-
采用机械剥离法制备出层状黑磷, 通过微纳加工制备0°—360°四对对称电极并以黑磷作为沟道材料的背栅型场效应晶体管, 对层状黑磷的拉曼光谱及其场效晶体管的电学输运特性进行了研究. 偏振拉曼图谱结果表明, 黑磷的3个特征峰强度随偏振角改变呈现180°周期变化; 不同角度电极源漏电流表明, 黑磷在0° (180°)扶手椅方向附近呈现最大源漏电流, 均表现出黑磷各向异性特性. 另外, 不同电极角度栅压-源漏电流转移特性曲线表明其在45° (225°)和90° (270°)方向呈现微弱双极性, 在0° (180°)和135° (315°)方向呈现空穴型输运特性.As a new family member of two-dimensional materials, black phosphorus has attracted much attention due to its infrared band gap and strongly anisotropic properties, bringing new concepts and applications in different fields. In characterizing black phosphorus, optical method and electrical method are typically used to obtain structural information and fundamental properties in terms of behaviors of electrons. So far, more studies are still needed to understand in depth the physical principle and facilitate applications. In this paper, multilayered black phosphorus flakes are synthesized via mechanical exfoliation from the bulk crystal, and field-effect transistors based on few-layer black phosphorus are fabricated by micro-nano fabrication technology, which owns 0°–360° four pairs of symmetrical electrodes. We experimentally obtain the characteristics of Raman modes
${\rm{A}}_{\rm{g}}^{\rm{1}}$ ,$ {\rm B_{2g}} $ , and${\rm{A}}_{\rm{g}}^2$ in parallel (XX) and vertical (XY) polarization configuration. Furthermore, the angle-dependent source-drain current angle is measured through a BP field-effect transistor. The Raman spectrum results demonstrate that three characteristic peaks are located at 361, 439 and 467 cm–1 in a range of 200–500 cm–1, corresponding to the vibration modes of${\rm{A}}_{\rm{g}}^{\rm{1}}$ ,$ {\rm B_{2g}}, $ and${\rm{A}}_{\rm{g}}^2$ , respectively. The fitting experimental data of polarization-dependent Raman spectra also show that the intensity for each of the three characteristic peaks has a 180° periodic variation in a parallel polarization configuration and also in a vertical polarization configuration. The maximum Raman intensity of Ag is along the AC direction, while that of B2g is along the ZZ direction. On the other hand, the electric transport curves illustrate that the largest source leakage current can be obtained near 0° (180°) armchair direction. Such results indicate the anisotropy of black phosphorus. Furthermore, transfer curves with different electrode angles show that the weak bipolarity of black phosphorus at 45° (225°), 90° (270°), and p-type performance at 0° (180°), 135° (315°) can be offered, respectively. This work is conducive to studying the properties and practical applications of devices based on black phosphorus.-
Keywords:
- black phosphorus /
- anisotropy /
- Raman spectra /
- field effect transistor
[1] Zhang J, Liu H J, Cheng L, Wei J, Liang J H, Fan D D, Shi J, Tang X F, Zhang Q J 2014 Sci. Rep. 4 6452Google Scholar
[2] Qin G, Yan Q, Qin Z, Yue S, Cui H, Zheng Q, Su G 2014 Sci. Rep. 4 6946Google Scholar
[3] Fei R X, Yang L 2014 Nano Lett. 14 2884Google Scholar
[4] Suvansinpan N, Hussain F, Zhang G, Chiu C H, Cai Y Q, Zhang Y W 2016 Nanotechnology 27 065708Google Scholar
[5] Tran V, Soklaski R, Liang Y F, Yang L 2014 Phy. Rev. B 89 235319Google Scholar
[6] Warschauer D 1963 J. Appl. Phys. 34 1853Google Scholar
[7] Mao N, Tang J, Xie L, Wu J X, Han B, Lin J J, Deng S B, Ji W, Xu H, Liu K H, Tong L M, Zhang J 2016 J. Am. Chem. Soc. 138 300Google Scholar
[8] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar
[9] Wang H, Yu L L, Lee Y H, Shi Y M, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674Google Scholar
[10] Li L K, Yu Y J, Ye G J, Ge Q D, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar
[11] Mittendorff M, Suess R J, Leong E, Murphy T E 2017 Nano Lett. 17 5811Google Scholar
[12] Zhang G, Huang S, Chaves A, Song C, Ozcelik V O, Low T, Yan H 2017 Nat. Commun. 8 14071Google Scholar
[13] Guo Q, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B C, Li C, Han S, Wang H, Xia Q F, Ma T P, Mueller T, Xia F N 2016 Nano Lett. 16 4648Google Scholar
[14] Qiao J, Kong X, Hu Z, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar
[15] Zhang Z, Li L, Horng J, Wang N Z, Yang F, Yu Y, Zhang Y, Chen G, Watanabe K, Taniguchi T, Chen X H, Wang F, Zhang Y 2017 Nano Lett. 17 6097Google Scholar
[16] Zhu W, Liang L, Roberts R H, Lin J, Akinwande D 2018 ACS Nano 12 12512Google Scholar
[17] Li L, Kim J, Jin C, Ye G J, Qiu D Y, Jornada F H D, Shi Z, Chen L, Zhang Z, Yang F, Watanabe K, Taniguchi T, Ren W, Louie S G, Chen X H, Zhang Y, Wang F 2017 Nat. Nanotechnol. 12 21Google Scholar
[18] Koenig S P, Doganov R A, Schmidt H, Neto A H C, Ozyilmaz B 2014 Appl. Phys. Lett. 104 103106Google Scholar
[19] Island J O, Steele G A, Zant H S J, Castellanosgomez A 2014 2D Mater. 2 011002Google Scholar
[20] Huang S, Ling X 2017 Small 13 1700823Google Scholar
[21] 孟达, 从鑫, 冷宇辰, 林妙玲, 王佳宏, 喻彬璐, 刘雪璐, 喻学锋, 谭平恒 2020 69 167803Google Scholar
Meng D, Cong X, Len Y Z, Lin M L, Wang J H, Yu B L, Liu X F, Yu X F, Tan P H 2020 Acta Phys. Sin. 69 167803Google Scholar
[22] Pant A, Torun E, Chen B, Bhat S, Fan X, Wu K, Wright D P, Peeters F M, Soignard E, Sahin H, Tongav S 2016 Nanoscale 8 16259Google Scholar
[23] Wang X, Jones A M, Seyler K L, Vv T, Jia Y, Zhao H, Wang H, Yang L, Xu X, Xia F 2015 Nat. Nanotechnol. 10 517Google Scholar
[24] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D, Ye P D 2014 ACS nano 8 4033Google Scholar
-
图 2 在平行(XX)和垂直(XY)极化配置下, 黑磷
${\rm{A}}_{\rm{g}}^{\rm{1}}$ , B2g和${\rm{A}}_{\rm{g}}^2$ 拉曼模的偏振特性(点为实验数据, 红色曲线对应数据的拟合)Fig. 2. Polarization characteristics of Raman modes
${\rm{A}}_{\rm{g}}^{\rm{1}}$ , B2g, and${\rm{A}}_{\rm{g}}^2$ in parallel (XX) and vertical (XY) polarization configurations. Dots and red curves correspond to experiment and fitting data, respectively. -
[1] Zhang J, Liu H J, Cheng L, Wei J, Liang J H, Fan D D, Shi J, Tang X F, Zhang Q J 2014 Sci. Rep. 4 6452Google Scholar
[2] Qin G, Yan Q, Qin Z, Yue S, Cui H, Zheng Q, Su G 2014 Sci. Rep. 4 6946Google Scholar
[3] Fei R X, Yang L 2014 Nano Lett. 14 2884Google Scholar
[4] Suvansinpan N, Hussain F, Zhang G, Chiu C H, Cai Y Q, Zhang Y W 2016 Nanotechnology 27 065708Google Scholar
[5] Tran V, Soklaski R, Liang Y F, Yang L 2014 Phy. Rev. B 89 235319Google Scholar
[6] Warschauer D 1963 J. Appl. Phys. 34 1853Google Scholar
[7] Mao N, Tang J, Xie L, Wu J X, Han B, Lin J J, Deng S B, Ji W, Xu H, Liu K H, Tong L M, Zhang J 2016 J. Am. Chem. Soc. 138 300Google Scholar
[8] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar
[9] Wang H, Yu L L, Lee Y H, Shi Y M, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674Google Scholar
[10] Li L K, Yu Y J, Ye G J, Ge Q D, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar
[11] Mittendorff M, Suess R J, Leong E, Murphy T E 2017 Nano Lett. 17 5811Google Scholar
[12] Zhang G, Huang S, Chaves A, Song C, Ozcelik V O, Low T, Yan H 2017 Nat. Commun. 8 14071Google Scholar
[13] Guo Q, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B C, Li C, Han S, Wang H, Xia Q F, Ma T P, Mueller T, Xia F N 2016 Nano Lett. 16 4648Google Scholar
[14] Qiao J, Kong X, Hu Z, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar
[15] Zhang Z, Li L, Horng J, Wang N Z, Yang F, Yu Y, Zhang Y, Chen G, Watanabe K, Taniguchi T, Chen X H, Wang F, Zhang Y 2017 Nano Lett. 17 6097Google Scholar
[16] Zhu W, Liang L, Roberts R H, Lin J, Akinwande D 2018 ACS Nano 12 12512Google Scholar
[17] Li L, Kim J, Jin C, Ye G J, Qiu D Y, Jornada F H D, Shi Z, Chen L, Zhang Z, Yang F, Watanabe K, Taniguchi T, Ren W, Louie S G, Chen X H, Zhang Y, Wang F 2017 Nat. Nanotechnol. 12 21Google Scholar
[18] Koenig S P, Doganov R A, Schmidt H, Neto A H C, Ozyilmaz B 2014 Appl. Phys. Lett. 104 103106Google Scholar
[19] Island J O, Steele G A, Zant H S J, Castellanosgomez A 2014 2D Mater. 2 011002Google Scholar
[20] Huang S, Ling X 2017 Small 13 1700823Google Scholar
[21] 孟达, 从鑫, 冷宇辰, 林妙玲, 王佳宏, 喻彬璐, 刘雪璐, 喻学锋, 谭平恒 2020 69 167803Google Scholar
Meng D, Cong X, Len Y Z, Lin M L, Wang J H, Yu B L, Liu X F, Yu X F, Tan P H 2020 Acta Phys. Sin. 69 167803Google Scholar
[22] Pant A, Torun E, Chen B, Bhat S, Fan X, Wu K, Wright D P, Peeters F M, Soignard E, Sahin H, Tongav S 2016 Nanoscale 8 16259Google Scholar
[23] Wang X, Jones A M, Seyler K L, Vv T, Jia Y, Zhao H, Wang H, Yang L, Xu X, Xia F 2015 Nat. Nanotechnol. 10 517Google Scholar
[24] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D, Ye P D 2014 ACS nano 8 4033Google Scholar
计量
- 文章访问数: 13893
- PDF下载量: 314
- 被引次数: 0