搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黑磷的多声子共振拉曼散射

孟达 从鑫 冷宇辰 林妙玲 王佳宏 喻彬璐 刘雪璐 喻学锋 谭平恒

引用本文:
Citation:

黑磷的多声子共振拉曼散射

孟达, 从鑫, 冷宇辰, 林妙玲, 王佳宏, 喻彬璐, 刘雪璐, 喻学锋, 谭平恒

Resonant Multi-phonon Raman scattering of black phosphorus

Meng Da, Cong Xin, Leng Yu-Chen, Lin Miao-Ling, Wang Jia-Hong, Yu Bin-Lu, Liu Xue-Lu, Yu Xue-Feng, Tan Ping-Heng
PDF
HTML
导出引用
  • 黑磷由于具有独特的各向异性而受到广泛的关注. 声子色散和电子能带结构的研究对于理解黑磷的性质及其在下一代各向异性纳米光电子器件中的应用有促进作用. 拉曼光谱作为材料的指纹谱, 可提供材料声子色散以及电子能带结构等信息. 根据拉曼选择定则, 多声子(两个或两个以上的声子)拉曼散射光谱可以探测整个布里渊区内的声子态密度. 然而, 一般来说, 相比于一阶拉曼散射, 高阶拉曼散射具有极低的强度. 为了克服这种限制, 本文通过多个激光波长来激发黑磷的拉曼光谱, 观测到了丰富的二阶和三阶拉曼模. 同时, 采用特定的偏振配置避免了黑磷光学各向异性所导致的双折射效应对拉曼强度的影响, 结合声子色散及其对称性对680—930 cm–1范围内的多声子拉曼峰进行了指认, 这表明非布里渊区中心的声子对黑磷的二阶和三阶拉曼散射有重要贡献. 本文所提出的研究高阶拉曼散射的方法对研究其他各向异性材料中的共振拉曼光谱具有借鉴作用.
    Black phosphorus (BP) has been attracting intense interest due to its unique anisotropic properties. The investigations on phonon dispersion and electronic band structure could expand the understanding of the properties of BP and promote its application on next generation nano-electronic devices. As the fingerprint of materials, Raman spectroscopy can provide the information of their phonon dispersion and electronic band structure. According to the Raman selection rule, Raman process involving multiple (two or more) phonons can be used to probe the phonon density of states within the whole Brillouin zone. However, the intensity of high-order Raman modes is much lower than that of the first-order Raman mode. To break through the limit of low intensity, here, we measured the resonant Raman spectroscopy of BP excited by several wavelength lasers and observed rich information about high-order Raman modes in the spectral range of 680–930 cm–1. To further investigate high-order Raman modes and avoid the birefringence effects from optical anisotropy on Raman intensity, we employ a special polarization configuration to obtain resonant Raman spectra and Raman intensity as a function of excitation wavelength. All the observed high-order Raman modes are certainly assigned, according to the phonon dispersion and symmetry analysis of related phonons. This indicates the great contribution of phonons within the Brillouin zone to the second- and third-order Raman scattering. This work proposes a general and systematical method to investigate high-order Raman modes, and paves ways for the researches of phonon dispersion and resonance Raman spectroscopy in other anisotropic materials.
      通信作者: 谭平恒, phtan@semi.ac.cn
      Corresponding author: Tan Ping-Heng, phtan@semi.ac.cn
    [1]

    Qiao J, Kong X, Hu Z, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [2]

    Cai Y, Ke Q, Zhang G, Feng Y P, Shenoy V B, Zhang Y W 2015 Adv. Funct. Mater. 25 2230Google Scholar

    [3]

    Ling X, Huang S, Hasdeo E H, Liang L, Parkin W M, Tatsumi Y, Nugraha A R, Puretzky A A, Das P M, Sumpter B G 2016 Nano Lett. 16 2260Google Scholar

    [4]

    Chen P F, Li N, Chen X Z, Ong W J, Zhao X J 2017 2D Mater. 5 014002Google Scholar

    [5]

    Malard L, Pimenta M, Dresselhaus G, Dresselhaus M 2009 Phys. Rep. 473 51Google Scholar

    [6]

    Zhang X, Qiao X F, Shi W, Wu J B, Jiang D S, Tan P H 2015 Chem. Soc. Rev. 44 2757Google Scholar

    [7]

    Shi W, Zhang X, Li X L, Qiao X F, Wu J B, Zhang J, Tan P H 2016 Chin. Phys. Lett. 33 057801Google Scholar

    [8]

    Shi W, Lin M L, Tan Q H, Qiao X F, Zhang J, Tan P H 2016 2D Mater. 3 025016Google Scholar

    [9]

    Lin T, Cong X, Lin M L, Liu X L, Tan P H 2018 Nanoscale 10 8704Google Scholar

    [10]

    Mao N, Wu J, Han B, Lin J, Tong L, Zhang J 2016 Small 12 2627Google Scholar

    [11]

    Ribeiro H B, Pimenta M A, De Matos C J, Moreira R L, Rodin A S, Zapata J D, De Souza E A, Castro Neto A H 2015 ACS Nano 9 4270Google Scholar

    [12]

    Kim J, Lee J U, Lee J, Park H J, Lee Z, Lee C, Cheong H 2015 Nanoscale 7 18708Google Scholar

    [13]

    Wang X, Mao N, Luo W, Kitadai H, Ling X 2018 J. Phys. Chem. Lett. 9 2830Google Scholar

    [14]

    Favron A, Goudreault F A, Gosselin V, Groulx J, Cote M, Leonelli R, Germain J F, Phaneuf L, Heureux A L, Francoeur S, Martel R 2018 Nano Lett. 18 1018Google Scholar

    [15]

    Sugai S, Shirotani I 1985 Solid State Commun. 53 753Google Scholar

    [16]

    Jiang J W, Wang B S, Park H S 2016 J. Phys. Condens. Matter 28 165401Google Scholar

    [17]

    Wu J B, Lin M L, Cong X, Liu H N, Tan P H 2018 Chem. Soc. Rev. 47 1822Google Scholar

    [18]

    Wu J B, Zhang X, Ijäs M, Han W P, Qiao X F, Li X L, Jiang D S, Ferrari A C, Tan P H 2014 Nat. Commun. 5 5309Google Scholar

    [19]

    Saito R, Jorio A, Filho A G S, Dresselhaus G, Pimenta M A 2002 Jpn. J. Appl. Phys. 41 4878Google Scholar

    [20]

    Carvalho B R, Malard L M, Alves J M, Fantini C, Pimenta M A 2015 Phys. Rev. Lett. 114 136403Google Scholar

    [21]

    Clark R J H, Dines T J 1986 Angew. Chem. Int. Ed. 25 131Google Scholar

    [22]

    Liu X L, Zhang X, Lin M L, Tan P H 2017 Chin. Phys. B 26 067802Google Scholar

  • 图 1  (a)黑磷的晶体结构; (b)声子模的原子位移示意图; (c)黑磷的声子色散、声子态密度以及第一布里渊区示意图; 布里渊区中心的各拉曼模已在图中标出[9]

    Fig. 1.  (a) Crystal structure of black phosphorus; (b) atomic displacements of phonon modes in black phosphorus; (c) phonon dispersion, vibration density of states (VDOS) and schematic diagram of first Brillouin zone of bulk black phosphorus. Raman modes at the Brillouin zone center are labeled[9]

    图 2  (a)偏振拉曼实验的配置. 固定拉曼信号光路上检偏器的检偏方向($\theta_{\rm s} = 0$), 以探测具有相应偏振方向的散射光. 通过旋转半波片, 可以改变激发光与x轴的夹角$\theta_{\rm i}$; (b)在VV($\theta_{\rm i}=0^{\circ}$)和HV($\theta_{\rm i}=90^{\circ}$)偏振配置下, 包含$ {\rm{B}_{1g}}$, $\rm B_{3 g}^1$, $ {\rm{A}^1_g} $, $ {\rm{A}^2 _g}$$ {\rm{B}_{2g}} $一阶拉曼模的拉曼光谱; (c)在不同波长激光的激发下, 黑磷三个主要的一阶拉曼模的峰强与$\theta_{\rm i}$的依赖关系. 不同颜色对应不同的激发波长, 符号散点给出了峰强的实验值, 实线给出了峰强随$\theta_{\rm i}$变化的拟合结果

    Fig. 2.  (a) Experimental configuration. The polarization direction of Raman signal is fixed ($\theta_{\rm s} = 0$). The angle between polarization direction of incident light and x axis is $\theta_{\rm i}$, which can be changed by rotating a half-wave plate; (b) Raman spectra in the range of $ {\rm{B}_{1g}} $, $\rm B_{3 g}^1$, $ {\rm{A}^1 _g}$, $ {\rm{A}^2 _g}$ and $ {\rm{B}_{2g}} $ modes, under the VV($\theta_{\rm i}=0^{\circ}$) and HV($\theta_{\rm i}=90^{\circ}$) configurations; (c) the $\theta_{\rm i}$-dependent Raman intensity excited by different wavelengths. The solid lines indicate fitting results.

    图 3  (a) 473—671 nm之间6个波长激光激发下的拉曼光谱. 每一组谱线都给出了$\theta_{\rm i}=0^{\circ}$$\theta_{\rm i}=90^{\circ}$两种配置下的情况. 竖虚线标出了3个主要的一阶拉曼峰以及能够辨识出的11个高阶拉曼峰(P1—P11); (b) 6个波长激光激发下在$\theta_{\rm i}=0^{\circ}$时P4—P11各谱线的拟合情况

    Fig. 3.  (a) Raman spectra of black phosphorus excited by six excitation wavelengths between 473–671 nm. Raman spectra at $\theta_{\rm i}=0^{\circ}$ and $\theta_{\rm i}=90^{\circ}$ are given for each excitation. Three main first-order Raman peaks and eleven high-order Raman peaks (P1–P11) are marked by vertical dotted lines; (b) the fitting result of P4–P11 for Raman spectra by six excitations at $\theta_{\rm i}=0^{\circ}$.

    图 4  488, 532和633 nm激光激发下, 黑磷P1—P11高阶拉曼模的偏振特性

    Fig. 4.  Polarization-dependent Raman intensity of P1–P11 Raman modes, excited by 488, 532 and 633 nm lasers.

    表 1  实验所观察到的黑磷多声子拉曼峰的指认

    Table 1.  Assignments of high order Raman peaks of BP.

    PeaksRaman shift /cm–1Assigned modeAssigned mode in Ref. [13]Calculated frequency/cm–1
    P1~688${\rm A}_{\rm g}^2 (\varGamma)+B_{3 {\rm g}}^1 (\varGamma)$${\rm A}_{\rm g}^2+B_{3 {\rm g}}^1$689
    P2~714${\rm B}_{2 {\rm g}} (\varGamma)+2\cdot B_{1 {\rm g}} (X)$715
    P3~747$2 \cdot {\rm{A}}_{\rm{g}}^2(\varGamma ){\rm{ - B}}_{{\rm{3 g}}}^{\rm{1}}(\varGamma )$$2 \cdot {\rm{A}}_{\rm{g}}^2-{{\rm{B}}_{{\rm{1 g}}}}$749
    P4~819${\rm B}_{2 {\rm g}} (\varGamma)+B_{1 {\rm g}} (S)+B_{3 {\rm g}}^1 (S)$821
    P5~831$2 \cdot {\rm{A} }_{\rm{g} }^2({\rm {near} }\;{{Y} })$832
    P6~839$2 \cdot {\rm{A} }_{\rm{g} }^2({{S} })$842
    P7~855$2 \cdot {\rm{B} }_{ {\rm{3 g} } }^2(\varGamma )$858
    P8~864$2 \cdot { {\rm{B} }_{ {\rm{2 g} } } }({{X} })$864
    P9~872$2 \cdot { {\rm{B} }_{2{\rm{g} } } }(\varGamma \;{\rm {or} }\;{ {S} })$874
    P10~886${\rm A}_{\rm g}^1 (X)+ A_{\rm g}^2 (X)$888
    P11~895$2 \cdot { {\rm{B} }_{2{\rm{g} } } }({\rm {between}}\;{{X} }\;{\rm {and}}\;{{S} })$896
    下载: 导出CSV
    Baidu
  • [1]

    Qiao J, Kong X, Hu Z, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [2]

    Cai Y, Ke Q, Zhang G, Feng Y P, Shenoy V B, Zhang Y W 2015 Adv. Funct. Mater. 25 2230Google Scholar

    [3]

    Ling X, Huang S, Hasdeo E H, Liang L, Parkin W M, Tatsumi Y, Nugraha A R, Puretzky A A, Das P M, Sumpter B G 2016 Nano Lett. 16 2260Google Scholar

    [4]

    Chen P F, Li N, Chen X Z, Ong W J, Zhao X J 2017 2D Mater. 5 014002Google Scholar

    [5]

    Malard L, Pimenta M, Dresselhaus G, Dresselhaus M 2009 Phys. Rep. 473 51Google Scholar

    [6]

    Zhang X, Qiao X F, Shi W, Wu J B, Jiang D S, Tan P H 2015 Chem. Soc. Rev. 44 2757Google Scholar

    [7]

    Shi W, Zhang X, Li X L, Qiao X F, Wu J B, Zhang J, Tan P H 2016 Chin. Phys. Lett. 33 057801Google Scholar

    [8]

    Shi W, Lin M L, Tan Q H, Qiao X F, Zhang J, Tan P H 2016 2D Mater. 3 025016Google Scholar

    [9]

    Lin T, Cong X, Lin M L, Liu X L, Tan P H 2018 Nanoscale 10 8704Google Scholar

    [10]

    Mao N, Wu J, Han B, Lin J, Tong L, Zhang J 2016 Small 12 2627Google Scholar

    [11]

    Ribeiro H B, Pimenta M A, De Matos C J, Moreira R L, Rodin A S, Zapata J D, De Souza E A, Castro Neto A H 2015 ACS Nano 9 4270Google Scholar

    [12]

    Kim J, Lee J U, Lee J, Park H J, Lee Z, Lee C, Cheong H 2015 Nanoscale 7 18708Google Scholar

    [13]

    Wang X, Mao N, Luo W, Kitadai H, Ling X 2018 J. Phys. Chem. Lett. 9 2830Google Scholar

    [14]

    Favron A, Goudreault F A, Gosselin V, Groulx J, Cote M, Leonelli R, Germain J F, Phaneuf L, Heureux A L, Francoeur S, Martel R 2018 Nano Lett. 18 1018Google Scholar

    [15]

    Sugai S, Shirotani I 1985 Solid State Commun. 53 753Google Scholar

    [16]

    Jiang J W, Wang B S, Park H S 2016 J. Phys. Condens. Matter 28 165401Google Scholar

    [17]

    Wu J B, Lin M L, Cong X, Liu H N, Tan P H 2018 Chem. Soc. Rev. 47 1822Google Scholar

    [18]

    Wu J B, Zhang X, Ijäs M, Han W P, Qiao X F, Li X L, Jiang D S, Ferrari A C, Tan P H 2014 Nat. Commun. 5 5309Google Scholar

    [19]

    Saito R, Jorio A, Filho A G S, Dresselhaus G, Pimenta M A 2002 Jpn. J. Appl. Phys. 41 4878Google Scholar

    [20]

    Carvalho B R, Malard L M, Alves J M, Fantini C, Pimenta M A 2015 Phys. Rev. Lett. 114 136403Google Scholar

    [21]

    Clark R J H, Dines T J 1986 Angew. Chem. Int. Ed. 25 131Google Scholar

    [22]

    Liu X L, Zhang X, Lin M L, Tan P H 2017 Chin. Phys. B 26 067802Google Scholar

  • [1] 张洋, 张志豪, 王宇剑, 薛晓兰, 陈令修, 石礼伟. 偏振调制扫描光学显微镜方法.  , 2024, 73(15): 157801. doi: 10.7498/aps.73.20240688
    [2] 程秋振, 黄引, 李玉辉, 张凯, 冼国裕, 刘鹤元, 车冰玉, 潘禄禄, 韩烨超, 祝轲, 齐琦, 谢耀锋, 潘金波, 陈海龙, 李永峰, 郭辉, 杨海涛, 高鸿钧. 准一维层状半导体Nb4P2S21单晶的面内光学各向异性.  , 2023, 72(21): 218102. doi: 10.7498/aps.72.20231539
    [3] 宋梦婷, 张悦, 黄文娟, 候华毅, 陈相柏. 拉曼光谱研究退火氧化镍中二阶磁振子散射增强.  , 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [4] 黄申洋, 张国伟, 汪凡洁, 雷雨晨, 晏湖根. 二维黑磷的光学性质.  , 2021, 70(2): 027802. doi: 10.7498/aps.70.20201497
    [5] 丁燕, 钟粤华, 郭俊青, 卢毅, 罗昊宇, 沈云, 邓晓华. 黑磷各向异性拉曼光谱表征及电学特性.  , 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [6] 董大兴, 刘友文, 伏洋洋, 费越. 金属光栅异常透射增强黑磷烯法拉第旋转的理论研究.  , 2020, 69(23): 237802. doi: 10.7498/aps.69.20201056
    [7] 宋克超, 霍帅楠, 涂冬明, 侯新富, 吴晓静, 王明伟. 二维黑磷对太赫兹波调控特性的理论研究.  , 2020, 69(17): 174205. doi: 10.7498/aps.69.20200105
    [8] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元. 金属亚波长结构的表面增强拉曼散射.  , 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [9] 张忠强, 刘汉伦, 范晋伟, 丁建宁, 程广贵. 黑磷纳米通道内压力驱动流体流动特性.  , 2019, 68(17): 170202. doi: 10.7498/aps.68.20190531
    [10] 李斌, 罗时文, 余安澜, 熊东升, 王新兵, 左都罗. 共焦腔增强的空气拉曼散射.  , 2017, 66(19): 190703. doi: 10.7498/aps.66.190703
    [11] 曾祥明, 鄢慧君, 欧阳楚英. 第一性原理计算研究黑磷嵌锂态的动力学性能.  , 2012, 61(24): 247101. doi: 10.7498/aps.61.247101
    [12] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振.  , 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [13] 韩茹, 樊晓桠, 杨银堂. n-SiC拉曼散射光谱的温度特性.  , 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [14] 张俊, 谭平恒, 赵伟杰. 利用径向呼吸模及其倍频模的共振特性精确测定单壁碳纳米管的电子跃迁能量.  , 2010, 59(11): 7966-7973. doi: 10.7498/aps.59.7966
    [15] 韩 茹, 杨银堂, 柴常春. n-SiC的电子拉曼散射及二级拉曼谱研究.  , 2008, 57(5): 3182-3187. doi: 10.7498/aps.57.3182
    [16] 吴永全, 蒋国昌, 尤静林, 侯怀宇, 陈 辉. 硅酸盐熔体微结构单元的对称伸缩模的拉曼散射系数.  , 2005, 54(2): 961-966. doi: 10.7498/aps.54.961
    [17] 吴延昭, 于 平, 王玉芳, 金庆华, 丁大同, 蓝国祥. 非共振条件下单壁碳纳米管拉曼散射强度的计算.  , 2005, 54(11): 5262-5268. doi: 10.7498/aps.54.5262
    [18] 张纪才, 戴伦, 秦国刚, 应丽贞, 赵新生. 离子注入GaN的拉曼散射研究.  , 2002, 51(3): 629-634. doi: 10.7498/aps.51.629
    [19] 黄仕华, 莫玉东. Hg1-xCdxTe的共振拉曼散射.  , 2001, 50(5): 964-967. doi: 10.7498/aps.50.964
    [20] 李宏年, 徐亚伯, 李海洋, 何丕模, 鲍世宁. 单层纳米碳管振动模的拉曼光谱研究.  , 1999, 48(2): 273-278. doi: 10.7498/aps.48.273
计量
  • 文章访问数:  12658
  • PDF下载量:  457
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-09
  • 修回日期:  2020-05-27
  • 上网日期:  2020-06-02
  • 刊出日期:  2020-08-20

/

返回文章
返回
Baidu
map