Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Resonant Multi-phonon Raman scattering of black phosphorus

Meng Da Cong Xin Leng Yu-Chen Lin Miao-Ling Wang Jia-Hong Yu Bin-Lu Liu Xue-Lu Yu Xue-Feng Tan Ping-Heng

Citation:

Resonant Multi-phonon Raman scattering of black phosphorus

Meng Da, Cong Xin, Leng Yu-Chen, Lin Miao-Ling, Wang Jia-Hong, Yu Bin-Lu, Liu Xue-Lu, Yu Xue-Feng, Tan Ping-Heng
PDF
HTML
Get Citation
  • Black phosphorus (BP) has been attracting intense interest due to its unique anisotropic properties. The investigations on phonon dispersion and electronic band structure could expand the understanding of the properties of BP and promote its application on next generation nano-electronic devices. As the fingerprint of materials, Raman spectroscopy can provide the information of their phonon dispersion and electronic band structure. According to the Raman selection rule, Raman process involving multiple (two or more) phonons can be used to probe the phonon density of states within the whole Brillouin zone. However, the intensity of high-order Raman modes is much lower than that of the first-order Raman mode. To break through the limit of low intensity, here, we measured the resonant Raman spectroscopy of BP excited by several wavelength lasers and observed rich information about high-order Raman modes in the spectral range of 680–930 cm–1. To further investigate high-order Raman modes and avoid the birefringence effects from optical anisotropy on Raman intensity, we employ a special polarization configuration to obtain resonant Raman spectra and Raman intensity as a function of excitation wavelength. All the observed high-order Raman modes are certainly assigned, according to the phonon dispersion and symmetry analysis of related phonons. This indicates the great contribution of phonons within the Brillouin zone to the second- and third-order Raman scattering. This work proposes a general and systematical method to investigate high-order Raman modes, and paves ways for the researches of phonon dispersion and resonance Raman spectroscopy in other anisotropic materials.
      Corresponding author: Tan Ping-Heng, phtan@semi.ac.cn
    [1]

    Qiao J, Kong X, Hu Z, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [2]

    Cai Y, Ke Q, Zhang G, Feng Y P, Shenoy V B, Zhang Y W 2015 Adv. Funct. Mater. 25 2230Google Scholar

    [3]

    Ling X, Huang S, Hasdeo E H, Liang L, Parkin W M, Tatsumi Y, Nugraha A R, Puretzky A A, Das P M, Sumpter B G 2016 Nano Lett. 16 2260Google Scholar

    [4]

    Chen P F, Li N, Chen X Z, Ong W J, Zhao X J 2017 2D Mater. 5 014002Google Scholar

    [5]

    Malard L, Pimenta M, Dresselhaus G, Dresselhaus M 2009 Phys. Rep. 473 51Google Scholar

    [6]

    Zhang X, Qiao X F, Shi W, Wu J B, Jiang D S, Tan P H 2015 Chem. Soc. Rev. 44 2757Google Scholar

    [7]

    Shi W, Zhang X, Li X L, Qiao X F, Wu J B, Zhang J, Tan P H 2016 Chin. Phys. Lett. 33 057801Google Scholar

    [8]

    Shi W, Lin M L, Tan Q H, Qiao X F, Zhang J, Tan P H 2016 2D Mater. 3 025016Google Scholar

    [9]

    Lin T, Cong X, Lin M L, Liu X L, Tan P H 2018 Nanoscale 10 8704Google Scholar

    [10]

    Mao N, Wu J, Han B, Lin J, Tong L, Zhang J 2016 Small 12 2627Google Scholar

    [11]

    Ribeiro H B, Pimenta M A, De Matos C J, Moreira R L, Rodin A S, Zapata J D, De Souza E A, Castro Neto A H 2015 ACS Nano 9 4270Google Scholar

    [12]

    Kim J, Lee J U, Lee J, Park H J, Lee Z, Lee C, Cheong H 2015 Nanoscale 7 18708Google Scholar

    [13]

    Wang X, Mao N, Luo W, Kitadai H, Ling X 2018 J. Phys. Chem. Lett. 9 2830Google Scholar

    [14]

    Favron A, Goudreault F A, Gosselin V, Groulx J, Cote M, Leonelli R, Germain J F, Phaneuf L, Heureux A L, Francoeur S, Martel R 2018 Nano Lett. 18 1018Google Scholar

    [15]

    Sugai S, Shirotani I 1985 Solid State Commun. 53 753Google Scholar

    [16]

    Jiang J W, Wang B S, Park H S 2016 J. Phys. Condens. Matter 28 165401Google Scholar

    [17]

    Wu J B, Lin M L, Cong X, Liu H N, Tan P H 2018 Chem. Soc. Rev. 47 1822Google Scholar

    [18]

    Wu J B, Zhang X, Ijäs M, Han W P, Qiao X F, Li X L, Jiang D S, Ferrari A C, Tan P H 2014 Nat. Commun. 5 5309Google Scholar

    [19]

    Saito R, Jorio A, Filho A G S, Dresselhaus G, Pimenta M A 2002 Jpn. J. Appl. Phys. 41 4878Google Scholar

    [20]

    Carvalho B R, Malard L M, Alves J M, Fantini C, Pimenta M A 2015 Phys. Rev. Lett. 114 136403Google Scholar

    [21]

    Clark R J H, Dines T J 1986 Angew. Chem. Int. Ed. 25 131Google Scholar

    [22]

    Liu X L, Zhang X, Lin M L, Tan P H 2017 Chin. Phys. B 26 067802Google Scholar

  • 图 1  (a)黑磷的晶体结构; (b)声子模的原子位移示意图; (c)黑磷的声子色散、声子态密度以及第一布里渊区示意图; 布里渊区中心的各拉曼模已在图中标出[9]

    Figure 1.  (a) Crystal structure of black phosphorus; (b) atomic displacements of phonon modes in black phosphorus; (c) phonon dispersion, vibration density of states (VDOS) and schematic diagram of first Brillouin zone of bulk black phosphorus. Raman modes at the Brillouin zone center are labeled[9]

    图 2  (a)偏振拉曼实验的配置. 固定拉曼信号光路上检偏器的检偏方向($\theta_{\rm s} = 0$), 以探测具有相应偏振方向的散射光. 通过旋转半波片, 可以改变激发光与x轴的夹角$\theta_{\rm i}$; (b)在VV($\theta_{\rm i}=0^{\circ}$)和HV($\theta_{\rm i}=90^{\circ}$)偏振配置下, 包含$ {\rm{B}_{1g}}$, $\rm B_{3 g}^1$, $ {\rm{A}^1_g} $, $ {\rm{A}^2 _g}$$ {\rm{B}_{2g}} $一阶拉曼模的拉曼光谱; (c)在不同波长激光的激发下, 黑磷三个主要的一阶拉曼模的峰强与$\theta_{\rm i}$的依赖关系. 不同颜色对应不同的激发波长, 符号散点给出了峰强的实验值, 实线给出了峰强随$\theta_{\rm i}$变化的拟合结果

    Figure 2.  (a) Experimental configuration. The polarization direction of Raman signal is fixed ($\theta_{\rm s} = 0$). The angle between polarization direction of incident light and x axis is $\theta_{\rm i}$, which can be changed by rotating a half-wave plate; (b) Raman spectra in the range of $ {\rm{B}_{1g}} $, $\rm B_{3 g}^1$, $ {\rm{A}^1 _g}$, $ {\rm{A}^2 _g}$ and $ {\rm{B}_{2g}} $ modes, under the VV($\theta_{\rm i}=0^{\circ}$) and HV($\theta_{\rm i}=90^{\circ}$) configurations; (c) the $\theta_{\rm i}$-dependent Raman intensity excited by different wavelengths. The solid lines indicate fitting results.

    图 3  (a) 473—671 nm之间6个波长激光激发下的拉曼光谱. 每一组谱线都给出了$\theta_{\rm i}=0^{\circ}$$\theta_{\rm i}=90^{\circ}$两种配置下的情况. 竖虚线标出了3个主要的一阶拉曼峰以及能够辨识出的11个高阶拉曼峰(P1—P11); (b) 6个波长激光激发下在$\theta_{\rm i}=0^{\circ}$时P4—P11各谱线的拟合情况

    Figure 3.  (a) Raman spectra of black phosphorus excited by six excitation wavelengths between 473–671 nm. Raman spectra at $\theta_{\rm i}=0^{\circ}$ and $\theta_{\rm i}=90^{\circ}$ are given for each excitation. Three main first-order Raman peaks and eleven high-order Raman peaks (P1–P11) are marked by vertical dotted lines; (b) the fitting result of P4–P11 for Raman spectra by six excitations at $\theta_{\rm i}=0^{\circ}$.

    图 4  488, 532和633 nm激光激发下, 黑磷P1—P11高阶拉曼模的偏振特性

    Figure 4.  Polarization-dependent Raman intensity of P1–P11 Raman modes, excited by 488, 532 and 633 nm lasers.

    表 1  实验所观察到的黑磷多声子拉曼峰的指认

    Table 1.  Assignments of high order Raman peaks of BP.

    PeaksRaman shift /cm–1Assigned modeAssigned mode in Ref. [13]Calculated frequency/cm–1
    P1~688${\rm A}_{\rm g}^2 (\varGamma)+B_{3 {\rm g}}^1 (\varGamma)$${\rm A}_{\rm g}^2+B_{3 {\rm g}}^1$689
    P2~714${\rm B}_{2 {\rm g}} (\varGamma)+2\cdot B_{1 {\rm g}} (X)$715
    P3~747$2 \cdot {\rm{A}}_{\rm{g}}^2(\varGamma ){\rm{ - B}}_{{\rm{3 g}}}^{\rm{1}}(\varGamma )$$2 \cdot {\rm{A}}_{\rm{g}}^2-{{\rm{B}}_{{\rm{1 g}}}}$749
    P4~819${\rm B}_{2 {\rm g}} (\varGamma)+B_{1 {\rm g}} (S)+B_{3 {\rm g}}^1 (S)$821
    P5~831$2 \cdot {\rm{A} }_{\rm{g} }^2({\rm {near} }\;{{Y} })$832
    P6~839$2 \cdot {\rm{A} }_{\rm{g} }^2({{S} })$842
    P7~855$2 \cdot {\rm{B} }_{ {\rm{3 g} } }^2(\varGamma )$858
    P8~864$2 \cdot { {\rm{B} }_{ {\rm{2 g} } } }({{X} })$864
    P9~872$2 \cdot { {\rm{B} }_{2{\rm{g} } } }(\varGamma \;{\rm {or} }\;{ {S} })$874
    P10~886${\rm A}_{\rm g}^1 (X)+ A_{\rm g}^2 (X)$888
    P11~895$2 \cdot { {\rm{B} }_{2{\rm{g} } } }({\rm {between}}\;{{X} }\;{\rm {and}}\;{{S} })$896
    DownLoad: CSV
    Baidu
  • [1]

    Qiao J, Kong X, Hu Z, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [2]

    Cai Y, Ke Q, Zhang G, Feng Y P, Shenoy V B, Zhang Y W 2015 Adv. Funct. Mater. 25 2230Google Scholar

    [3]

    Ling X, Huang S, Hasdeo E H, Liang L, Parkin W M, Tatsumi Y, Nugraha A R, Puretzky A A, Das P M, Sumpter B G 2016 Nano Lett. 16 2260Google Scholar

    [4]

    Chen P F, Li N, Chen X Z, Ong W J, Zhao X J 2017 2D Mater. 5 014002Google Scholar

    [5]

    Malard L, Pimenta M, Dresselhaus G, Dresselhaus M 2009 Phys. Rep. 473 51Google Scholar

    [6]

    Zhang X, Qiao X F, Shi W, Wu J B, Jiang D S, Tan P H 2015 Chem. Soc. Rev. 44 2757Google Scholar

    [7]

    Shi W, Zhang X, Li X L, Qiao X F, Wu J B, Zhang J, Tan P H 2016 Chin. Phys. Lett. 33 057801Google Scholar

    [8]

    Shi W, Lin M L, Tan Q H, Qiao X F, Zhang J, Tan P H 2016 2D Mater. 3 025016Google Scholar

    [9]

    Lin T, Cong X, Lin M L, Liu X L, Tan P H 2018 Nanoscale 10 8704Google Scholar

    [10]

    Mao N, Wu J, Han B, Lin J, Tong L, Zhang J 2016 Small 12 2627Google Scholar

    [11]

    Ribeiro H B, Pimenta M A, De Matos C J, Moreira R L, Rodin A S, Zapata J D, De Souza E A, Castro Neto A H 2015 ACS Nano 9 4270Google Scholar

    [12]

    Kim J, Lee J U, Lee J, Park H J, Lee Z, Lee C, Cheong H 2015 Nanoscale 7 18708Google Scholar

    [13]

    Wang X, Mao N, Luo W, Kitadai H, Ling X 2018 J. Phys. Chem. Lett. 9 2830Google Scholar

    [14]

    Favron A, Goudreault F A, Gosselin V, Groulx J, Cote M, Leonelli R, Germain J F, Phaneuf L, Heureux A L, Francoeur S, Martel R 2018 Nano Lett. 18 1018Google Scholar

    [15]

    Sugai S, Shirotani I 1985 Solid State Commun. 53 753Google Scholar

    [16]

    Jiang J W, Wang B S, Park H S 2016 J. Phys. Condens. Matter 28 165401Google Scholar

    [17]

    Wu J B, Lin M L, Cong X, Liu H N, Tan P H 2018 Chem. Soc. Rev. 47 1822Google Scholar

    [18]

    Wu J B, Zhang X, Ijäs M, Han W P, Qiao X F, Li X L, Jiang D S, Ferrari A C, Tan P H 2014 Nat. Commun. 5 5309Google Scholar

    [19]

    Saito R, Jorio A, Filho A G S, Dresselhaus G, Pimenta M A 2002 Jpn. J. Appl. Phys. 41 4878Google Scholar

    [20]

    Carvalho B R, Malard L M, Alves J M, Fantini C, Pimenta M A 2015 Phys. Rev. Lett. 114 136403Google Scholar

    [21]

    Clark R J H, Dines T J 1986 Angew. Chem. Int. Ed. 25 131Google Scholar

    [22]

    Liu X L, Zhang X, Lin M L, Tan P H 2017 Chin. Phys. B 26 067802Google Scholar

  • [1] Zhang Yang, Zhang Zhi-Hao, Wang Yu-Jian, Xue Xiao-Lan, Chen Ling-Xiu, Shi Li-Wei. Polarization modulation scanning optical microscopy method. Acta Physica Sinica, 2024, 73(15): 157801. doi: 10.7498/aps.73.20240688
    [2] Cheng Qiu-Zhen, Huang Yin, Li Yu-Hui, Zhang Kai, Xian Guo-Yu, Liu He-Yuan, Che Bing-Yu, Pan Lu-Lu, Han Ye-Chao, Zhu Ke, Qi Qi, Xie Yao-Feng, Pan Jin-Bo, Chen Hai-Long, Li Yong-Feng, Guo Hui, Yang Hai-Tao, Gao Hong-Jun. In-plane optical anisotropy of quasi-one-dimensional layered semiconductor Nb4P2S21 single crystal. Acta Physica Sinica, 2023, 72(21): 218102. doi: 10.7498/aps.72.20231539
    [3] Song Meng-Ting, Zhang Yue, Huang Wen-Juan, Hou Hua-Yi, Chen Xiang-Bai. Enhancement of two-magnon scattering in annealed nickel oxide studied by Raman spectroscopy. Acta Physica Sinica, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [4] Huang Shen-Yang, Zhang Guo-Wei, Wang Fan-Jie, Lei Yu-Chen, Yan Hu-Gen. Optical properties of two-dimensional black phosphorus. Acta Physica Sinica, 2021, 70(2): 027802. doi: 10.7498/aps.70.20201497
    [5] Ding Yan, Zhong Yue-Hua, Guo Jun-Qing, Lu Yi, Luo Hao-Yu, Shen Yun, Deng Xiao-Hua. Anisotropic Raman characterization and electrical properties of black phosphorus. Acta Physica Sinica, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [6] Dong Da-Xing, Liu You-Wen, Fu Yang-Yang, Fei Yue. Enhancement of Faraday rotation of black phosphorus by extraordinary optical transmission of the metal grating. Acta Physica Sinica, 2020, 69(23): 237802. doi: 10.7498/aps.69.20201056
    [7] Song Ke-Chao, Huo Shuai-Nan, Tu Dong-Ming, Hou Xin-Fu, Wu Xiao-Jing, Wang Ming-Wei. Theoretical study on the modulation characteristics of THz wave by two-dimensional black phosphorus. Acta Physica Sinica, 2020, 69(17): 174205. doi: 10.7498/aps.69.20200105
    [8] Qin Kang, Yuan Lie-Rong, Tan Jun, Peng Sheng, Wang Qian-Jin, Zhang Xue-Jin, Lu Yan-Qing, Zhu Yong-Yuan. Surface-enhanced Raman scattering of subwavelength metallic structures. Acta Physica Sinica, 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [9] Zhang Zhong-Qiang, Liu Han-Lun, Fan Jin-Wei, Ding Jian-Ning, Cheng Guang-Gui. Pressure-driven fluid flow characteristics in black phosphorus nanochannels. Acta Physica Sinica, 2019, 68(17): 170202. doi: 10.7498/aps.68.20190531
    [10] Li Bin, Luo Shi-Wen, Yu An-Lan, Xiong Dong-Sheng, Wang Xin-Bing, Zuo Du-Luo. Confocal-cavity-enhanced Raman scattering of ambient air. Acta Physica Sinica, 2017, 66(19): 190703. doi: 10.7498/aps.66.190703
    [11] Zeng Xiang-Ming, Yan Hui-Jun, Ouyang Chu-Ying. First principles investigation of dynamic performance in the process of lithium intercalation into black phosphorus. Acta Physica Sinica, 2012, 61(24): 247101. doi: 10.7498/aps.61.247101
    [12] Zhou Mi, Li Zhan-Long, Lu Guo-Hui, Li Dong-Fei, Sun Cheng-Lin, Gao Shu-Qin, Li Zuo-Wei. High pressure Raman investigation on the Fermi resonance of biphenyl. Acta Physica Sinica, 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [13] Han Ru, Fan Xiao-Ya, Yang Yin-Tang. Temperature-dependent Raman property of n-type SiC. Acta Physica Sinica, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [14] Zhang Jun, Tan Ping-Heng, Zhao Wei-Jie. Accurate determination of electronic transition energy of carbon nanotubes from the resonant behavior of radial breathing modes and their overtones. Acta Physica Sinica, 2010, 59(11): 7966-7973. doi: 10.7498/aps.59.7966
    [15] Han Ru, Yang Yin-Tang, Chai Chang-Chun. Electronic Raman scattering and the second-order Raman spectra of the n-type SiC. Acta Physica Sinica, 2008, 57(5): 3182-3187. doi: 10.7498/aps.57.3182
    [16] Wu Yong-Quan, Jiang Guo-Chang, You Jing-Lin, Hou Huai-Yu, Chen Hui. Raman scattering coefficients of symmetrical stretching modes of microstructural units in sodium silicate melts. Acta Physica Sinica, 2005, 54(2): 961-966. doi: 10.7498/aps.54.961
    [17] Wu Yan-Zhao, Yu Ping, Wang Yu-Fang, Jin Qing-Hua, Ding Da-Tong, Lan Guo-Xiang. Baman scattering intensity of single-wall carbon nanotubes. Acta Physica Sinica, 2005, 54(11): 5262-5268. doi: 10.7498/aps.54.5262
    [18] Zhang Ji-Cai, Dai Lun, Qin Guo-Gang, Ying Li-Zhen, Zhao Xin-Sheng. . Acta Physica Sinica, 2002, 51(3): 629-634. doi: 10.7498/aps.51.629
    [19] HUANG SHI-HUA, MO YU-DONG. RESONANT RAMAN SCATTERING OF Hg1-xCdxTe . Acta Physica Sinica, 2001, 50(5): 964-967. doi: 10.7498/aps.50.964
    [20] LI HONG-NIAN, XU YA-BO, LI HAI-YANG, HE PEI-MO, BAO SHI-NING. RAMAN SPECTRUM STUDY OF PHONON MODES FOR SINGLE-WALL CARBON NANOTUBES. Acta Physica Sinica, 1999, 48(2): 273-278. doi: 10.7498/aps.48.273
Metrics
  • Abstract views:  12724
  • PDF Downloads:  457
  • Cited By: 0
Publishing process
  • Received Date:  09 May 2020
  • Accepted Date:  27 May 2020
  • Available Online:  02 June 2020
  • Published Online:  20 August 2020

/

返回文章
返回
Baidu
map