu H, Li J S 2014 Optoelectron. Lett. 10 325Google Scholar

    [16]

    Niu T M, Withayachumnankul W, Upadhyay A, Gutruf P, Abbott D, Bhaskaran M, Sriram S, Fumeaux C 2014 Opt. Express 22 16148Google Scholar

    [17]

    Lai W, Born N, Schneider L M, Rahimi-Iman A, Balzer J C, Koch M 2015 Opt. Mater. Express 5 2812Google Scholar

    [18]

    Li S S, Zhang H, Bai J, Liu W W, Jiang Z W, Chang S J 2014 IEEE Photonics Technol. Lett. 26 1399Google Scholar

    [19]

    Li S S, Zhang H, Hou Y, Bai J J, Liu W W, Chang S J 2013 Appl. Opt. 52 3305Google Scholar

    [20]

    Chen H Z, Yan G F, Forsberg E, He S L 2016 Appl. Opt. 55 6236Google Scholar

    [21]

    汪静丽, 刘洋, 钟凯 2017 66 024209Google Scholar

    Wang J L, Liu Y, Zhong K 2017 Acta Phys. Sin. 66 024209Google Scholar

    [22]

    Zhu Y F, Liu X, Rao C F, Zhong H, Luo H M, Chen Y H, Ye Z Q, Wang H 2018 Opt. Eng. 57 086112Google Scholar

    [23]

    Wang B K, Tian F J, Liu G Y, Bai R L, Yang X H, Zhang J Z 2021 Opt. Commun. 480 126463Google Scholar

    [24]

    Benabid F, Knight J C, Antonopoulos G, Russell P 2002 Science 298 399Google Scholar

    [25]

    Pearce G J, Wiederhecker G S, Poulton C G, Burger S, Russell P S J 2007 Opt. Express 15 12680Google Scholar

    [26]

    Islam M S, Sultana J, Rana S, Islam M R, Faisal M, Kaijage S F, Abbott D 2017 Opt. Fiber Technol. 34 6Google Scholar

    [27]

    Nielsen K, Rasmussen H K, Adam A J L, Planken P C M, Bang O, Jepsen P U 2009 Opt. Express 17 8592Google Scholar

    [28]

    Khanarian G, Celanese H 2001 Opt. Eng. 40 1024Google Scholar

    [29]

    Hou M X, Zhu F, Wang Y, Wang Y P, Liao C R, Liu S, Lu P X 2016 Opt. Express 24 27890Google Scholar

    [30]

    Ding W, Wang Y Y 2015 Opt. Express 23 21165Google Scholar

    [31]

    Florous N J, Saitoh K, Koshiba M 2006 IEEE Photonics Technol. Lett. 18 1231Google Scholar

    [32]

    Qu Y W, Yuan J H, Zhou X, Li F, Yan B B, Wu Q, Wang K R, Sang X Z, Long K P, Yu C X 2020 J. Opt. Soc. Am. B 37 396410Google Scholar

    [33]

    Zhang Y N, Xue L, Qiao D, Guang Z 2019 Optik 207 163817Google Scholar

    [34]

    Wu Z Q, Zhou X Y, Xia H D, Shi Z H, Huang J, Jiang X D, Wu W D 2017 Appl. Opt. 56 2288Google Scholar

    [35]

    Cucinotta A, Selleri S, Vincetti L, Zoboli M 2002 J. Light Technol. 20 1433Google Scholar

    [36]

    Falkenstein P, Merritt C D, Justus B L 2004 Opt. Lett. 29 1858Google Scholar

    [37]

    Xian F, Mairaj A K, Hewak D, Monro T M 2005 J. Light Technol. 23 2046Google Scholar

    [38]

    Wang L L, Zhang Y N, Ren L Y, Wang X Z, Li T H, Hu B W, Li Y L, Zhao W, Chen X H 2005 Chin. Opt. Lett. 3 S94

    [39]

    Sultana J, Islam M S, Cordeiro C M B, Habib M S, Dinovitser A, Ng B, Abbott D 2020 IEEE Access 8 113309Google Scholar

    [40]

    Cruz A L S, Serrão V A, Barbosa C L, Franco M A R, Cordeiro C M B, Argyros A, Tang X L 2015 J. Microwaves, Optoelectron. Electromagn. Appl. 14 SI45

    [41]

    Van P L D, Gorecki J, Fokoua E N, Apostolopoulos V, Poletti F 2018 Appl. Opt. 57 3953Google Scholar

    [42]

    Kumar V, Varshney R K, Kumar S 2021 Results in Opt. 4 100094Google Scholar

    [43]

    Kumar V, Varshney R K, Kumar S 2020 Appl. Opt. 59 1974Google Scholar

    [44]

    Zhu Y F, Chen M Y, Wang H, Yao H B, Zhang Y K, Yang J C 2013 IEEE Photonics J. 5 7101410Google Scholar

    [45]

    Vera E R, Restrepo J Ú, Durango C J, Cardona J M, Cardona N G 2018 IEEE Photonics J. 10 1Google Scholar

    [46]

    Tian F J, Liu G Y, Luo J F, Yao C Y, Li L, Yang X H, Zhang J Z 2021 Optik 225 165862Google Scholar

  • [1] Yang Ze-Hao, Liu Zi-Wei, Yang Bo, Zhang Cheng-Long, Cai Chen, Qi Zhi-Mei. Performance simulation of terahertz waveguide resonance biochemical sensor based on nanoporous gold films. Acta Physica Sinica, 2022, 71(21): 218701. doi: 10.7498/aps.71.20220722
    [2] Dual-core Negative Curvature Fiber-based Terahertz Polarization Beam Splitter with Ultra-low Loss and Wide Bandwidth. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211650
    [3] Zhang Yao, Sun Shuai, Yan Zhong-Bao, Zhang Guo, Shi Wei, Sheng Quan, Fang Qiang, Zhang Jun-Xiang, Shi Chao-Du, Zhang Gui-Zhong, Yao Jian-Quan. Design and coupling characteristics of terahertz dual-core anti-resonant fiber. Acta Physica Sinica, 2020, 69(20): 208703. doi: 10.7498/aps.69.20200662
    [4] Zhou Kang, Li Hua, Wan Wen-Jian, Li Zi-Ping, Cao Jun-Cheng. Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb. Acta Physica Sinica, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [5] Zhang Zhen-Zhen, Li Hua, Cao Jun-Cheng. Ultrafast terahertz detectors. Acta Physica Sinica, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [6] Zhang Jing-Shui, Kong Ling-Qin, Dong Li-Quan, Liu Ming, Zuo Jian, Zhang Cun-Lin, Zhao Yue-Jin. Diffusion part in terahertz complementary metal oxide semiconductor transistor detector model. Acta Physica Sinica, 2017, 66(12): 127302. doi: 10.7498/aps.66.127302
    [7] Wang Jing-Li, Liu Yang, Zhong Kai. Dual-core terahertz polarization splitter based on porous fibers with near-tie units. Acta Physica Sinica, 2017, 66(2): 024209. doi: 10.7498/aps.66.024209
    [8] Chen Ze-Zhang. Theoretical study on the polarizability properties of liquid crystal in the THz range. Acta Physica Sinica, 2016, 65(14): 143101. doi: 10.7498/aps.65.143101
    [9] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [10] Fu Xing-Hu, Xie Hai-Yang, Yang Chuan-Qing, Zhang Shun-Yang, Fu Guang-Wei, Bi Wei-Hong. Research on the temperature sensing characteristics of triple cladding quartz specialty fiber based on cladding mode resonance. Acta Physica Sinica, 2016, 65(2): 024211. doi: 10.7498/aps.65.024211
    [11] Zhang Hui-Yun, Liu Meng, Zhang Yu-Ping, He Zhi-Hong, Shen Duan-Long, Wu Zhi-Xin, Yin Yi-Heng, Li De-Hua. Improvement of the output power of optical pumping THz lasers based on the theory of vibrational relaxation. Acta Physica Sinica, 2014, 63(1): 010702. doi: 10.7498/aps.63.010702
    [12] Li Shan-Shan, Chang Sheng-Jiang, Zhang Hao, Bai Jin-Jun, Liu Wei-Wei. A THz polarization splitter made from suspended dual-core porous fiber. Acta Physica Sinica, 2014, 63(11): 110706. doi: 10.7498/aps.63.110706
    [13] Han Bo-Lin, Lou Shu-Qin, Lu Wen-Liang, Su Wei, Zou Hui, Wang Xin. Novel ultra-broadband polarization beam splitter based on dual-core photonic crystal fiber. Acta Physica Sinica, 2013, 62(24): 244202. doi: 10.7498/aps.62.244202
    [14] Jiang Zi-Wei, Bai Jin-Jun, Hou Yu, Wang Xiang-Hui, Chang Sheng-Jiang. Terahertz dual air core fiber directional coupler. Acta Physica Sinica, 2013, 62(2): 028702. doi: 10.7498/aps.62.028702
    [15] Bai Jin-Jun, Wang Chang-Hui, Hou Yu, Fan Fei, Chang Sheng-Jiang. Terahertz dual-core photonic band-gap fiber directional coupler. Acta Physica Sinica, 2012, 61(10): 108701. doi: 10.7498/aps.61.108701
    [16] Bai Jin-Jun, Wang Chang-Hui, Huo Bing-Zhong, Wang Xiang-Hui, Chang Sheng-Jiang. A broadband low loss and high birefringence terahertz photonic bandgap photonic crystal fiber. Acta Physica Sinica, 2011, 60(9): 098702. doi: 10.7498/aps.60.098702
    [17] Zhang Rong, Guo Xu-Guang, Cao Jun-Cheng. Simulation and optimization of grating optical coupling of terahertz quantum well photodetector. Acta Physica Sinica, 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [18] Li Peng, Zhao Jian-Lin, Zhang Xiao-Juan, Hou Jian-Ping. Analysis of model coupling in photonic crystal fiber with triangular structure triple-core. Acta Physica Sinica, 2010, 59(12): 8625-8631. doi: 10.7498/aps.59.8625
    [19] Wang Yan-Hua, Ren Wen-Hua, Liu Yan, Tan Zhong-Wei, Jian Shui-Sheng. Phase-modified coupled mode theory for calculation of fiber Bragg grating Fabry-Perot cavity transmission spectrum. Acta Physica Sinica, 2008, 57(10): 6393-6399. doi: 10.7498/aps.57.6393
    [20] Wang Mu-Guang, Wei Huai, Jian Shui-Sheng. Experimental and theoretical study on the compound dual-period fibre grating. Acta Physica Sinica, 2003, 52(3): 609-614. doi: 10.7498/aps.52.609
Metrics
  • Abstract views:  5110
  • PDF Downloads:  97
  • Cited By: 0
Publishing process
  • Received Date:  06 September 2021
  • Accepted Date:  08 October 2021
  • Available Online:  10 February 2022
  • Published Online:  20 February 2022

/

返回文章
返回
Baidu
map